
The varindex package∗

Martin Väth†

vaeth@mathematik.uni-wuerzburg.de

2001/05/09

Abstract

This LATEX package provides a luxury front-end for the \index command.
For example, it allows to generate multiple entries in almost any form by a
single command. It is extremely customizable, and works with all versions
of LATEX and probably most other TEX formats, too.

You may copy this package freely, as long as you distribute only unmodified and
complete versions.

Contents
1 Changes 2

2 Introduction 3

3 Installation 4

4 Additional hint 5

5 Examples 7
5.1 Typical example of usage (using the varindextwo macros) 7
5.2 A simple example without the varindextwo macros 9
5.3 Another example without the varindextwo macros 9
5.4 A simple example using a flag (without the varindextwo macros) . 10
5.5 An example for very primitive customized index commands (with-

out the varindextwo macros) . 10
5.6 An example of a primitive customized index command (without the

varindextwo macros) . 11
5.7 A primitive varying customized index command (without the

varindextwo macros) . 11
5.8 Examples with the varindextwo macros 12
5.9 Example of a simple modification of the varindextwo macros . . . 14

6 Main Description 15
∗The package has version number 2.3, last revised 2001/05/06.
†This package bases on ideas of indextwo.sty which was written jointly with O. Karch

karch@informatik.uni-wuerzburg.de and H.-C. Wirth wirth@informatik.uni-wuerzburg.de

1

7 Description of the varindextwo macros 18

8 Primitive customization 20

9 Documented Features 24

1 Changes
v2.3 (2001/05/06) Introduced new macros \varindexIndex,

\varindexDoConvert, \varindexNoConvert. The layout of the docu-
mentation was slightly improved. Moreover, a completely new section was
added (on \toolboxMakeDef).

Use \typeout instead of \message, but provide a workaround for plain TEX.
Avoid error with plain TEX and LATEX2.09 (because \newcount is defined
there as \outer which is rather annoying). Since toolbox works around
this problem, finally also the local \if’s now actually are local.

v2.2 (2001/05/01) Introduced =:ˆ flags into \varindextwo. Changed sorting of
entries starting with “-” (see \varindexOutSortDashBeg).

Improved documentation, in particular of \varindextwo and
\varindexNewFormat. Also new examples were added for both com-
mands.

v2.1 (2001/04/30) Finally implemented placeholder replacement
(\varindexPreviousATexttrue and friends) such that it works also
in the expected way with commas.

Introduced separated command \varindexCommaExpandtrue which was
in earlier versions automatically coupled with \varindexCommaLeadstrue.
Changed the default of both values to ‘true’.

Introduced \varindexOutText... and friends and enabled a hook into the
format string processing via \varindexNewFormat.

Reordered documentation such that the more interesting customization parts
are now mentioned earlier.

v1.21 (2001/03/29) Divided package into two: Many macros which are of in-
dependent interest have been put into the toolbox package. For the user
visible is that the macros are now called e. g. \toolboxMakeSplit instead of
\varindexMakeSplit. For backward compatibility, the old (now obsolete)
names are still available, although not documented anymore.

v1.20 (2001/01/13) Changed \varindextwo: Added the
\varindextwoCommaTilde functionality and the corresponding three flags
?!/. Moreover, changed the default to \varindextwoCommaTildetrue.
Note that due to this change the generated index entries may differ from
those of earlier versions. To get a backward compatible output, you have to
use \varindextwoCommaTildefalse.

Also use now the symbols ‘ and ’ instead of the (now obsolete) P and p flags.
The reason for the latter is that P and p could not be used immediately after
a command without a space.

2

v1.19 (2000/12/07) Eliminated a bug in the P flag.

v1.18 (2000/11/30) Eliminated a bug in \SkipTricky.

v1.17 (2000/11/21) \varindexNr??String is now defined as documented.

v1.16 (2000/11/19) Documentation rewritten for doc and docstrip utilities (re-
quired files are now varindex.dtx and varindex.ins).

v1.15 (2000/10/10) Fixed harmless bug which always caused a warning.

v1.14 (2000/06/01) First version released into public (as varindex.sty).

2 Introduction
If you have to write an index for a larger scientific text, you will probably sooner
or later have the problem that you want to put certain texts into the index which
consist of more than one word like Theorem of Picard.
There are several reasonable ways how one might do this: One might put the
text Theorem of Picard in the index, or Picard theorem. An alternative way
is Picard, Theorem, or Picard’s Theorem or Theorem!Picard (here, ! is the
symbol used by makeindex to separate a subindex, i. e. the output will actually
look like

Theorem

Picard, 17

This is useful if one also has other entries starting with Theorem). Several other
natural alternatives are also possible.
One may choose some or all of the above alternatives and then code them into
TEX. However, if more than one of these alternatives is desired in the index, this
requires several \index commands (which are similar but not identical). Moreover,
if later another choice of the above alternatives is required, the index entries must
be completely rewritten. This rewriting may be very cumbersome if one makes
use of subindices for two reasons.
First, it may happen that one has to change even entries which are apparently
not affected. For example, assume there were just two subindices for the index
entry Theorem, namely Theorem!Picard and Theorem!Riemann. If the theorem
of Picard is eliminated from the main text, one not only has to delete the entry
Theorem!Picard: The single subindex Theorem!Riemann does not make much
sense – one should replace it by Theorem, Riemann. One could write a program
to do this task automatically, but my experience shows that it is better to do such
things by hand, because there are some situations where exceptions are desirable.
However, things become really cumbersome, if one also has to sort the entries in a
different way than they are written. For example, suppose that instead of Theorem
in the above example, one has the text ζ-function which one wants to have sorted
like zeta-function. In this case, the \index command must be changed from

\index{zeta-function@ζ-function!Riemann}

into

\index{zeta-function, Riemann@ζ-function, Riemann}

3

which is rather different!
Moreover, one may also want to have a placeholder. For example, instead of
generating the entries

Theorem

Liouville, 17

Open Mapping, 17

Picard, 17

One might like to have entries like

Theorem

∼ of Liouville, 17

Open Mapping ∼, 17

∼ of Picard, 17

One might use the symbol \sim for the placeholder, but this needs of course
its own sort entry in the \index command (in the above example, we sorted
by Liouville, Open Mapping, and Picard, respectively, which is perhaps the most
natural choice).
With the package varindex it is rather simple to generate any of the above \index
entries, and it is easy to modify them, e. g. the above placeholders can be intro-
duced easily and then activated or deactivated by a switch. Moreover, several
\index entries like Picard, Theorem of and Theorem of Picard can be gen-
erated simultaneously with a single command (i. e. you have to write the phrase
Theorem of Picard only once). In addition, it is also possible to produce not only
corresponding \index commands but also to output the content into the running
text.
Since my experience shows that in each new book there arise new special cases
for the \index command, I was trying to provide a highly customizable solution
which can be modified for all needs (I hope).

3 Installation
This package was tested with LATEX2.09 and LATEX 2ε and should work with all
other (future) versions of LATEX and friends, too. It should even run with other
(non-LATEX) formats if an \index command (with LATEX-Syntax) is provided.
To use “varindex”, you have to put the file varindex.sty in a path where TEX
looks for its input files. You must also have the file toolbox.sty of the “toolbox”
package in your path (toolbox v3.1 or newer is required). The TEX documents
using varindex need the following modifications in their header:

• If you use LATEX 2ε, put in the preamble the command

\usepackage{varindex}

• If you use LATEX2.09, use varindex as a style option, e. g.

\documentstyle[varindex]{article}

4

or

\documentstyle[varindex,12pt]{article}

• If you use some other (non-LATEX) format, you will probably have to insert
a line like

\catcode‘\@=11\relax\input varindex.sty\catcode‘\@=12\relax

For TEX insiders: LATEX-specific commands used in varindex.sty are only:

• \makeatother

• \makeatletter

• \typeout

• \RequirePackage

• \newcommand (used only in the form \newcommand{〈command〉}{} to ensure
that 〈command〉 was not defined before)

• \ProvidesPackage

The above commands are used only if they are defined (otherwise, natural substi-
tutes are used (\newcommand and \ProvidesPackage are then not used at all)).

