
T-76.115 Technical Specification
TEXlipse project
Group TeXlapse

ID: TEXLIPSE-TECH-1
Version: 1.8
Modified: March 16, 2005

Author:
Oskar Ojala (omojala@cc.hut.fi)

Table 1: Version history
Version Date Editor Change

0.1 14.11.2004 Oskar Basic structure
0.2 22.11.2004 Kimmo File output and building
0.3 22.11.2004 Esa Templates and preview
0.4 25.11.2004 Taavi Viewing the outline, Basic outline

navigation
0.5 25.11.2004 Oskar Some architecture and technical

descriptions added
0.6 25.11.2004 Esa Added template syntax
0.7 26.11.2004 Esa Modified template sections and

appendix
0.8 28.11.2004 Oskar Made corrections based on inspec-

tion, added some technical details
0.9 29.11.2004 Oskar Added more technical detail in

tasks and did some corrections
1.0 29.11.2004 Kimmo Added some more explanations

about the builder
1.1 4.1.2005 Kimmo Updated the builder diagram and

explanation of it
1.2 29.1.2005 Oskar Added folding support and made

some adjustments
1.3 1.2.2005 Kimmo Added previewer explanation and

diagram
1.4 7.2.2005 Oskar Updated most of the document,

made new architectural diagrams
1.5 11.3.2005 Oskar Updated the parsing section
1.6 12.3.2005 Oskar Read and updated nearly entire

document, rewrote template part
1.7 13.3.2005 Taavi Updated the outline related im-

plementation task stuff
1.8 13.3.2005 Oskar Proofread and corrected outline

description

ii

Contents

1 Purpose and scope of the document 1
1.1 Prerequisites . 1
1.2 Document structure . 1

2 Main domain concepts 2

3 System overview 4

4 Architectural overview 4
4.1 About plugins . 4
4.2 External interfaces . 5
4.3 Document model . 7
4.4 System architecture . 9

5 Technical overview 10
5.1 Packages . 10
5.2 Document model . 11

5.2.1 Parsing . 11
5.2.2 Outline . 14

5.3 External interfaces . 15
5.3.1 The Builder . 15
5.3.2 The Previewer . 16

5.4 Editor functions . 18
5.5 Code reuse . 18

6 Technical specification per implementation task 19
6.1 Make LATEX parser (T0.1) . 19
6.2 Syntax highlighting, basic case (T1.1) 21
6.3 Code folding (T1.2) . 21
6.4 Automatic indentation (T1.3) 22
6.5 Make BibTEX parser (T1.4) 22
6.6 Code completion (content assist, T1.5) 23
6.7 Template mechanism, user defined templates (T1.6, T1.7) 24
6.8 Commenting blocks (T1.8) 25
6.9 Annotations for errors (T1.9) 25
6.10 Matching parens (T1.10) . 25
6.11 Word counter (T1.11) . 26
6.12 Line wrap (T1.12) . 26
6.13 View the outline (T2.1) . 26
6.14 Basic outline navigation (T2.2) 28
6.15 Copy/paste and drag’n’drop in the outline (T2.3, T2.4) . . . 28
6.16 File output/building (T3.1) 29
6.17 Displaying build errors (T3.2) 29

iii

6.18 Linking errors to source (T3.3) 29
6.19 Preview support (T3.4) . 30
6.20 Linking preview to source (T3.5) 30
6.21 Support for a LaTeX project (T4.1) 30
6.22 Support for partial building (T4.2) 31
6.23 BibTEX editing (T5.1) . 31
6.24 Table editor (R6.2) . 31

iv

1 Purpose and scope of the document

The purpose of this document is to define the technical specification
and architecture of the TEXlipse system. This is intended to complement
the TEXlipse requirements documentation. Thus, this document focuses
primarily on specifying how features are to be implemented and why
they are implemented in the specified way. Secondarily, this document
focuses on defining feature behavior more specifically than done in the
requirements document when that is necessary for implementing the
requirement.

1.1 Prerequisites

The intended audience of this document is people interested in the ar-
chitecture and implementation of TEXlipse and have some degree of pro-
gramming background.

To fully comprehend the contents of this document, knowledge of the
Eclipse plugin architecture, the TEX typesetting system and of compiler
techniques is required. These topics are so broad that it’s impossible
to summarize them here, however compiler and TEX -resources are re-
ferred to when appropriate and Eclipse documentation can be found at
the Eclipse www-site (http://www.eclipse.org).

This document can be read with only knowledge of the requirements
(see the document TEXLIPSE-REQ-1) and Eclipse with the help of the
domain concept descriptions, but in some places there are technical de-
scriptions that require more in-depth knowledge, and these may thus
be skipped if the reader merely wants an overview.

1.2 Document structure

The rest of this document is organized as follows: Section 2 introduces
the key concept in the architecture and technical design of TEXlipse.
Section 3 makes a fairly detailed architectural overview of the key con-
cepts of TEXlipse and the software structure chosen. Section 5 expands
on the architecture description and explains in more detail how the dif-
ferent parts are implemented and, most importantly, how they work
together. Section 6 explains more detailed implementation-level issues
and techniques used per implementation tasks (the tasks correspond
fairly well to the functional requirements of TEXlipse).

1

2 Main domain concepts

Main domain concepts:

AST Abstract Syntax Tree, a tree representation of the parsed stream.
In contrast to CST, only selected tokens are represented and su-
perfluous tokens (such as expression terminators and parenthe-
ses) are ignored in the tree.

BibTEX A bibliography citation inclusion system for LATEX, developed
by Oren Patashnik. Uses a bibliography file and a style file to make
a bibliography list to the LATEX document and to include only the
cited bibliographies. See [Lam85] and [Pat03].

CST Concrete Syntax Tree, a tree representation of the parsed stream
as recognized by the parser. Each token have their appropriate
place in the tree dictated by the grammar.

DFA Deterministic Finite Automaton, an automaton that has deter-
ministic state transitions, useful for representing regular expres-
sions in computer-executable form, thus used for building lexers.

EBNF Extended Backus Naur Form, the common way of describing
context-free grammars.

Eclipse IDE A free Integrated Development Environment sponsored
by IBM. Intended originally for Java development, but currently
emphasizes plugins for adding functionality beyond the original
requirements.

Eclipse plugin A piece of Java software that integrates with the Eclipse
plugin architecture and provides some additional feature for the
Eclipse environment.

Eclipse plugin framework The Eclipse platform offers a rich frame-
work for plugins, complete with interfaces and classes for imple-
menting many common functions more easily.

Editor In Eclipse the editor view, or editor for short (as it’s used through-
out this document) is a view where the documents can be edited
as in a normal text editor. The editor can be extended with many
kinds of functionality, such as syntax highlighting.

GUI widget A component in the GUI (Graphical User Interface); can
be a button, a window, a checkbox, a menu, etc.