4 Additional hint
Although this package provides a convenient way to write \index commands, this
may not be sufficient: Also with this package, the \index commands may still be
rather complex. For some books, it might be necessary to write the same \index
entries several times (to get various page numbers). The first idea that one might
have in this case is to define a list of the used \index commands near the beginning
of the document e. g. as:

\newcommand{\Index}{\varindex(){\varindextwoScan}{\varindextwo}[]}
\newcommand{\Riemann}{\Index{Riemann Stieltjes integral}[1-23 2,1-~3 3!1-2~]}
\newcommand{\sigmaa}{\Index-={σ@sigma algebra}}

(the first line and the usage of \Index is explained in later sections; here, it is suffi-
cient to know that \Index produces in the above form several \index entries). To
produce the corresponding \index entries in the running text, one then just needs
to use \Riemann resp. \sigmaa. However, this method has some disadvantages:

1. If one has many \index entries, it is easy to forget that e. g. \sigmaa is a
command which should produce an index entry. Then \sigmaa in the main
text might be rather confusing.

2. One has to take care of macros already provided by TEX, LATEX or some
packages. For example, it is not possible to use the name \sigma for the
above purpose.

5

To avoid these problems, one may be very disciplinary and call the involved macros
systematically e. g. \IndexRiemann \Indexsigmaa etc. However, this produces
terrible long and unreadable macro names in the main text.
The toolbox package (version 3.1 or newer) provides a more convenient solution:
You can use the command

\newcommand{\Index}{\varindex(){\varindextwoScan}{\varindextwo}[]}
\toolboxMakeDef{Idx}{#1}

and afterwards

\NewIdx{R-S}{\Index{Riemann Stieltjes integral}[1-23 2,1-~3 3!1-2~]}
\NewIdx{sigma-algebra}{\Index-={σ@sigma algebra}}

After these definitions, you can use the intuitive commands \Idx{R-S} and
\Idx{sigma-algebra} to produce the corresponding index entries.
Note also the symbol “-” in the above names which is usually not allowed in TEX
macros.
If several page numbers occur for one index entry, it may be convenient for the
reader if the “main page number(s)” (e. g. the place(s) where the correspond-
ing notion is defined) is written in a different style. Of course, this is sup-
ported by \varindex (as explained later). To use this feature in connection with
\toolboxMakeDef, there are several possibilities. A straightforward way is to add
in addition to the above commands also

\NewIdx{R-S*}{\Index[|textbf]%
{Riemann Stieltjes integral}[1-23 2,1-~3 3!1-2~]}

\NewIdx{sigma-algebra*}{\Index[|textbf]%
-={σ@sigma algebra}}

Then \Idx{R-S*} and \Idx{sigma-algebra*} produce index entries with bold-
face page numbers. Of course, you can automatize the task of generating macros
which produce normal and boldface page numbers e. g. as follows:

\newcommand{\Index}{\varindex(){\varindextwoScan}{\varindextwo}[]}
\toolboxMakeDef{Idx}{#1}
\newcommand{\MakeIdx}[2]{%
\NewIdx{#1}{\Index#2}%
\NewIdx{#1*}{\Index[|textbf]#2}}

\MakeIdx{R-S}{{Riemann Stieltjes integral}[1-23 2,1-~3 3!1-2~]}
\MakeIdx{sigma-algebra}{-={σ@sigma algebra}}

This provides the commands \Idx{R-S} \Idx{R-S*} \Idx{sigma-algebra} and
\Idx{sigma-algebra*} with the same functionality as explained before.
The above approach has the disadvantage that the names “. . .*” have automat-
ically a fixed meaning. Alternatively, you can also generate different main com-
mands. This is immediately supported by \toolboxMakDef:

\newcommand{\Index}{\varindex(){\varindextwoScan}{\varindextwo}[]}
\toolboxMakeDef{Idx}{\Index#1}
\toolboxMakeDef{IdxMain}{\Index[|textbf]#1}

\NewIdx{R-S}{{Riemann Stieltjes integral}[1-23 2,1-~3 3!1-2~]}
\NewIdxMain{R-S}{%
{Riemann Stieltjes integral}[1-23 2,1-~3 3!1-2~]}

6

Now you can use \Idx{R-S} and \IdxMain{R-S} to produce the normal respec-
tively boldface page numbers. Of course, you can also automatize in this case the
task of generating these commands:

\newcommand{\Index}{\varindex(){\varindextwoScan}{\varindextwo}[]}
\toolboxMakeDef{Idx}{\Index#1}
\toolboxMakeDef{IdxMain}{\Index[|textbf]#1}
\newcommand{\NewIdxBoth}[2]{%
\NewIdx{#1}{#2}%
\NewIdxMain{#1}{#2}}

\NewIdxBoth{R-S}{{Riemann Stieltjes integral}[1-23 2,1-~3 3!1-2~]}
\NewIdxBoth{sigma-algebra}{-={σ@sigma algebra}}

After the above commands, you can use \Idx{R-S}, \IdxMain{R-S},
\Idx{sigma-algebra} and \IdxMain{sigma-algebra} with their obvious mean-
ing.

Summarizing: The last of the above solutions is the one which I recommend.

For further possibilities of the \toolboxMakeDef command (like making copies
of entries, redefining entries, etc.), please read the original documentation of the
toolbox package.

5 Examples
Probably you are very impatient and want to see some examples. So, here you
are – but be warned that the examples are not explained in detail. You have to
read the later sections to understand more precisely why the examples work the
way they do.
Since the \varindex command is highly customizable, the following examples can
only give you a rough impression of what you can actually do with it.

5.1 Typical example of usage (using the varindextwo
macros)

Suppose the following customization of the \varindex command was defined:

\def\Index{\varindex(){\varindextwoScan}{\varindextwo}[\emph]}

Since we used the varindextwo macros here, by default two \index entries are
generated with a single command. After the above definition, the command

\Index{ring with 1@one}

will produces the \index entries for:

ring

∼ with 1, 17 (sorted like “with one”)

1 (sorted like “one”)

ring with ∼, 17 (sorted like “ring with” (without “∼”!))

7

One of the examples of the introduction can be generated with

\Index*{Theorem of@ Picard}

which produces the two \index entries for

Theorem

∼ of Picard, 17 (sorted like “Picard”)

Picard

Theorem of ∼, 17 (sorted like “Theorem”)

In this example, the word of is ignored for the sorting, because we put the symbol
@〈nothing〉 behind it which means that it should be sorted as the empty string (in
cases like this, also the space in front of Picard is automatically ignored for the
sort entry).
Since we used in the above example the form \Index* instead of \Index, addi-
tionally the text \emph{Theorem of Picard} is output into the running text (the
string \emph stems from our customization of \Index defined in the beginning).

Completely different entries may be generated by your own rules. To this end, an
optional parameter [〈format〉] can be appended. Internally, the main argument
is splitted into words which are numbered 1, 2, . . .; in 〈format〉, you can refer to
these words simply by using the corresponding numbers. An “empty” entry in
〈format〉 means all words in the original order (i. e. it is essentially equivalent to
12345 . . .). Some other symbols besides numbers are also allowed which are listed
later.

\Index{Hausdorff measure of noncompactness}[4,23 2!~34!1=]

generates three index entries:

noncompactness, measure of, 17

measure

∼ of noncompactness

Hausdorff ≈, 17

Hausdorff measure of noncompactness, 17

The last of these entries occurs only, because the last character in the 〈format〉
argument [4,23 2!~34!1=] is a space (the space following = tells varindex that
another (empty) entry is desired).
If you want only slight modification(s) of the default, you need also just slight
modification(s) of the command, e. g.

\Index*,{ring with 1@one}

has the same effect as in our earlier example, just that the second entry reads

1, ring with ∼, 17 (sorted like “one, ring with”)

Moreover, since the ‘*’ occurred in the previous command, additionally

\emph{ring with 1}

8

appears in the running text. Praxis shows that changes in the entries as above
have to be made frequently in the ‘fine tuning’ of the index of a book. Note that
with the original \index, the command would have to be changed completely for
the above entries, because we have a “sort” entry for which a different rule applies
if we use a subitem (“!”) instead of a “, ”. (BTW: \varindex produces sort
entries only if they are necessary).
Of course, you may combine the default with your own format:

\Index{internal integrable function}[23,1~ +]

generates

internal function, integrable ∼, 17

internal

∼ integrable function, 17

function

internal integrable ∼, 17

In this example, the first entry is generated by the symbols 23,1~ in the 〈format〉
argument, and the last two entries are those entries which would have been gen-
erated by the varindextwo macros if no 〈format〉 argument had been given – the
magic symbol + instructs the varindextwo macros to not suppress these entries.

5.2 A simple example without the varindextwo macros
As known from \index, a |see{...} can be used to produce a reference to an-
other index entry instead of a page number. Such a command may optionally be
appended.

\varindex*{topology of a normed space}{5!4~!1= 45,12}[|see{norm}]

space

normed ∼
topology ≈, see also norm

normed space, topology of, see also norm

(the precise appearance of “see also ” depends on how the \see macro is
defined in your style). The above command additionally inserts the tokens
{topology of a normed space} into the running text (this would not happen if
\varindex is used in place of \varindex*). Only in the first of the above entries,
an ‘@’ part will be added to the *.idx file: This entry is sorted as if “ ∼” resp.
“ ≈” would not exist.

5.3 Another example without the varindextwo macros
The appearance of the cited page number and the appearance in the running text
(only available with “*”) can be customized easily.

\varindex[\emph][|textbf]%
{σ@sigma!$(\sigma-)$ finite {measure space}}%
{*1.23 23 23,1- 1-23}

9

generates the three index entries

finite measure space, 42

finite measure space, σ-, 42 (sorted like “finite measure space,
sigma-”)

σ-finite measure space, 42 (sorted like “sigma-finite measure space”)

In all three entries the pages are printed using \textbf. Moreover, the tokens

\emph{(σ-)finite measure space}

are put into the running text.

5.4 A simple example using a flag (without the varindextwo
macros)

Note the token 1 in the following command:

\varindex1{L and M@L and M}{}

This command generates the index entry

L and M , 17 (sorted like “L and M”)

With the command

\varindex1*{L and M@L and M}{}

or

\varindex*1{L and M@L and M}{}

additionally, {L and M} is output into the running text.
Note that without the ‘1’, the index generated were

L and M and M, 17 (sorted like “L and L and M”)

5.5 An example for very primitive customized index com-
mands (without the varindextwo macros)

If you defined your “default” shortcuts appropriately, you can still override some
of your own defaults.

\def\myindexA{\varindex[\emph][|textbf]*}
\def\myindexB{\varindex(){}{}[\emph][|textbf]}

\myindexA{Foo1}{}
\myindexB{Foo2}[][]
\myindexB*{Foo3!{Foo 3}}

Generates the index entries Foo1, Foo2, and Foo3. Moreover, \emph{Foo1} and
\emph{Foo 3} is put into the running text. The page number of Foo 2 in the
index is printed normal (i. e. |textbf is overridden), the others with \textbf.
Note that by using braces, it was possible to include a space into the text Foo 3.

10

5.6 An example of a primitive customized index command
(without the varindextwo macros)

TEX code can be inserted to customize the default formatting string.

\def\myindex{\varindex(\ifnum\varindexCount=2 1!2 2,1\fi){}{}[\emph]}

\myindex{Foo Bar}

generates the index entries

Foo

Bar, 17

Bar, Foo, 17

\myindex*{Foo Bar}

generates the same index entries as above and additionally outputs
\emph{Foo Bar} into the running text.

\myindex*{other format}[21]

generates the index entry

format other, 17

and outputs \emph{other format} into the running text.

\myindex[|textbf]*{BoBo}

generates the index entry

BoBo, 42

where the page number is printed with \textbf. Moreover, \emph{BoBo} is output
into the running text.

5.7 A primitive varying customized index command (with-
out the varindextwo macros)

\def\myindex{\varindex(\ifnum\varindexCount=2 1!2 2,1\fi)%
(\ifnum\varindexCount=2*2,1 1!2 2,1\fi){}{}[\emph]}

With the same commands as in Section 5.6, the same index entries are generated,
but the tokens \emph{Far, Boo}, \emph{other format}, and \emph{Bobo} are
output into the running text.

11

5.8 Examples with the varindextwo macros
As mentioned earlier, if the varindextwo macros are used (and if the main ar-
guments contains at least two entries), then two \index entries are generated by
default. Roughly speaking, one \index entry is the argument in its given order
and the other is the argument in reverse order (this is not precise, but explains
the idea).
For the following examples, we use a similar definition for \Index as in Section 5.1,
and define an \iemph macro which has ‘*’ as a default and outputs with \emph.
I recommend to put both sort of definitions into the preamble of all of your files
which should use varindex (the names are of course subject to your personal
taste).

\def\Index{\varindex(){\varindextwoScan}{\varindextwo}[]}
\def\iemph{\varindex(){\varindextwoScan\def\varindexStarPos{}}%

{\varindextwo}[\emph]}

(note that the apparently simpler definition

\def\iemph{\varindex(){\varindextwoScan}{\varindextwo}[\emph]*}

is not as good as the above definition of \iemph as is explained below).
After the above customization, you may use the following commands.

\Index*{measure of γ-noncompactness@gamma-noncompactness!FOO}

generates the index entries

measure

∼ of γ-noncompactness, 17 (sorted like “of
gamma-noncompactness”)

γ-noncompactness (sorted like gamma-noncompactness)

measure of ∼, 17

and outputs the tokens {measure of FOO} into the running text. Note the order
of the words!

\Index*,?_’{flic of flac}

generates

flic of flac, 17

flac, flic, 17

and outputs {flic of flac}. Here, the two tokens _ and , had the effect that a
space resp. “, ” was used instead of a subentry in the first resp. second \index
entry; the token ’ caused the preposition of to disappear in the second entry, and
the token ? suppressed a trailing ∼ in the second entry.
A more realistic example is

\Index^={σ@sigma algebra}

which in both entries inserts a “-”:

12

σ (sorted like “sigma”)

∼-algebra (sorted like “algebra” or “-algebra”, see below)

algebra

σ-∼, 17 (sorted like “sigma-”)

Here, the sorting “-algebra” is chosen when you used

\let\varindexOutSortDashBeg\varindexOutSortDash

as described later.
The flag ^ in conjunction with - has a special meaning:

\Index^->{σ@sigma algebra}

Then the first entry reads instead (the second is canceled because of >):

σ- (sorted like “sigma-”)

∼ algebra, 17 (sorted like “algebra”)

Similarly, the conjunction ^ and . has a special meaning:

\Index^.,:{ultra filter}

generates entries without a space following ∼ (and in view of the flag , no new
subentry is used for the second entry but instead a “,”):

ultra

∼filter, 17 (sorted like filter)

filter, ultra∼, 17 (sorted like filter, ultra)

For crossreferences, one may use something like

\iemph[|see{recursive recursion}],_{recursive recursion}

which generates

recursive recursion, see also recursive recursion

recursion, recursive ∼, see also recursive recursion

and outputs \emph{recursive recursion}. If we would have used instead the
definition

\def\iemph{\varindex(){\varindextwoScan}{\varindextwo}[]*}

the above call were not possible, since the optional arguments [|see...] must
occur in front of the flag ‘*’.

\Index-;*{Flip Flop}

generates

Flip-Flop, 17

FlopFlip, 17

13

and outputs {Flip-Flop} (note that the symbol - which is caused by the flag -
occurs also in the output).
One may freely create other entries:

\Index>{Flippy Flop!GO}[*2-1-2 2!1-1 1-12 +]

generates

Flop

Flippy-Flippy, 17 (no “∼”!)

Flippy-Flippy Flop, 17

Flippy

∼ Flop, 17

and outputs {GO-Flippy-GO} (note that even without an explicit * flag, we were
able to generate this output, just by using the * in 〈format〉).

\Index*_,{shape {of a} of star}

generates

shape of a star, 17

star, shape of ∼, 17 (sorted like star, shape of)

and outputs {shape of a star}. Note that for the first entry the proposition
“of a” was chosen while for the second entry the alternative proposition of was
chosen.
Also with the varindextwo macros the other flags keep their old meaning. For
example, the flag 1 still means that the main argument is considered as a single
entry.

\Index1*{L feature@L feature}
\Index,{No L@L feature}

generate

L feature, 17 (sorted like “L feature”)

No

∼ L feature, 17 (sorted like “L feature”)

feature, No L ∼, 17 (sorted like “feature, No L”)

and outputs {L feature}.