2

LALR Look-ahead LR, a LR parsing method that is more powerful
than the SLR method, but easier than the LR-method without sac-
rificing too much in recognized languages. See LR.

LATEX A popular typesetting language, based on TEX. Is written as a
plain text file with a series of commands. See [Lam85].

Lexer A program for reading a stream and recognizing predefined to-
kens in the stream, then returning found tokens or an error if the
stream doesn’t correspond to the specified format.

LL Left to right, leftmost derivation parsing, an easy to understand
top-down family of parsing methods. Refer to [ASU86] for details.

LR Left to right, rightmost derivation parsing, a family of bottom-up
parsing methods. Refer to [ASU86] and see also [Knu65].

MVC Model-View-Controller, a design pattern where the date is held
in a model, the data is presented through views and the mapping
of data to views and vice versa is done by the controller.

Outline In Eclipse the outline view, or outline for short (as it’s used
throughout this document) is a view where the currently edited
document’s (the document that is currently shown in the editor)
structure is shown. For examples, in the case of a Java class it
would include all the fields and methods, and in the case of a LATEX-
document it would include the sections.

Parser A program for checking that tokens match a predefined gram-
mar, ieṫo check that the given stream is of the right form.

Parser generator A software for automatically generating a lexer and
a parser from a given grammar specification.

Singleton A design pattern where the singleton class only has one ex-
isting object instance at any time, which is then shared among
other runtime objects.

TEX A powerful typesetting system that permits the user to typeset
documents in professional quality by using a flexible command
language. See [Knu84] for a description of the language, [Knu86]
for a description of how TEX works.

View In Eclipse, there are several views: the editor view, the outline
view, the problems view, etc. These are different views on the docu-
ment or project being edited and appear visually as separate areas
in the Eclipse GUI.

3

Visitor A design pattern where an object, which is the visitor, visits
another object, thereby performing a number of operations on the
visited object. The visitor implements a certain interface, so that it
can be applied to the visited object. In TEXlipse, visitors are used
for trees, so that the visited object calls a method defined in the
visitor interface when a node corresponding to the method is vis-
ited in the tree. See [Gag98] for a more thorough explanation.

3 System overview

TEXlipse is a plugin for the Eclipse IDE. It provides a LATEX editor for
editing and building LATEX documents.

Briefly, it provides automatic completion of references, syntax highlight-
ing, user defined templates, automatic building, previewing, error re-
porting and an outline view. It does not re-implement LATEX, rather, it is
intended to serve as a powerful editing tool for LATEX documents. It does
not implement WYSIWYG editing of the document, as it is intended to
be a power user tool to speed up editing of LATEX source. Refer to the
TEXlipse requirements document (document ID TEXLIPSE-REQ-1) for
more information about the intended use and features of the system.

4 Architectural overview

4.1 About plugins

The Eclipse plugin architecture places many constraints on the struc-
ture of the plugin. Essentially, the Eclipse platform provides much in-
frastructure for building an editing environment, e.g. the plugin devel-
oper does not need to program GUI widgets and basic editing functions
such as copy and paste by himself. On the other hand, the Eclipse plat-
form and the ready-made infrastructure places certain constraints on
the architecture, e.g. how documents are handled. In general, the wins
provided by the (extensive) ready-made functionality far outweigh the
disadvantages.

The plugin is not a standalone piece of software; it integrates tightly
with Eclipse. Figure 1 depicts this and also shows three central compo-
nents of TEXlipse: the editor, representing the editor view, the outline,
representing the outline view and the builder, which handles interfacing

4

Eclipse plugin framework

Outline Extension

TeXlipse plugin

TexEditorTexlipseBuilder TexOutlinePage

Builder Extension Editor Extension

Extension point

Software component

Software package

Implemented extension

Legend:

Figure 1: The plugin structure: TEXlipse extends Eclipse on certain ex-
tension points

to external programs (e.g. LATEX) that are needed to build the document.
The editor and outline directly represent the Eclipse views of the same
names and thus build on the Eclipse plugin framework. The builder is
the core component in a set of components handling interfacing to ex-
ternal programs that handle building and previewing LATEX documents.

4.2 External interfaces

To see how the TEXlipse plugin fits in in the user’s programming envi-
ronment, see Figure 2, which presents the external interfaces of the plu-
gin and the control flow. In order to work, the plugin requires (besides
Eclipse) tools for actually compiling the created documents into vector
representations, i.e. postscript, dvi, and/or pdf. Thus, a LATEX distribu-
tion is required to be installed separately, which TEXlipse then calls to
parse the document. For implementation details, see Section 6.16.

For previewing the created document, an external previewer is called.
The TEXlipse plugin permits the previewer to send messages back to the
plugin, enabling bidirectional communication which makes synchroniz-
ing the Eclipse document view and the previewer view possible. For im-
plementation details, see Section 6.19.

Due to the fact that TEXlipse is designed to run on three different oper-
ating systems, all having somewhat different facilities, preferred distri-
butions of LATEX and different previewers, the external interfaces to pro-
grams must be able to handle all of these fairly invisibly to the user (the
user is naturally required to set up the system, but setting up TEXlipse

5

Previewer

LaTeX BibTeX

User

TeXlipse

Control flow

External program

Legend

Figure 2: External interfaces with control flows depicted

6

shouldn’t differ too much on different platforms).

Beside program interfaces such as calling LATEX or a previewer, Figure 2
includes the user. The user mostly works with the editor, which provides
the direct editing view of the document source. The user also works with
the document outline, the file system browser (provided automatically
by Eclipse) and the problems view in the Eclipse GUI. The user can
activate the builder and the previewer. Thus, the user has the interface
of different views (the editor, document outline, the problems log and the
console) to the document, but can also control the activation of building
the document and previewing it from TEXlipse.

4.3 Document model

The core concepts in TEXlipse are focused around the editor view and
its functions. TEXlipse provides a LATEX-editor and other useful views on
the document being edited, the central one of them being the document
outline view. The outline view shows a document outline as described in
requirement R2.1 (requirement document ID TEXLIPSE-REQ-1). In or-
der to implement some editor and outline functions, parsers for BibTEX
and LATEX are implemented (these are described in more detail in Sec-
tion 5.2.1).

In order to facilitate the necessary communication between the outline,
the editor and the document parser(s), the MVC (Model-View-Controller)
pattern is applied in an adapted form. In this pattern, we have the
model representing the data, the view representing a view on the data
(typically a GUI) and the controller representing the logic for mapping
different data to different views. This pattern is particularly useful in
GUIs, since the order of user interaction cannot be known in advance,
enabling the data to be edited from different views and it provides an
order of abstraction between the GUI and the data model.