5.9 Example of a simple modification of the varindextwo
macros

All flags and magic tokens in varindextwo can be customized to fit your own
taste, just by modifying \varindextwoScan.

\def\myindextwoScan{%
\varindextwoScan
\varindexNewFlag ~\vxtSpaceA

14

\varindexNewFlag 1\vxtSpaceB
\varindexNewFlag !\varindexOneEntry
\varindexMakeSplitExpand{/}{vxtSplitAtMagic}%
\def\varindexStarPos{}%

}
\def\myIndex{\varindex(){\myindextwoScan}{\varindextwo}[]}

\myIndex behaves similar to the previous example with the following differences:

1. The flag 1 now has the previous meaning of ~.

2. One may now use ~ and _ equivalently.

3. The flag ! now has the original meaning of the flag 1.

4. Instead of + in the format string, the character / has to be used.

6 Main Description
Without additional customization, there are two possible calls for the \varindex\varindex
command:

a) The first call has the form

\varindex[〈textstyle〉][〈pagestyleA〉]〈flags〉%
{〈main entries〉}{〈format〉}[〈pagestyleB〉]

Here, [〈textstyle〉], [〈pagestyleA〉], [〈pagestyleB〉], and 〈flags〉 are optional.
(But if [〈textstyle〉] is omitted, also [〈pagestyleA〉] must be omitted).

The meaning of the arguments is as follows:

〈textstyle〉 describes the textstyle used for the output into the running text
(typically, textstyle is \emph or empty).

〈pagestyle〉 describes the pagestyle used for the output of the page number
(you may also use a construct like |see{...} here). If [〈pagestyleB〉]
is present, this is the value used. Otherwise, the value of [〈pagestyleA〉]
is used (resp. nothing).

〈flags〉 can be one (or both) of the following tokens:

* If this token appears in 〈flag〉, it has roughly the meaning “Output
into running text”. More precisely, if no * is occurs in 〈format〉 (see
below), then 〈format〉 is automatically prepended by the tokens
“* ” resp. “*” (depending whether 〈format〉 starts with a space or
not).

1 With this flag, the content of 〈main entries〉 is considered as a single
entry (see below).

〈main entries〉 and

〈format〉 are explained later.

b) The alternative form to call \varindex is

15

\varindex(〈formatA〉)(〈format*A〉){〈scan program〉}%
{〈main program〉}[〈textstyle〉][〈pagestyleA〉]〈flags〉%
{〈main entries〉}[〈formatB〉][〈pagestyleB〉]

The arguments [〈textstyle〉], [〈pagestyleA〉], 〈flags〉, and [〈pagestyleB〉]
have the same meaning as in a) (in particular, they are optional, but if
[〈textstyle〉] is omitted, also [〈pagestyleA〉] must be omitted).

Also (〈format*A〉) and (〈formatA〉) are optional, but if (〈formatA〉) is omit-
ted, also (〈format*A〉) must be omitted.

The “default” value for 〈format〉 is 〈formatA〉 resp. 〈format*A〉 (depending
whether the flag * has been used or not). If [〈formatB〉] is given, then this
is used as the format (i. e. the optional argument 〈formatB〉 can be used to
override the default).

The other values are:

〈scan program〉 is executed (i. e. expanded) immediately when \varindex
reads it. This parameter can be used to introduce further flags (other
than * and 1), see below.

〈main program〉 is executed after the 〈format〉 string(s) has been expanded.

It is recommended to define personal macros which contain all parameters up to
the place where 〈flags〉 occurs (either with or without some flags, depending on
the intention). See the examples section.

〈main entries〉 is the main argument which has the following form

〈entry1 〉[〈entry2 〉][〈entry3 〉]. . .

where each of 〈entry1 〉 〈entry2 〉 〈entry3 〉 . . . in turn has the form

〈indextext〉@〈sorttext〉!〈outputtext〉

or

〈indextext〉!〈outputtext〉@〈sorttext〉

In each of these forms, @〈sorttext〉 and !〈outputtext〉 are optional. Here,

〈indextext〉 is the text which is put into the index for the entry

〈sorttext〉 is what is used as a sort criterion for the entry

〈outputtext〉 is what is output into the running text for the entry

Note that the symbol @ has in a sense the opposite meaning as in the original
\index command: Before that symbol, the desired text appears, and after the
symbol the place where it has to be sorted. However, we chose the symbols @ and
!, because these two symbols are forbidden anyway (otherwise, makeindex will
become confused).
As usual, multiple spaces are considered as one space and do not generate empty
“ghost” entries. Moreover, a space after a TEX-command like \LaTeX is eliminated
by TEX and thus also not considered as a separator. You may use braces{. . .} ei-
ther around a whole entry or around 〈indextext〉 or 〈sorttext〉 or 〈outputtext〉 to

16

allow spaces which do not act as “separators” in the corresponding part. The
braces around these parts will vanish. In particular, you may generate an empty
entry with {} or ! or @ (bordered by spaces). If you want that braces occur in
the output, you have to add an additional pair of braces. Be aware that you write
sufficiently many braces, if you really should need them: For example, the com-
mand \varindex{{{{A B}}}}{} produces the index entry {A B}: The outermost
pair of braces is eliminated immediately by TEX. The second pair is eliminated,
because this is a pair around a complete entry in 〈main entries〉. Finally, another
pair is eliminated, because it is a brace around 〈indextext〉. With the flag ‘1’,
〈main entries〉 is considered as one single entry. Nevertheless, also with this flag,
an additional pair of braces around 〈main entry〉 is eliminated.

The 〈format〉 has one of the following three forms:

〈IndexA〉[〈IndexB〉][〈IndexC 〉]. . .[*〈OutputA〉][*〈OutputB〉]. . .
[*〈OutputA〉][〈IndexA〉][〈IndexB〉][*〈OutputC 〉]. . .
*

where the order of arguments can be arbitrarily mixed (except for the first
〈IndexA〉 in the first form). 〈IndexA〉 〈IndexB〉 . . . 〈OutputA〉 . . . describe the
format of the index entries resp. of the output into the running text. The output
is generated in the given order (this might be important, if a pagebreak occurs dur-
ing the output into the running text). The last case is exceptional and equivalent
to “* ”. The following characters/strings are allowed in the format entries:

token meaning
1–9 〈entry1 〉–〈entry9 〉
0 〈entry10 〉
~ a placeholder sign (default is ∼)
= a secondary placeholder sign (default is ≈)
_ the space character “ ”
s The token “\space” (but “ ” is used for the sort entry)
. No space will follow (see below)
, The character “,” (space will follow)
- The character “-” (no space will follow)
! Create a new sublevel (subitem).

All other tokens in this argument are forbidden. (Note that the magic symbol +
in 〈format〉 is handled by the varindextwo macros, and not by varindex).
The token “!” above makes no sense for the output in the running text and thus
is forbidden behind *.
By a heuristic rule, a space is automatically inserted between two entries which
generate non-empty text. If the heuristic rule fails, you may always force a space
by either “_” or “s”, or forbid a space by “.”.
If a format is empty, all entries are taken in the order of input. Note that TEX
eliminates concatenated spaces, and so you are able to produce an empty format
entry only at the end of 〈format〉 or in front of a “*”. If you want to force an
empty output (is this ever useful?), you may use just “.” as the entry.

A sort entry is only written to the *.idx file if it differs from the text entry.

17

7 Description of the varindextwo macros
The macros\varindextwoScan

\varindextwo
\varindextwoScan \varindextwo

can be used together as parameters 〈scan program〉 resp. 〈main program〉 for the
\varindex command. If \varindex is called with these macros, and no explicit
format argument is given, these macros generate a format depending on the num-
ber of entries in 〈main entries〉:

a) If there is only one entry in 〈main entries〉, then the format “1” resp. “*1 1”
is generated (depending whether the * flag was used or not), i. e. the entry
is put into the index, and printed if \varindex was called with the * flag.

b) If there are two entries in 〈main entries〉, then 〈format〉 becomes
“ 1!~2 1!2~”. For example, if 〈main entries〉 is “graulty bazola”, then
the \index entries

graulty
∼ bazola, 17

bazola
graulty ∼, 17

are produced.

You can modify the first format entry with the following flags:

flags format used with “*” additionally
_ 12 *12
- 1-2 *1-2
^ 1!~-2 resp. 1!-2 *1-2
-^ 1-!~.2 resp. 1-!~2 *1-2
. 1.2 *1.2
.^ 1!~.2 *1.2
/ 1!2 (without ~) *12
< no entry *12

Here, the combinations -^ and .^ mean that both flags are used (the order
plays no role). The output for ^ respectively -^ is determined by the switches

\varindextwoDashTildetrue (default)\varindextwoDashTildetrue

\varindextwoDashTildefalse\varindextwoDashTildefalse

and

\varindextwoDashSpacetrue\varindextwoDashSpacetrue
\varindextwoDashSpacefalse (default)\varindextwoDashSpacefalse

respectively. The last entry in the above table is an additional format entry
which is generated if also the “*” flag is used.

You can modify the second format entry with the following flags:

18

flags format used
, 2,1~ resp. 2,1
~ 21
= 2!1-~
,= 2,1-~ resp. 2,1-
+ 2-1
: 2!1.~
,: 2,1.~ resp. 2,1
; 2.1
> no entry
! Append ~ (if not already there)
? Without trailing ~

Whether the first or the second alternatives in the above forms is used de-
pends on the status of the switch

\varindextwoCommaTildetrue (default)\varindextwoCommaTildetrue
\varindextwoCommaTildefalse\varindextwoCommaTildefalse

We point out that \varindextwoCommaTildefalse was in earlier versions
of varindex the default (and could not be changed). Note that this switch
has no effect if the ! or ? flags are used.

Hint for remembering the symbols: The symbols _ . - for the first entry
are the same flags as for the output and the same flags which are used in the
〈format〉 argument. The corresponding symbols ~ : (and ;) = (and +) for
the second entry “look similar”. The , flag is only useful in the second entry
(and is the same symbol as in the 〈format〉 argument). The two exceptional
symbols > and < can be read as “generate only the ‘forward-directed’ resp.
‘backward-directed entry’ ”.

c) If there are three entries in 〈main entries〉, then 〈format〉 becomes
“ 1!~23 3!12~”. For example, if 〈main entries〉 is “graulty of bazola”,
then the following two \index entries are produced.

graulty
∼ of bazola, 17

bazola
graulty of ∼, 17

The flags have an analogous effect to b). In addition, if the flags ‘ resp. ’ are
used, the second entry (in our example: “of”) is omitted from the output
in the first resp. in the second index entry. If the flags * and ‘ are used
together, the second entry is also omitted from the output into the running
text.

d) If there are four entries in 〈main entries〉, then 〈format〉 be-
comes “ 1!~24 4!31~”. For example, if 〈main entries〉 is
“graulty of@ OF bazola”, then the following two \index entries
are produced.

19

graulty
∼ of bazola, 17 (sorted like “bazola”)

bazola
graulty OF ∼, 17 (sorted like “graulty OF”)

In other words, we have a similar effect as in c) except that for the first
entry the third word is skipped, and for the second entry the second word
is skipped. All flags as in c) can be used with an analogous meaning. Also,
if the * flag is used, the output into the running text is analogous to c) (the
third word is skipped).

e) If there are more than four entries in 〈main entries〉, then 〈formatA〉 resp.
〈format*A〉 is used.

If an explicit 〈format〉 argument is given to \varindex (together with the
\varindextwo macro as 〈main program〉), then this format is used, except when
it contains the symbol +. In this case, this symbol + is replaced by the format
which would be generated by the rules a)–e). If additionally the * flag is used,
there is a special rule: If the explicit format contains a *, then no additional *-
output is produced. Otherwise, the *-output from a)–e) is prepended to the given
〈format〉 (with a space at the end, unless the format string is empty). This means
that “normally” you have the output from a)–e), unless you write an own explicit
*-part in the 〈format〉.
If you do not like the tokens chosen for the default symbols, you can easily choose
your own tokens by just replacing \varindextwoScan with your own macro (or
defining your own “magic” tokens after \varindextwoScan, see the example in
Section 5.9).

8 Primitive customization
You may use the command\varindexUsePlaceholderAfalse

\varindexUsePlaceholderBfalse
\varindexUsePlaceholderAfalse
\varindexUsePlaceholderBfalse

to ignore the symbol ~ resp. = in the format entry. You can easily restore the
default by\varindexUsePlaceholderAtrue

\varindexUsePlaceholderBtrue
\varindexUsePlaceholderAtrue
\varindexUsePlaceholderBtrue

If you want to switch off the placeholder only at the beginning of a new entry
(resp. of a new subentry), you can use the commands\varindexLeadingPlaceholderAfalse

\varindexLeadingPlaceholderBfalse
\varindexLeadingPlaceholderAfalse
\varindexLeadingPlaceholderBfalse

The default is restored with\varindexLeadingPlaceholderAtrue
\varindexLeadingPlaceholderBtrue

\varindexLeadingPlaceholderAtrue
\varindexLeadingPlaceholderBtrue

20

By default, the “,” in the format string is in this connection treated as a symbol
generating a new “subentry”. You can change this default with the command\varindexCommaLeadsfalse

\varindexCommaLeadsfalse

You may switch back with\varindexCommaLeadstrue

\varindexCommaLeadstrue

The content of the macros\varindexPlaceholderAText
\varindexPlaceholderASort
\varindexPlaceholderBText
\varindexPlaceholderBSort

\varindexPlaceholderAText
\varindexPlaceholderASort
\varindexPlaceholderBText
\varindexPlaceholderBSort

is used as the placeholder ~ resp. = in the index resp. sort entry. Note that if
one of these entries expands empty, different rules for the automatic insertion of
spaces apply (for the index and sort entry separately).
You may prefer that the placeholder text resp. sort content changes at run time to
the context of the previous ! entry. For example, you may want that the command
\varindex{Gibble Gobble}{2!~2} produces the index entry

Gibble

Gibble Gobble, 17

(or is at least sorted as such an entry).
You can achieve this with the commands\varindexPreviousATexttrue

\varindexPreviousASorttrue
\varindexPreviousBTexttrue
\varindexPreviousBSorttrue

\varindexPreviousATexttrue
\varindexPreviousASorttrue
\varindexPreviousBTexttrue
\varindexPreviousBSorttrue

for the text and sort entry and the placeholders ~ and =, respectively. With these
commands, the content of \varindexPlaceholderAText etc is only used as the
default if no previous ! entry was given. You can switch back to the default mode
with the respective commands\varindexPreviousATextfalse

\varindexPreviousASortfalse
\varindexPreviousBTextfalse
\varindexPreviousBSortfalse

\varindexPreviousATextfalse
\varindexPreviousASortfalse
\varindexPreviousBTextfalse
\varindexPreviousBSortfalse

By default, the “,” in the format entry is considered in this connection similar to
“!”. If you want to change this, use the command\varindexCommaExpandfalse

\varindexCommaExpandfalse

You may switch back with\varindexCommaExpandtrue

\varindexCommaExpandtrue

Since version 2.2, the dash “-” occurring at the beginning of entry (or after “!” or
even after “,” if \varindexCommaExpandtrue is in effect) is ignored for sorting.
You can switch off this feature with the command\varindexOutSortDashBeg

\let\varindexOutSortDashBeg\varindexOutSortDash

21

To restore the new default, use

\let\varindexOutSortDashBeg\toolboxEmpty

The commands

\varindexSetWordString{|} (Use | as separator for entries\varindexSetWordString
instead of spaces)

\varindexSetSortString{>} (default: @)\varindexSetSortString

\varindexSetPlainString{<} (default: !)\varindexSetPlainString

set the default “magic” strings used for 〈main entries〉. The argument of the above
macros is intentionally not expanded (so that you do not have troubles with active
characters like ~). To force expansion, use e. g.