In an Eclipse plugin one doesn’t need to implement the GUI from scratch
— in fact, the GUI comes largely ready from the existing plugin in-
frastructure, so the “view” part is a quite thin. Also, the Eclipse plugin
structure places some constraints on the document model and object hi-
erarchy, so the MVC pattern is adapted to our needs. Figure 3 shows the
coupling of the central editing views; Model keeps abstract representa-
tions of the document (autocomplete data and outline data), asking the
parsers to return updated versions of the data structures when the data
itself is updated. The editor essentially provides information on editing
updates and fetches new data structures, as does the outline.

7

Texparser

Model

Bibparser Outline

Editor
TeXlipse component

IDocument

Eclipse component

Data flow

Legend

Figure 3: Editor-Model-Outline-Parser MVC-style coupling

It’s worth to note that in Figure 3, IDocument is an Eclipse class, which
contains the document being edited. The plugin architecture automati-
cally provides for this, but IDocument is not alone sufficient in holding
all the data required (e.g. the outline structure), so we augment it with
the model that contains somewhat more abstract representations of the
document, in contrast to the concrete representation of IDocument .
Thus, IDocument holds the model of the concrete file-based document,
while our model holds the model for LATEX-specific abstractions.

The reader might ask why use the MVC paradigm in such a way that
the controller is distributed into several classes and there are essen-
tially two models? First, the Eclipse plugin platform provides the basic
way of operation for the editor and outline, as well as the IDocument ,
so the developer doesn’t have too much leeway. Second, our model can
be thought of as a controller, except that there are circumstances where
it’s more efficient and simple for the editor and the outline to go directly
to IDocument . Third, this behavior is much better than a casual glance
would suggest, since IDocument -class changes only if Eclipse changes
and such a major change that would require a major rewrite of TEXlipse
would require a major rewrite of a significant number of plugins, mak-
ing the change unlikely. Fourth, the pattern described already provides
a good degree of abstraction; the parsers may be changed at will, with-
out having any effect on other components than model, since the data in-
terfaces to it are standardized. In practice, the abstract data structures
contained in Model are necessary for many functions of TEXlipse, so
they must be stored in some way. This mechanism employs the bridge-
pattern for abstracting the parser interface from the parser’s implemen-
tation and a facade-pattern for hiding the parsing stages behind the
model (see [GHJV95] for more information).

While developing TEXlipse 1.0, this means of abstraction proved to work

8

very well, as the the technically demanding parsers and the model in-
frastructure could both be developed independently from the rest of the
system, making development both less risky in terms of new bugs in-
troduced and easier to parallelize since other developers didn’t need to
wait for the parsers or model to be refined.

4.4 System architecture

Figure 4 presents the TEXlipse architecture. As can be expected, the
editor is a central piece in the plugin. In Figure 4, the Eclipse plugin
infrastructure is not shown for reasons of clarity. Thus, the builder ap-
pears not to be connected to anything else than the editor, even though
it most certainly is — the Eclipse plugin architecture handles calling
it. This situation is depicted in Figure 1; the central parts of TEXlipse’s
interface with the Eclipse plugin architecture, which provides the con-
necting framework.

Editor

Outline

Actions

mechanism
Template

Model

Texparser

Bibparser

Preview
adapter

Builder

assist

Content

Code folderHighlighter

Association

Component

Legend

Figure 4: TEXlipse architecture shown as a component view

The architecture, as shown in Figure 4, introduces some new parts —
the template mechanism, the actions, content assist, the highlighter
and the code folder. The actions are the simplest — they simply contain
editor actions for error messages and menu options (e.g. indenting or
commenting a selected region of text is triggered from the actions). The
template mechanism is also closely associated with the editor and pro-
vides the mechanism for retrieving templates (both pre-made and user
defined) as well as enabling the use of templates while editing. There
are two kinds of templates: document templates and editing templates.
The former can be applied to the entire document/project when starting
a new project. The latter can be used via typed abbreviations during

9

editing and they insert a template into the document being edited. Due
to this difference, both use entirely separate mechanisms. The actual
template completions, along with reference and command completions
are handled by the content assistant –framework.

The code folder handles folding away parts of the LATEX-source from the
editing view and the highlighter is a major component handling the
syntax highlighting in the editor.

The external interfaces were already discussed and they consist of two
major parts: the previewing facilities and the building facilities The pre-
view adapter interfaces the document preview with the editor so that
both views can be synchronized when a previewer that supports this
functionality is used. The builder handles the building of the document
and thus interfacing to the LATEX and BibTEX-programs installed. It
calls them and they in turn produce the document in the desired for-
mat.

5 Technical overview

Based on the architecture described in Section 4 we have developed a
technical design. The technical design encompasses the package and
class structure of TEXlipse, as well as the interaction between the dif-
ferent components.

5.1 Packages

Table 2 summarizes the package structure of the plugin and briefly de-
scribes what each package does. Note that the base package name has
been omitted from the table for brewity.

It must be noted that Table 2 omits automatically generated parser
packages (lexer, parser, node and analysis) under both parser packages
— most of the automatically generated code is not meant to be human-
readable and is abstracted neatly through the classes in the base parser
packages.

10

package function

plugin Plugin base functionality
actions Editor actions (e.g. code commenting)
bibeditor BibTEX editor functionality
bibparser BibTEX parser
builder Builder functionality
editor Editor and associated functionality
editor.scanner Syntax highlighting; partition scanners and rules
model Abstract document model
outline Outline view
parenmatcher Paren matching functionality
properties Project property pages
tableview Table editor view
templates Template functionality
texparser LATEX parser
viewer Previewer functionality
wizards Wizards (e.g. project creation)

Table 2: Package structure; the base package name has been omitted

5.2 Document model

The architecture behind the TEXlipse document model was described in
Section 4.3. Here we proceed to define how we process the document
and what classes are involved in some of the basic document-handling
functions.

5.2.1 Parsing

For simplicity, the mechanism of parsing a BibTEX document is pre-
sented here, rather than the LATEX parser. The basic idea is the same,
but parsing BibTEX is simpler and the internal structure is more ele-
gant (despite the fact that the BibTEX format isn’t very elegant).