\expandafter\varindexSetWordString\expandafter{\MacroToExpand}

or some similar construct.
If you use a different separator than “space” for the entries, you may want to
change the rule how braces are eliminated. With the commands\varindexEliminateOuterBracetrue

\varindexEliminateInnerBracetrue
\varindexEliminateOuterBracefalse
\varindexEliminateInnerBracefalse

\varindexEliminateOuterBracetrue
\varindexEliminateInnerBracetrue
\varindexEliminateOuterBracefalse
\varindexEliminateInnerBracefalse

you may allow resp. forbid the elimination of braces around the entries resp. around
〈indextext〉 〈sorttext〉 and 〈outputtext〉 With the flag “1”, 〈main entries〉 is consid-
ered as one single entry, but if \varindexEliminateOuterBracetrue is set (which
is the default) also in this case an additional pair of braces around main entry is
eliminated.
Similarly as above,

\varindexSetIndexString{|} default: space\varindexSetIndexString

\varindexSetOutputString{<} default: *\varindexSetOutputString

\varindexSetTildeAString{~} (is default)\varindexSetTildeAString

\varindexSetTildeBString{=} (is default)\varindexSetTildeBString

\varindexSetSpaceString{_} (is default)\varindexSetSpaceString

\varindexSetSpaceTokString{s} (is default)\varindexSetSpaceTokString

\varindexSetOmitString{.} (is default)\varindexSetOmitString

\varindexSetCommaString{,} (is default)\varindexSetCommaString

\varindexSetDashString{-} (is default)\varindexSetDashString

\varindexSetExclamString{!} (is default)\varindexSetExclamString

\varindexSetStringForNr 1{a} default: 1\varindexSetStringForNr

\varindexSetStringForNr{11}{b} No default!

22

set the default “magic” strings used for 〈format〉. In contrast to before, the ar-
guments are fully expanded (with \varindexedef, see Section 9). Note that the
last command provides a way to access more than 10 entries!
If you use \varindexSetIndexString{|} (with some non-space token), you may
still use spaces in the format which then are just ignored.
Avoid that one string is a prefix of another string: In this case, strange effects may
happen, and this behavior may even change in future releases of this package. Note
that the above effect may arise unintentionally if you use active chars. For this
reason, “~” is defined to expand to the letter “~”, before the expansion is executed.
Maybe in later releases of this package there will be further such redefinitions. You
can explicitly use this feature in your own macros by using \varindexedef instead
of the usual \edef, see Section 9.
You can change the output for the text resp sort entry of the various symbols used
in the format string. More precisely, you can redefine

\varindexOutExclam Text output for !\varindexOutExclam

\varindexFollowsExclam Decide whether magic space after ! is\varindexFollowsExclam
inserted

\varindexOutTextComma Text output for ,\varindexOutTextComma

\varindexOutSortComma Sort output for ,\varindexOutSortComma

\varindexFollowsComma Decide whether magic space after , is\varindexFollowsComma
inserted

\varindexPreceedsComma Decide whether magic space before ,\varindexPreceedsComma
is erased

\varindexOutTextSpace Text output for _\varindexOutTextSpace

\varindexOutSortSpace Sort output for _\varindexOutSortSpace

\varindexFollowsSpace Decide whether magic space after _ is\varindexFollowsSpace
inserted

\varindexPreceedsSpace Decide whether magic space before _\varindexPreceedsSpace
is erased

\varindexOutTextSpTok Text output for s\varindexOutTextSpTok

\varindexOutSortSpTok Sort output for s\varindexOutSortSpTok

\varindexFollowsSpTok Decide whether magic space after s is\varindexFollowsSpTok
inserted

\varindexPreceedsSpTok Decide whether magic space before s\varindexPreceedsSpTok
is erased

\varindexOutTextDash Text output for -\varindexOutTextDash

\varindexOutSortDash Sort output for -\varindexOutSortDash

\varindexOutSortDashBeg Sort output for - if nothing\varindexOutSortDashBeg
preceeds.

\varindexFollowsDash Decide whether magic space after - is\varindexFollowsDash
inserted

\varindexPreceedsDash Decide whether magic space before - is\varindexPreceedsDash
erased

23

\varindexOutTextOmit Text output for .\varindexOutTextOmit

\varindexOutSortOmit Sort output for .\varindexOutSortOmit

\varindexFollowsOmit Decide whether magic space after . is\varindexFollowsOmit
inserted

\varindexPreceedsOmit Decide whether magic space before . is\varindexPreceedsOmit
erased

The meaning is as follows: \varindexOut... should just expand to the tokens
which should be written into the text resp. sort output. The corresponding macro
\varindexFollows... is typically defined with one of the following commands:

\let\varindexFollows...\varindexNextSpace
\let\varindexFollows...\varindexNoNextSpace

In the first case, a space is ‘magically’ inserted in front of a subsequent token
(unless this token erases the magic space). In the second case, no space follows,
of course. There is an alternative call:

\def\varindexFollows...{\varindexSpaceTexttrue\varindexSpaceSortfalse}\varindexSpaceTexttrue
\varindexSpaceTextfalse
\varindexSpaceSorttrue

\varindexSpaceSortfalse

This definition achieves that for the text output a space should follow, but
not for the sort output. Of course, you can also use similarly the commands
\varindexSpaceTextfalse and/or \varindexSpaceSorttrue in the above defi-
nition (the effect should be obvious). In particular, \varindexNextSpace is equiv-
alent to \varindexSpaceTexttrue\varindexSorttrue.
The macro \varindexPreceeds... is similarly as \varindexFollows... with the
difference that it is executed before the token in question is output. In particular,
you can ignore a previous ‘magic space’. All of the ‘magic space’ commands are
defined by default with

\let\varindexFollows...\toolboxEmpty
\let\varindexPreceeds...\varindexNoNextSpace

with the following two exceptions:

\let\varindexFollowsExclam\varindexNextSpace
\let\varindexFollowsComma\varindexNextSpace

9 Documented Features
The title “documented features” means that these are hacks which allow further
customization but which are “documented” in the sense that these hacks will also
be available in later versions. (You use an “undocumented” feature if you must
use a macro name of the varindex package which contains the symbol @). If a
feature described in this section does not work in the documented way, this is a
bug and might be repaired in a later version of \varindex.
(In a future release, varindex will cook your coffee, too).

The argument 〈main entries〉 is never expanded, so you can actually write macros
into the *.idx file. The command actually used to write the index is

\varindexIndex\varindexIndex

24

(which by default is of course defined as \index). Since some implementations
of the \index command still (partially) expand their argument (which might
be considered as a bug), the argument of \varindexIndex is translated before
the actual call with the aid of \toolboxMakeHarmless. If you want to redefine
\varindexIndex to a personal \index-output function, you might want to skip
the \toolboxMakeHarmless step. This is arranged with the command

\varindexNoConvert\varindexNoConvert

You can cancel the effect of this command with

\varindexNoConvert\varindexNoConvert

Even if \varindexNoConvert is not in effect, 〈main entries〉 is not expanded
(and in particular, the argument of \varindexIndex consists of the corresponding
entries in an unexpanded form).

The whole \varindex expansion takes place in a group, so all your variables are
local to a single call (unless you use \gdef (and friends) of course).
There are no \global directives used in any macro of this package. In particular,
if you call the above macros in a group (or redefine \varindexIndex), the effect
holds only until the end of the group.

In contrast to 〈main entries〉, the 〈format〉 argument is expanded (with
\varindexedef, see below) (and also 〈formatA〉 resp. 〈format*A〉 is expanded
before), so you can define abbreviations (even simple conditional abbreviations)
for 〈format〉. Note, however, that the expansion is essentially only evaluated with
\edef. So, you will probably not want to use e. g. \relax, since this command ex-
pands to itself (and not into nothing – use \toolboxEmpty if you want the latter).
If you want more complex abbreviations, use 〈main program〉 instead.
In order to help you write conditional abbreviations, the following variables are
defined when your macro is expanded (and in particular also in 〈main program〉).
You may of course redefine them appropriately:

\varindexAppend The argument 〈pagestyleA〉 resp. 〈pagestyleB〉.\varindexAppend

\varindexCount A TEX counter containing the number of entries in 〈main\varindexCount
entries〉.

\varindexLastEntry This is a macro (not a counter) which is usually the value\varindexLastEntry
of \the\varindexCount. See below.

\varindexEntry1 \varindexEntry2 . . . The (index) text occurring in 〈Entry1 〉\varindexEntry1-...
〈Entry2 〉 . . .

\varindexSort1 \varindexSort2 . . . The corresponding sort entry. If no sort\varindexSort1-...
entry was given, this is the same as the corresponding \varindexEntry1-...