Figure 5 depicts the key classes in parsing the BibTEX document being
edited and constructing an outline from it. Many classes are omitted
for clarity; the automatically generated classes alone constitute tens of
classes and Figure 5 contains all the key classes anyway. The central
class is BibParser , which contains the lexer and parser objects and
provides an interface for retrieving abstract structures of the document
(i.e. the abbreviations and the outline which also constitute the BibTEX-

11

completions in the LATEX-editor). Thus, BibParser is the class that is
used by other packages in the system, neatly implementing a bridge-
pattern of abstraction.

fi.hut.soberit.texlipse

texparser

BibParser
+ast: Start

+Lexer: lexer

+parser: Parser

+parseDocument(docStream:InputStream)

+getOutlineTree(): ArrayList

EntryRetriever

analysis

parser lexer

<<Analysis>>AnalysisAdapter

DepthFirstAdapter

Parser
Lexer

model

ReferenceEntry
1*

BibLexer

AbbrevRetriever

*

1

Figure 5: BibTEX parser and a depiction of the use of visitors

The inner workings of the parser-package can be explained by looking
at the specific case of building an outline tree (or BibTEX-completions
for the LATEX-editor — the process is the same). BibParser in Figure 5
receives a request from the model to parse the document and receives
a stream (containing the document’s contents) to parse. It invokes its
lexer and parser on the stream, building an AST in the process. The
AST can now be transformed using the visitor pattern — applying a
visitor object on the AST so that the AST calls the appropriate visi-
tor methods of the visitor object when the nodes corresponding to the
methods are visited. The visitor construction is shown in Figure 5, as
are the EntryRetriever and AbbrevRetriever –visitors and their
inheritance hierarchies (the visitor methods are quite numerous and
not depicted). When the model needs to update the outline, it requests
the outline from BibParser , which leads to BibParser invoking the
EntryRetriever -visitor that constructs the outline, storing the result
in ReferenceEntry objects, forming a tree (due to the BibTEX syntax,
the tree is flat, but the process quite easily permits doing a “true” tree,
as is done with sectioning commands in a LATEX document). The result-
ing tree is returned to the model and can be directly used in the outline.

The AbbrevRetriever visitor is used to retrieve BibTEX abbreviations

12

for use in content assist in the BibTEX-editor. In this case the visitor-
pattern is quite useful, because the EntryRetriever visitor is used
both by the LATEX-editor and the BibTEX-editor (but for different pur-
poses), while the AbbrevRetriever visitor is needed only in the BibTEX-
editor and thus it can be easily applied on the AST separately.

This visitor pattern model is employed successfully in parsing BibTEX
documents, but for LATEX documents we use a more traditional one-pass
parsing approach, mainly due to the lack of benefits in the visitor ap-
proach (BibTEX has a stricter structure). The issue is addressed more
specifically in Section 6.1.

It’s worth noting that the analysis , lexer and parser -packages
are generated by SableCC and are SableCC-specific; SableCC automat-
ically constructs a visitor interface and a visitor skeleton implementing
that interfaces based on the AST structure specified in the grammar.
The choice of using SableCC, its advantages and disadvantages are dis-
cussed in more detail in Section 6.1.

The use of visitors and an AST enables easy programming and a rela-
tively clean abstraction of functionality — our experience thus far has
been that the visitors are fairly easy to program and the automatically
generated grammars provide a lot of convenient abstraction, e.g. chang-
ing the grammar doesn’t most of the time imply refactoring everything.
Abstracting the parsers serves to decrease module coupling and to eas-
ily distribute the implementation tasks. Also, it makes the system eas-
ier to understand. However, note the specific requirements of LATEX, dis-
cussed in Section 6.1.

The Eclipse plugin framework provides for document scanners imple-
menting a relatively easy way to do basic lexing of the document (see
section 6.2 for a use of this). However, while easy to use, these scanners
are extremely tedious for more complicated grammars due to a lack of
expressive power and they don’t offer the performance and syntactical
checking advantages of a dedicated parser. One problem with simpler
parsing would be that the user writes a subsection without a preceding
section — it might be valid, but how is the outline supposed to show it?
Errors such as this are easy to catch with a dedicated parser. We can
also check the validity of labels and make similar things not possible
with simple lexing applications.

13

5.2.2 Outline

The conceptual process of parsing the LATEX-document in order to create
an outline tree was detailed in the previous section. Figure 6 now shows
how the outline view is associated with the rest of the system.

Figure 6: Outline

14

The way the outline works is described in more detail in Section 6.13.
What is important to note here is how the TexDocumentModel handles
calling the parser and holds the tree of OutlineNode s representing the
outline. The task of the outline -package, in turn, is fetching the outline
from the model and taking care of all tasks in displaying it (this includes
displaying the actual tree as well as doing such things as choosing the
correct icons for each type of node in the outline tree to display).

5.3 External interfaces

External interfaces used by the TEXlipse plugin include builder and
viewer. The builder is the module that invokes the external LATEX-program
(or the likes) and creates a viewable document.

5.3.1 The Builder

Figure 7 shows the class structure of the builder package and the builder’s
connection to the Eclipse API.

builder eclipse

TexlipseBuilder

+fullBuild()

IncrementalBuilder

+build()

AbstractBuilder

+buildResource()

DviBuilder

MarkerUtils

+createMarker()

PdfBuilder

PsBuilder

<<interface>>

Builder

+build()

<<interface>>

IProject

<<interface>>

ProgramRunner

+run()

AbstractProgramRunner

+createErrorMarker()

+parseErrors()

LatexRunner

BibtexRunner

DvipsRunner

DvipdfRunner

BuilderRegistry

+getBuilder(format)

MakeindexRunner

Figure 7: Builder

The builder starts when the user selects Project → Build Project
from Eclipse’s menu. Eclipse then instantiates the class TexlipseBuilder ,
because it’s defined in the plugin’s descriptor file. TexlipseBuilder

15

does some run-time checks and then consults BuilderRegistry for
an instantiation of the actual builder class (one of the realizations of
AbstractBuilder). Each builder class is capable of building the input
LATEX-file to one output format. To do this, a builder uses one or more
program runner classes.

A program runner is an abstract representation of an external program.
These classes are implemented as realizations of the class AbstractProgramRunner .
Program runner classes contain methods for running the program, stop-
ping the program and parsing errors from the output of the program. To
display errors, the program runners utilize the MarkerUtils class from
the Eclipse API.

The paths of the external programs are defined in the TEXlipse pref-
erences page. The output format can be overriden per project so that
one project can be built to dvi, while another might build to a pdf. Not
all supported external programs need to be installed. The user needs to
configure only those that are required for the chosen output format.

At the center of this all is the BuilderRegistry , which holds all the ac-
tual instances of the builder and program runner classes. The BuilderRegistry
class itself is implemented using the Singleton design pattern (see [GHJV95]
for more information). This way, all the builder classes can utilize it, and
it can still hold an internal global state. The BuilderRegistry class
provides a method for looking up a builder classes for the given output
format, and methods to configure program runners. The TexlipseBuilder
class uses the registry at the start of a build process to gain a reference
to the correct builder class. The builder classes, in turn, use the registry
to gain a reference to the correct program runner.

5.3.2 The Previewer

Figure 8 shows the class structure of the viewer package and viewer’s
connection to the Eclipse API.

The viewer can be started by choosing Preview Document from the Eclipse
menu. This causes Eclipse to instantiate the PreviewAction class and
call its run() method, which calls ViewerManager to run the config-
ured external viewer program. The ViewerManager gets the viewer
program configuration from ViewerAttributeRegistry class, which
in turn gets it from the plugin preferences. The ViewerManager also
reads some configuration from the current project, e.g. the file name to
view. ViewerManager creates a running process of the external viewer

16

viewer

util

FileLocationClient

FileLocationServer

<<interface>>

FileLocationListener

ViewerManagerViewerAttributeRegistry

ViewerOutputScanner

action

eclipse

PreviewAction

<<interface>>

IWindowActionDelegate

IDE

+openEditor(page,marker)

MarkerUtils

Figure 8: Viewer

program and, depending on the configuration, instantiates either a ViewerOutputScanner
or a FileLocationServer or neither of them.

The ViewerOutputScanner runs in its own thread and reads the out-
put of an external program as long as the program is running. The
ViewerOutputScanner scans the output for “filename:linenumber” -
strings, which tell that the user wants to navigate to the specified lo-
cation in the source file. The ViewerOutputScanner then creates an
IMarker object to that location, using MarkerUtils as helper, and
then calls the Eclipse’s IDE class to open the specified file at the given
marker. This method is supported in Unix systems using the external
xdvi program.

The FileLocationServer runs in its own thread listening to a cer-
tain socket. The input for FileLocationServer is similar to that of
ViewerOutputScanner , i.e. “filename:linenumber” -strings. This method
is used on Microsoft Windows systems, where the yap dvi viewer is used
to preview documents. Yap can be configured to invoke an external pro-
gram when the user wants to navigate from a dvi file to its source TEX
file. The TEXlipse plugin provides a client program to invoke, namely the
FileLocationClient . The FileLocationClient outputs a filename
and a line number, given as command line arguments, to the socket that
the FileLocationServer listens to. When the FileLocationServer
receives a valid “filename:linenumber” –string, it calls the FileLocationListener
to navigate to that location. This call propagates to the same method in

17

the ViewerOutputScanner as described above.

5.4 Editor functions

The editor is a central part in TEXlipse and many of the user require-
ments are related to it. Many of these do not affect other packages or
functions, but some use the facilities in TEXlipse already presented in
this section.

Document and source code editing are key functions in Eclipse and
thus the Eclipse plugin architecture offers rich functions for supporting
many desirable editor functions. An example of a feature implemented
within the editor framework is syntax highlighting. Syntax highlight-
ing is achieved by using existing Eclipse document scanners by giving
them rules to match and using the syntax highlighting framework. Es-
sentially this is making a simple lexer which recognizes certain tokens.
These document scanners can be used for other editor functions too,
such as code folding. However, the expressive power of the scanners is
limited, so we perform code folding using our own LATEX-parser. In fact,
the document outline tree can be re-used for code folding by calculating
the document offsets to fold into it. This, in turn, can be performed as a
side effect when building the outline tree in the parser.

Not all functions can be completely made using the classes and in-
terfaces of the Eclipse framework. One such function is code comple-
tion. The mechanics of code completion is done using the Eclipse frame-
work, but fetching and storing the actual completions must be done
by hand — in this case using our TexParser and BibParser -parser
classes, which can parse the documents and construct the completion in-
formation. When to complete and with what must also be implemented,
which is done by implementing a completion processor that determines
whether a command, a reference or a template should be offered for
completed, how it should be completed and what are the completion op-
tions offered. The completions options come from the parsers and the
model combines all the possible completions in the projects (e.g. from
multiple BibTEX-files that are included).

5.5 Code reuse

Since TEXlipse is a plugin, it’s already based on a large degree of reuse,
as can be noted from the previous sections. Basic menus and widgets,
syntax highlighting, code completion drawing, etc., is eased consider-

18

ably by ready-made components. However, this reuse focus on common
editing tasks and it would be desirable to reuse LATEX-specific function-
ality, too.

The possibility of reusing large amounts (or even some amount) of code
is highly desirable, since it would shorten development and testing times.
Indeed, there exists Eclipse plugins for LATEX, among them eTex. How-
ever, after studying it, we have found the documentation to be practi-
cally nil and the code to be buggy and of dubious technical quality. Thus,
it was not chosen as a basis for implementation. Other LATEX-editors for
Eclipse suffered from being very limited in scope — TEXlipse has con-
siderably more features planned for implementation, several of them
being fairly complex. Thus, we chose not to use any code from existing
LATEX-plugins for Eclipse.

There are several practical tools for solving parts of TEXlipse’s problem
domain, one of them being JabRef, which is a program for managing ref-
erences, mainly BibTEX-databases. However, JabRef uses a hand-coded
parser, which is a potential software engineering and performance prob-
lem, the internal data structures are so different than ours that refac-
toring would be significant and on top of it all its license (GPL) doesn’t
comply well with an Eclipse plugin. Due to these reasons, no code from
JabRef is used.

For aiding the construction of some LATEX-code, some good sources exist.
For BibTEX, prof. Nelson Beebe’s articles (see [Bee93]) are highly useful
and there are many good books about TEX and LATEX, which make de-
signing significantly easier. So while we don’t have the opportunity to
reuse code, we have many ideas to reuse.

6 Technical specification per implementation task

6.1 Make LATEX parser (T0.1)

Package: texparser

Define a parser (in EBNF) for a subset of LATEX. Specifically, we want
to recognize sections, references (cite and ref and \begin . . . end –
constructs (i.e. environments). The preamble should be handled sepa-
rately, so we can reuse the same parser for LATEX–files intended only for
inclusion, i.e. files not containing a preamble and a \begin{document} ...
end{document} –block.

19

An easy way to achieve this is to recognize command words and their
structure (i.e. we don’t have a subsection without a preceding section)
using a parser. For generating the lexer and parser from an EBNF de-
scription, the tool SableCC is used (see http://www.sablecc.org).

SableCC was chosen over JavaCC and ANTLR primarily because it
doesn’t require entering action code into the grammar specification and
the CST to AST transformation syntax is concise and clear. In contrast,
JavaCC and ANTLR require extensive action and tree transformation
code to be embedded into the grammar, resulting in messy, difficult to
debug, difficult to maintain and hard to read code. (The problem is some-
what compunded by the action syntax that JavaCC uses — Lex seems to
be more “C-like” in its syntax than JavaCC is “Java-like” in its syntax.)
SableCC solves this problem with clean grammar files and encouraging
the use of a visitor pattern to transform the automatically generated
AST for different uses. In TEXlipse, one such use is to extract all the
data necessary to make an outline and present it in a tree structure.