\varindexPlain1 \varindexPlain2 . . . The text which should be output in the\varindexPlain1-...
text. If no such entry was given, this is the same as the corresponding
\varindexEntry1-...

25

\varindexCount may be larger than 10, and correspondingly there may be also
more than 10 different \varindexEntry/Sort/Plain macros. If you add entries,
you have to increase \varindexCount correspondingly, otherwise an error is pro-
duced if the format string contains an entry larger then \varindexCount. How-
ever, your additional entries are not output for empty formats: For empty formats
the entries output are 1–\varindexLastEntry. So if you want to output also your
additional entries in empty formats, you have to set \varindexLastEntry to your
modified value of \varindexCount in 〈main program〉. You may e. g. achieve this
with the following lines:

\expandafter
\def\expandafter\varindexLastEntry\expandafter{\the\varindexCount}%

It is admissible that \varindexLastEntry is larger than \varindexCount: In this
case all entries until \varindexLastEntry are output in empty formats with-
out producing an error (provided, of course, that the corresponding variables
\varindexEntry.../Sort.../Plain... are defined).
Note that numbers in TEX command names require special handling, i. e., you
have to use something like

\csname varindexPlain2\endcsname

to access variables. To avoid this, you may want to use the macros \toolboxLet\toolboxLet
and \toolboxWithNr of the toolbox package. Examples are\toolboxWithNr

\toolboxWithNr 1\let{varindexEntry}\toolboxEmpty
\toolboxWithNr {10}\def{varindexSort}{Foo}
\toolboxLet \mymacro{varindexPlain\the\mycount}

These commands set \varindexEntry1 to \toolboxEmpty, \varindexSort10 to
Foo, and \mymacro to the content of \varindexPlain5 (if \mycount=5).
All these variables are also available when 〈main program〉 is expanded. In 〈main
program〉 also the following functions are useful:

\varindexFormat This macro expands to the actual 〈format〉 which is used. The\varindexFormat
main purpose of 〈main program〉 will usually be to (re)define this macro.
After 〈main program〉 has been called, this macro is modified in several
ways:

1. \varindexFormat is expanded (with \varindexedef, see below).
(thus, \varindexFormat is expanded before and after the call of 〈main
program〉).

2. \ifvarindexStar is true (see below) a “*” resp. “* ” is prepended.
3. If it is only “*”, it is replaced by “* ”.

Note that before execution of 〈main program〉, no tests on the validity of
the format are done: You may use your own symbols to ‘communicate’ with
〈main program〉 (provided that 〈main program〉 eliminates these symbols
afterwards).

\varindexFormatDefault This macro expands to 〈formatA〉 resp. 〈format*A〉 (in\varindexFormatDefault
the expanded form) depending whether the * flag has been used in the call.
Note that this expansion was executed before the optional format argument
is expanded for the first time.

26

\ifvarindexstar 〈ifpart〉 [\else 〈elsepart〉] \fi\ifvarindexstar

If the optional * was given, 〈ifpart〉 is executed, otherwise 〈elsepart〉.
This is a TEX if command. In particular, by \varindexStarfalse resp.\varindexStarfalse

\varindexStartrue \varindexStartrue you may change the behavior for future if’s. This can
be used to prevent/force that a “*” resp. “* ” is prepended to the format
after the execution of 〈main program〉. Setting of this variable has no effect
in 〈scan program〉.

\ifvarindexExplicitFormat This is a TEX if command (see above) which is\ifvarindexExplicitFormat
true if the optional format argument 〈formatB〉 was given.

To “compose” the format, you may want to use the macros

\toolboxDef\macrotodefine{〈argumentlist〉}\toolboxDef

\toolboxAppend\macrotoappend{〈argumentlist〉}\toolboxAppend

\varindexedef\macrotodefine{〈argumentlist〉}\varindexedef

All commands work similar to \def resp. \edef with two differences:
For \toolboxDef\macro, 〈argumentlist〉 is expanded precisely by one level
(for details, see the documentation of the toolbox package). Of course, for
\toolboxAppend, the new definition is appended to the old definition of \macro.
\varindexedef fully expands 〈argumentlist〉. However, some active symbols (cur-
rently only ~, but additional symbols might follow in a future release) are deac-
tivated before expansion, so that ~ actually expands to ~ and not to a strange
command sequence.
To “decompose” the format, you may want to use one of the macros

\toolboxSplitAt{〈arg〉}{〈critical〉}{〈command〉}\toolboxSplitAt

\toolboxMakeSplit{〈critical〉}{〈command〉}\toolboxMakeSplit

\varindexMakeSplitExpand{〈macros expanding to\varindexMakeSplitExpand
critical〉}{〈command〉}
\varindexMakeVarSplit\variable{〈macros expanding to\varindexMakeVarSplit
critical〉}{〈command〉}

The first two macros are described in the toolbox package. The remaining two
macros are similar to \varindexMakeSplit with the difference that the argument
〈critical〉 is obtained by expanding 〈macros expanding to critical〉 with the aid of
\varindexedef. In the last form, additionally \variable is (re)defined to expand
to 〈critical〉 (\variable is any free name).
The following instances of a command created by \toolboxMakeSplit exist (the
content of 〈critical〉 should be obvious):

\varindexSplitAtIndex (generated by\varindexSplitAtIndex
\varindexSetIndexString)

\varindexSplitAtOutput (generated by\varindexSplitAtOutput
\varindexSetOutputString)

\varindexSplitAtTildeA (generated by\varindexSplitAtTildeA
\varindexSetTildeAString)

\varindexSplitAtTildeB (generated by\varindexSplitAtTildeB

27

\varindexSetTildeBString)

\varindexSplitAtSpace (generated by\varindexSplitAtSpace
\varindexSetSpaceString; by default, 〈critical〉 is _)

\varindexSplitAtSpaceTok (generated by\varindexSplitAtSpaceTok
\varindexSetSpaceTokString; by default, 〈critical〉 is s)

\varindexSplitAtOmit (generated by\varindexSplitAtOmit
\varindexSetOmitString)

\varindexSplitAtComma (generated by\varindexSplitAtComma
\varindexSetCommaString)

\varindexSplitAtDash (generated by\varindexSplitAtDash
\varindexSetDashString)

\varindexSplitAtExclam (generated by\varindexSplitAtExclam
\varindexSetExclamString)

\varindexSplitAtNr1 (generated by\varindexSplitAtNr??
\varindexSetStringForNr)

\varindexSplitAtNr2

. . .

Note that you must use \csname\endcsname to call e. g. the
macro \varindexSplitAtNr1. Only those numbers are admissi-
ble for \varindexSplitAtNr?? which have been introduced with
\varindexSetStringForNr (by default, this is the case for 1–10).
There is also the instance\varindexSplitSpace

\varindexSplitSpace (to be distinguished from
\varindexSplitAtSpace)

where 〈critical〉 is the space symbol.
In addition, you may use the variables

\varindexIndexString\varindexIndexString

\varindexOutputString\varindexOutputString

\varindexTildeAString\varindexTildeAString

\varindexTildeBString\varindexTildeBString

\varindexSpaceString\varindexSpaceString

\varindexSpaceTokString\varindexSpaceTokString

\varindexOmitString\varindexOmitString

\varindexCommaString\varindexCommaString

\varindexDashString\varindexDashString

\varindexExclamString\varindexExclamString

\varindexNr1String \varindexNr2String ...\varindexNr??String

which expand to the corresponding strings.
All the previous macros should not be redefined “by hand”. They are implic-
itly redefined by the \varindexSet... commands (which partially also do other
tasks).