There is, however, one problem with this approach: TEX and BibTEX con-
tain constructs of type A → {A}, which are not recognizable by regular
expressions but are with context-free languages. Beebe [Bee93] solves
this with action code in the Lex-definition. This would be possible in,
for example, ANTLR, but not directly in SableCC. The SableCC object-
oriented framework does, however, offer the possibility to subclass the
lexer and implement the filter() method, where such action code can
be embedded (somewhat like a template method –pattern [GHJV95]).
There are other ways to solve the problem; the constructs can be recog-
nized in the parsing phase and then concatenated (in practice, we want
to handle BibTEX-strings of the form { ... { ... } ... } as one string) by
visiting the AST. In practice, subclassing the lexer is very performance
efficient and makes the later stages much simpler. The only drawback is
that the lexer is not fully understandable from the SableCC definitions
alone.

Other reasons for choosing SableCC was the support for unicode lexers
(which can be useful in the near future) and the fact that it makes an
LALR-parser, not LL(k) as does JavaCC and ANTLR. The latter gen-
erators suffer practically no penalty in terms of expressive power by
using predicates, but these come with significant penalties in maintain-
ability and debuggability. Their AST-generation is more cumbersome,
requiring use of separate tools, and they don’t have mechanisms to
check for the validity of the formed AST, leaving this to the program-
mer unlike SableCC. For further comparison and details of SableCC,
refer to [Gag98].

20

In practice, however, further study of the syntax and possibilities of TEX
and LATEX and the requirements of making TEXlipse, it became clear
that the fancy AST generation with visitors is not that advantageous
for LATEX as it is for BibTEX or programming languages. We could per-
form all the necessary functions (outline building, label and command
extraction, etc.) in a single pass, making the parsing simpler and faster.
In particular, LATEX doesn’t have strict semantics in the way that pro-
gramming languages have, so we would simply have had a grammar
defining words interspersed by commands. Also, the possibility to de-
fine own commands and the bad-but-not-forbidden –constructs possible
in LATEX make LR parsers less useful. The problems are further com-
pounded by the way Java uses memory, method bindings being dynamic
and the lack of flexibility in static configurations, making performance
a much more significant issue than with C or C++.

The only drawback with hand-coding the parser (the lexer is naturally
automatically generated) was the somewhat massive parser class. How-
ever, due to the relative simplicity of the parsing task and the fact that
the visitor would be equally complex but just have more methods, this
approach was pursued.

See [ASU86] and [Knu65] for basic information on parsing and particu-
larly LR-parsing. See [Knu86] for information on how the original TEX
parses its syntax.

6.2 Syntax highlighting, basic case (T1.1)

Package: editor

Syntax highlighting can be made easily by using a simple lexer/DFA
that recognizes TEX’s keywords and colorizes them. This can conve-
niently be done using Eclipse’s built-in scanner-facilities, which can be
given rules and then scan the document automatically. The highlighting
itself is easy, but the expressivity of the premade rules is quite limited,
so we need to make our own rule-classes.

6.3 Code folding (T1.2)

Package: editor, model, texparser

Eclipse provides a framework for code folding and the foldable sections
can be recognized either with the document scanners (as in Section 6.2)

21

or the outline tree made by TexParser can be used. For the foldable
sections, their positions in the document must be stored. We do this in
the LATEX-parser by simply reusing the document outline tree that we
need to create for the outline. The same positions needed in the outline
are used as positions for code folds.

The actual code folding is largely done by Eclipse-classes, but we need to
create the folding annotations, which means traversing the outline tree
and making suitable annotations from each node to be placed into the
code folder. This is somewhat tricky, since the folder has a flat datastruc-
ture, which makes it somewhat difficult to determine which annotation
in the folder corresponds to which node in the tree (e.g. for maintaining
folding across a save).

6.4 Automatic indentation (T1.3)

Package: actions, editor

Classes for supporting automatic indentation are provided with Eclipse.
The indentation strategy can be determined by using the document
scanners mentioned in Section 6.2. In addition to this, an entirely own
logic of when and how much to indent is made. It bases it’s decisions on
the previous lines, as do practically all other Eclipse editor plugins.

6.5 Make BibTEX parser (T1.4)

Package: bibeditor

The BibTEX grammar is more strict than TEX and merely defines an
entry format to specify bibliography entries. Due to this, it is fairly well
suited to LALR-parsing.

The grammar is made using SableCC, which creates an AST automat-
ically. Section 6.1 explains the rationale behind using SableCC. The
framework for parsers in TEXlipse is explained in Section 5.2.1. It is
worth noting that the framework permits adding support to TEXlipse
for some other bibliography format elegantly, which might be desirable
due to the problems with BibTEX (problems recognizing string literals,
somewhat badly defined comment syntax, etc.)

The BibTEX grammar is not very well defined (or designed), so some .bib
files using uncommon syntax might not parse correctly (use prof. Nelson

22

Beebe’s tools for pretty printing them). However, the TEXlipse BibTEX
parser recognizes all the common BibTEX-conventions. The grammar is
based pretty much on Beebe’s observations in [Bee93].

It should be noted that LR-parsing is considered significantly harder to
debug than LL, but having done extensive testing with SableCC for use
in Eclipse we have not found this to be a problem, in part due to the
excellent automation and error-detection of SableCC.

See [ASU86] and [Knu65] for basic information on parsing and particu-
larly LR-parsing.

See [Lam85] and [Pat03] for further information about the BibTEX for-
mat.

6.6 Code completion (content assist, T1.5)

Package: editor, model, texparser and bibparser

For code completion we need both the user’s BibTEX-files’ contents and
the labels defined in the document. The .bib -files are parsed at startup
and when saving the .bib -files. What bib-files to parse are read from the
document’s \bibliography -command. The labels are retrieved when-
ever the project documents are parsed. They are stored into two similar
datastructures (one for completing ref and the other for cite com-
mands) in the model, from which the editor’s code completion classes
can fetch them. The data structure containing the completions is stored
so that every model in the project can access it and it supports partial
compilation so that reparsing one bib-file doesn’t require reparsing all
the others to enable completion. Thus, performance can be increased by
splitting the .bib -files.

The Eclipse plugin framework provides a number of classes and inter-
faces for supporting code completion in the editor view.

Storing the completions in a linear structure (array) and searching it
takes O(n · m) time, where n is the size of the array and m is the time
for partial matching a string. With a B-tree, the time is O(log n), but
constructing it is more difficult and the constant terms dimnish the ad-
vantage. A third approach is to make a sorted array and use modified
binary search to fetch the entries. The modified binary search (to fetch
a range of values) is still O(log n) and sorting can be done in O(n log n)
time, but this is only done after a modification on the reference source
document. The constant terms are smaller than with a B-tree and the

23

implementation is much simpler, in part since we can use Java’s built-in
mergesort.

Performance must be evaluated to make hard conclusions. In practice,
the third option was implemented based on theoretical merits and seems
to provide very good performance.

6.7 Template mechanism, user defined templates (T1.6, T1.7)

Package: templates, editor

There are two different types of templates — project templates and ed-
itor templates. The former ones are whole LATEX documents (they can
be compiled directly), which may be used when a new LATEX project is
created (i.e. the selected template is copied to the main project file as it
is). The latter templates are smaller pieces of LATEX code (for example
lists or theorem & proof structures) that can be inserted anywhere into
the document.

The user can define her own templates, both project and editor. The sys-
tem has two directories for storing project templates (namely, <TeXlipse
plugin>/templates/ and a template directory under teh workspace -
directory’s .metadata/.plugins -directory), in which the templates re-
side. Both template systems have separate mechanisms, so they will be
explained separately.

The user can freely add her own project templates and add them to the
system’s LATEX template directory (if she has the rights to do it) or use
the editor action of saving a template, in which case the template is
saved under the workspace -directory mentioned above. The project cre-
ation wizard (see Section 6.21) supports these temlates by presenting
a list of available templates (both user and system) and copies the con-
tents of the chosen template directly into the new main LATEX document
that is created.

The editor template handling is really a special case of using content
assist. Thus, editor templates can be used as content assist is used and
they can be edited, exported and imported in the Eclipse Preferences.
Eclipse provides a ready made mechanism both for storing and for re-
trieving the templates, which requires a relatively small amount of code
to activate. For inserting editor templates, the content assistant frame-
work detailed in Section 6.6 is invoked. It determines what kind of com-
pletion is done and if a template completion is done, it requests teh
completions from the template manager. The template manager is re-

24

ally an adapter between the content completion processor and Eclipse’s
template mechanism. It fetches the available templates and computes
the allowed completions. Unlike the reference and command comple-
tions, this is done in linear time due to apparent restrictions placed by
the Eclipse framework, but since the amount of templates available is
not usually that large this should not be a problem.

6.8 Commenting blocks (T1.8)

Package: actions

Blocks (region in emacs-parlance) can be commented by inserting a %
-sign at the start of each line in the block. They can be removed by
reversing the process and ignoring leading whitespace.

Alternatively, \begin{comment} and \end{comment} -commands can
be used, but noticing them is not as obvious (especially if one has to use
a non-highlighting editor due to some reason), so using the % -syntax
was chosen.

6.9 Annotations for errors (T1.9)

Package: model, texparser

We use the built-in annotation facility and place markers on offending
lines. Offending lines can be recognized by parsing the document and
examining the document references’ symbol tables.

Offending lines are also recognized from the output of the build process.
The builder parses the output of LATEX, BibTEX, and other document
builder programs, which report errors about the source documents.

6.10 Matching parens (T1.10)

Package: parenmatcher

See Section 6.2; essentially this is done with the same tools and it uses
facilities provided by Eclipse. Eclipse provides and interface called ICharacterPairMatcher ,
whose concretizations can be activated in an editor to enable matching
of pairs. In TEXlipse, it is implemented and used so that {, }, [,], (and)
are matched.

25

6.11 Word counter (T1.11)

Package: actions, texparser

The word counter action enables counting the number of words in the
selected region, taking into account the special characteristics of LATEX-
source. Due to this, this is most conveniently performed by making a
simple parser that gets its input from the LATEX-parser (see Section 6.1)
and the determines how to count based on the token encountered.

6.12 Line wrap (T1.12)

Package: actions, editor

The line wrapping functionality is an extension to the indenting func-
tionality specified in Section 6.4. Basically, it has two alternative modes
(in addition to disabling wrapping altogether): soft wrap and hard wrap,
that can be chosen from the plugin preferences.

The hard wrap uses normal means of string manipulation to wrap text
into a given line width. It does take into account some special condi-
tions, such as being inside an indented region and the typed area being
succeeded by a lone command (e.g. \bibliography or \section).

Soft wrapping is implemented by enabling it from Eclipse’s standard
text viewer interface. However, Eclipse 3.0 has a bug which causes the
vertical bar (containing error annotations and code folding markers) to
be displayed incorrectly when soft wrapping is enabled. Thus, the soft
wrap option in the preference currently has a warning text. In addition,
the soft wrapping mechanism is rather slow and the hard wrapping
mechanism used is significantly faster.

6.13 View the outline (T2.1)

Package: outline, model, texparser

The outline shows the outline of the document being edited. (See also
Section 4.3 for an overview of the document model.) The outline is dis-
played in a tree structure similar to that of the Java editor of Eclipse.
For creating the tree structure, a TreeViewer viewer will be used. The
viewer allows us to avoid working directly with SWT widgets and their
event handling. Instead, we can concentrate on providing the model of

26

the outline.

The TreeViewer itself does not know much about the contents of the out-
line. It retrieves the elements of the outline from ITreeContentProvider
and uses a LabelProvider to get a presentation (text and icon) for
each element. Thus, we implemented a TexContentProvider and a
TexLabelProvider .

Parsing the document to form the outline tree is handled by the TexDocumentModel
and the underlying TexParser . The TexDocumentModel provides a
tree structure for the TexContentProvider . The elements of this tree
contain the name, type and position (start line and length of the part of
the document it covers) of the element.

When the user changes the document, the TexDocumentModel is changed
too. If needed, the model triggers the outline to be updated. Thus, the
outline itself does not actively monitor whether the document is changed
or not.

For filtering the elements of the outline, a filter was implemented in
the class TexOutlineFilter . It is used to specify which document sec-
tions (preamble, parts, chapters, sections, subsection, subsubsections,
paragraphs and enviroments) should be visible in the outline.

For saving the state of the outline when an update happens, the names
of the elements are used. Obviously this is not the optimal solution.
A much better solutions would be to use the position –field of the
OutlineNode . Unfortunately, we could not get this to work. The posi-
tions of the nodes of the old outline were not updated by the Eclipse
platform, and thus comparing them to the Positions of the new nodes
was worthless. There is also some discussion about this on the Eclipse
forums, but no real solution seems be available.

Using the names when saving the state of the outline causes problems
when the outline has many nodes with the same name. In general, only
the state of the first element with the same name is saved. The problems
are purely visual though, and they do not affect the actual document in
any way.

The underlying reason for the problems with saving the state of the out-
line is the fact that we always reparse the whole document and create
a brand new outline tree, instead of parsing the changed part of the
document and only updating the tree where necessary. However, par-
tial parsing and more intelligent partitioning was beyond the scope in
project leading to TEXlipse 1.0.

27

6.14 Basic outline navigation (T2.2)

Package: outline

When the user selects an element in the outline view, the editor is fo-
cused on that element. Implementing catching of the selection event and
refocusing the editor was quite straightforward.

However, after discussing with the customer we decided not to imple-
ment editor to outline navigation, i.e. making the outline selection fol-
low the editor cursor position. It could be implemented, but would re-
quire implementing a special search data structure in TexDocumentModel ,
and was considered not worth the effort.