28

To drop possible braces, use the command\toolboxDropBrace

\toolboxDropBrace\variable

of the toolbox package.
In 〈scan program〉 you may already want to call \toolboxMakeSplit: In this way,
the choices for the “magic” tokens are made in the (usually small) argument 〈scan
program〉, and in this sense, you can keep your (possibly rather complex) macro
〈main program〉 “customizable” (i. e. you can use the same macro also with a
different set of “magic” strings). However, the main task of 〈scan program〉 is to
introduce new flags with

\varindexNewFlag〈token〉\position[〈program〉\varindexEndOfFlag]\varindexNewFlag

or

\varindexNewFlag〈token〉\position[\programmacro]

Here, \position is an (undefined) macro, and 〈token〉 an arbitrary token. The
[program(macro)] part is optional and is explained later. If 〈token〉 appears in
〈flags〉, then \position is defined to expand to a (literally) number, namely the
(last) position where token was given inside the 〈flags〉 list (counting from 0). For
example, if

\varindexNewFlag ,\commapos
\varindexNewFlag -\minuspos
\varindexNewFlag .\pointpos

are used in \programA, then in the call

\varindex(){\programA}{\programB},-**-{}

the variable \commapos will expand in \programB to 0, while \minuspos will
expand to 4 (the last position is taken). Finally, \pointpos is \undefined (unless
you defined \pointpos differently after the call of \varindexNewFlag; in this case,
this is the default). If \varindexNewFlag is called multiple times with the same
token, only the last call with this token takes effect.
The flags * and 1 are introduced in this way with\varindexStarPos

\varindexOneEntry
\varindexNewFlag *\varindexStarPos
\varindexNewFlag 1\varindexOneEntry

before 〈scan program〉 is executed. This means:

1. Usually, \varindexStarPos contains the (last) position of * (resp. is
\undefined). Moreover, if you define \varindexStarPos in 〈scan program〉
or in some flag, you get the same effect as if * had been used. An analogous
remark holds for \varindexOneEntry.

2. If you introduce * with \varindexNewFlag, the * looses its original meaning.
The same holds for 1.

If you have added a [program(macro)] part in the call of \varindexNewFlag,
this part is expanded whenever the flag introduced by \token is used in the call
of \varindex (note that it is not excluded that this happens several times within
one call). More precisely, program is expanded after the variable \position has

29

been set to the corresponding value, so you may already use \position in the
program part.
Important: The last token expanded in program must be \varindexEndOfFlag.\varindexEndOfFlag
This is not nice but has to do with the way TEX parses its arguments. Also
if you use the form \programmacro, the very last token expanded must be
\varindexEndOfFlag. Even a construction like

\def\myprogrammacro{\ifx....
\CallSomeMacroWithvarindexEndOfFlagAtTheEnd

\fi
\varindexEndOfFlag}

is forbidden: In \CallSomeMacroWithvarindexEndOfFlagAtTheEnd an error
would occur at the end, since still the tokens \fi\varindexEndOfFlag are in
the tokenlist when EndOfFlag is reached there. As a workaround, you may e. g.
use

\def\myprogrammacro{\ifx...
\def\execute{....\varindexEndOfFlag}%
\else
\def\execute{\varindexEndOfFlag}%
\execute}

If you use the form [\programmacro], your macro may even read additional pa-
rameters. These parameters are expected in the call of \varindex behind the flag
you have introduced. So you may actually use flags with parameters. For example,
if \scanprogram contains a macro like

\varindexNewFlag -\minuspos[\readpara]

and you have defined

\def\readpara#1{\def\merk{#1}\varindexEndOfFlag}

then the call

\varindex(){\scanprogram}{\mainprg}*-{Foo}-{Foo 2}*{Entries}

is admissible, and in 〈main program〉, \merk will have the value “Foo 2”.
If you are more familiar with TEX, you can even allow optional arguments following
your flag: The value of the next (non-space) token is at the call of \programmacro
already saved into the macro\varindexNextToken

\varindexNextToken

so you can just use it to test for e. g. “[”. In this connection, you may also want
to use the commands\varindexTestAndExec

\varindexSkipAndExec
\varindexTestAndExec
\varindexSkipAndExec

Please, see the program text how these commands are applied.

Since version 2.1 you can also hack in personal extensions of the format string. To
do this, use the command

30

\varindexNewFormat\〈splitcommand〉{〈action〉}\varindexNewFormat

Here, \〈splitcommand〉 is a command generated by \toolboxMakeSplit or friends
(preferably by \varindexMakeSplitExpand, because the command should act on
the format string which is expand with \varindexedef). The string where it
splits is the new string you can use in the format argument after this call. For
each occurrence of the corresponding string in the format argument, 〈action〉 will
be executed. If \〈splitcommand〉 splits at a string which already had a previous
meaning in the format string (or which is a prefix to such a string) the old meaning
of this string in the format string is overridden.
Typically, action will contain the following commands: One action will probably
be to output a desired token (sequence) via

\varindexTokensOut{〈text token〉}{〈sort token〉}\varindexTokensOut

or

\varindexTokensOutExpand〈macro for text token〉〈macro for sort\varindexTokensOutExpand
token〉

In the first form, 〈text token〉 resp. 〈sort token〉 is the token sequence put into
the index or running text respectively into the sort entry of the index for the
corresponding format entry. The second form is similar with the only difference
that the arguments must be single macros which expand to 〈text token〉 and 〈sort
token〉, respectively.
The variable\ifvarindexIndexMode

\ifvarindexIndexMode

can be used to test whether the output goes into the running text or into the index
(i. e. whether a “*” preceeded the current entry). For output into the text, 〈sort
token〉 is ignored, of course).
Another action in \varindexNewFormat will probably be to take care of the
magic space flags. This is achieved by a call of \varindexNextSpace or
\varindexNoNextSpace (or separately via \varindexSpaceTexttrue/false resp.
\varindexSpaceTexttrue/false); see the earlier description. The magic space
flags are taken into account in \varindexTokensOut. Thus, if you want to ignore
the previous flag for some reason you should set them correspondingly before this
call. However, after the call you should also set them correspondingly for further
processing.
Example:

\toolboxMakeSplit{:}{splitAtColon}
\varindexNewFormat\splitAtColon{%

\varindexNoNextSpace
\ifvarindexIndexMode

\varindexTokensOut{:}{}\varindexSpaceTexttrue
\else

\varindexTokensOut{---}{}\varindexNoNextSpace
\fi}

defines a new format entry “:” which has the meaning that a colon (automagically
followed by a space) is put into the index but not into the sort entry. Moreover,

31

in the running text, the colon appears as a long dash with no space followed. In
any case, there is no magic space output in front of the colon.

As an alternative action in \varindexNewFormat, you can also call the default
commands for the format entries. The corresponding macros are

\varindexAddSpace _\varindexAddSpace

\varindexAddSpTok s\varindexAddSpTok

\varindexAddOmit .\varindexAddOmit

\varindexAddDash -\varindexAddDash

\varindexAddComma ,\varindexAddComma

\varindexAddExclam !\varindexAddExclam

\varindexAddTildeA ~\varindexAddTildeA

\varindexAddTildeB =\varindexAddTildeB

\varindexAddNumber{〈number〉} 0-9 (〈number〉 is 1, 2, . . .)\varindexAddNumber

The precise meaning of these macros is intentionally not documented, because
some details or side effects might change in a future release of varindex. But
just for this reason, it might be advantageous to use the above macros instead of
writing personal substitutes which may fail to have such side effects.
Example:

\varindexMakeSplitExpand{~-}{splitPhrase}% It is important to expand
% (to have correct ~ catcode)

\varindexNewFormat\splitPhrase{%
\varindexAddTildeA
\let\remember\varindexPreceedsDash
\let\varindexPreceedsDash\toolboxEmpty
\varindexAddDash
\let\varindexPreceedsDash\remember}

After the above command, “~” and “-” have their usual meaning in the format
string except when they follow immediately in the form “~-”. In this case, the
behavior of - changes as if \varindexPreceedsDash were empty (which has the
effect that the output looks like “∼ -” instead of “∼-”).
Note that although ~ is a prefix to ~-, the converse is not true: Thus, the above
command does not change the previous meaning of ~ (and of course also not of -).

Some hack: TEX ignores leading spaces in the argument list of a “normal” macro.
This has the effect that you should be able to insert spaces between any of your
arguments without any trouble. If this does not work the expected way, you can
use the command\varindexArgumentSpace

\varindexSkipTricky
\let\varindexArgumentSpace\varindexSkipTricky

which implements an own macro which does this task. Sadly, this can only be
done with some catcode trickery which in turn might bring you in trouble with
some (very) exotic packages. You can restore the default with\varindexSkipDefault

\let\varindexArgumentSpace\varindexSkipDefault

32

All above customization commands/variables may be used anytime between two
\varindex calls. They take effect with the next \varindex call.
The macros \varindextwoScan and \varindextwo are considered as a (very use-
ful) example for the customization of the \varindex command. If you need further
customization, have a look at their definition first.

33