6.15 Copy/paste and drag’n’drop in the outline (T2.3, T2.4)

Package: outline

The outline copy/paste and drag and drop support enables the user to
manipulate the document by copying, cutting, pasting or dragging and
dropping the elements of the outline tree. Copy/paste and drag and drop
are very similar operations and their implementations are also very
similar. The following text mostly discusses copy/paste, but it largely
applies to drag and drop too.

The copy/paste support of the outline is text based. This means that ma-
nipulating the elements of the outline will actually manipulate the text
of the document directly. After the manipulation, the outline is rebuilt
to reflect the changes.

When performing a paste operation, the copied text is inserted after the
text of the target element. This seems to be the Eclipse style of doing
pasting. Copy/paste (and drag and drop) operations are only allowed if
the outline is up to date, i.e., the document has not been changed since
the last time parsing was done. Multiple selections are not handled yet.
If you try to copy multiple elements, only the first element is copied.

Copy/paste and drag and drop are implemented using the JFace and
SWT mechanisms. Most of the functionality is implemented in TexOutlineDNDAdapter ,
which extends ViewerDropAdapter . TexOutlinePage also contains
some helper methods for performing the operations. The text opera-
tions are performed directly to IDocument , which is retrieved from the
TexEditor associated with the outline. The position field of OutlineNode
is used to find the text area corresponding to the element of the outline.

28

6.16 File output/building (T3.1)

Package: builder

Output files are produced by LATEX. The builder is an implementation of
Eclipse’s IncrementalBuilder -interface. The builder will run the ex-
ternal LATEX process when the user chooses Build Project from Eclipse’s
Project-menu. The output files will be saved to a special output direc-
tory defined in the project’s properties. The temporary files may also be
saved under a dedicated temporary files -directory, if the user so wishes.
This may clarify the view in Eclipse’s directory navigator, if the project
has plenty of source files.

If necessary, the builder will also run BibTEX and LATEX automatically
to resolve the references in the document (this means running LATEX,
then BibTEX and then LATEX twice in the worst case).

Depending on the configured output format, the builder process will also
run other external programs to convert the LATEX -generated dvi file to
other formats.

6.17 Displaying build errors (T3.2)

Package: builder

If a build fails because of invalid syntax in the LATEX input file, the plu-
gin will record the output of the LATEX process and parse errors from
it. Errors reported by LATEX will be displayed in annotated form using
Eclipse’s Problems –log.

6.18 Linking errors to source (T3.3)

Package: builder

The builder will add IMarker s to the lines of source files which were
reported to have errors by LATEX. Markers are automatically linked to
the error messages by Eclipse’s API. The user can jump directly to the
correct position in the source by double-clicking the error message in
the Problems –log.

29

6.19 Preview support (T3.4)

Package: builder, viewer

Previewing of the LATEX document is done with an external viewer (dvi
or pdf). Depending on the capabilities of the viewer, different options
(like line number and refresh notification) can be provided for the pre-
viewer via free form command line arguments.

The reason for not making an internal (dvi or pdf) previewer is rather
straightforward: first, the user can use the previewer she is accustomed
to (instead of a predefined and, quite possibly, inferior one), and second,
it greatly reduces the effort needed to keep the internal previewer up to
date.

6.20 Linking preview to source (T3.5)

Package: viewer

A previewer can be linked back to the source as long as the previewer
can pass the neccessary information — a filename and a line number —
either via printing to standard output (lines formatted as filename:line)
or run an external program (using arguments to pass information).

For the latter case, a small client program, that is a part of TEXlipse,
sends the information it receives via command line arguments to a port.
The port is the listened by TEXlipse in order to receive notification of
user events that require changing the document view.

Naturally, the previewer must also be able to extract the source infor-
mation from the output (dvi or pdf) file. There are no restrictions about
how this source information is originally included into the output file.
The default way (if not configured otherwise) is to build the LATEX source
with the –src-specials option — most previewers, like Yap (Windows,
MikTeX) and Xdvi (Unix/Linux) are compatible with this source infor-
mation.

6.21 Support for a LaTeX project (T4.1)

Package: wizards, properties

A possibility to start a LATEX project will be provided in Eclipse’s New

30

Project -menu. Choosing New Latex Project will start the new project
wizard, which is an implementation of Eclipse’s wizard interface. The
new project wizard will perform basic project creation tasks, such as
creating a project directory and the project’s main file using an option-
ally specified template.

The LATEX-project will also include a property page to handle such things
as keeping track where the main file of the project is.

6.22 Support for partial building (T4.2)

Package: builder

Partial building refers to the process of creating a preview of some part
of the document. If the document consists of a main file and many sub-
files which are all included to the main file, the document can be built
partially so that only the contents of one of the sub-files is visible in the
preview. This is done by extracting the header (“preamble”) and footer
(BibTEX-definitions) from the main file and creating a temporary file by
concatenating the header, the chosen sub-file and the footer. This tem-
porary file is then built like normal LATEX-document. Building partially
is obviously much faster than building the full document, provided that
the sub-files are all much smaller than the full document. Partial build-
ing can be enabled from Eclipse’s toolbar.

6.23 BibTEX editing (T5.1)

Package: bibeditor, bibparser

Implements an editor mode for .bib-files. Essentially, this uses some of
the techniques described here for LATEX-documents, only that editing
BibTEX-files is simpler. Due to this, we try to reuse code from the LATEX
editor part as far as possible, e.g. the search algorithm for code com-
pletions is shared by both editors. Generally, the bibeditor is a simpler
case than the LATEX-editor and lacks external tool interfaces (such as
building), since they don’t make much sense for BibTEX.

6.24 Table editor (R6.2)

Package: tableview

31

The table editor is implemented as an Eclipse view. It provides very
basic table editing functionality. It can import and export the LATEX table
format and imports and exports are handled through the clipboard.

References

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, Reading,
MA, USA, 1986.

[Bee93] Nelson H. F. Beebe. Bibliography prettyprinting and syntax
checking. TUGBoat, 14(4):395–419, 1993. December.

[Gag98] Etienne Gagnon. SableCC, an object-oriented compiler
framework. Master’s thesis, School of Computer Science,
McGill University, Montreal, 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented
software. Addison–Wesley, 1995.

[Knu65] Donald E. Knuth. On the translation of languages from left
to right. Information and Control, 8(6):607–639, 1965. This
is the original paper on the theory of LR(k) parsing.

[Knu84] Donald E. Knuth. The TEXbook. Addison–Wesley, Reading,
Massachusetts, 1984.

[Knu86] Donald E. Knuth. TEX: The Program. Addison–Wesley,
Reading, Massachusetts, 1986.

[Lam85] Leslie Lamport. LATEX – A Document Preparation System —
User’s Guide and Reference Manual. Addison-Wesley, Read-
ing, MA, USA, 1985.

[Pat03] Oren Patashnik. Bibtex yesterday, today and tomorrow.
TUGBoat, 24(1):25–30, 2003.

32

