
shapepar.sty

Donald Arseneau
Vancouver, Canada

asnd@triumf.ca

v 2.1 September 2006

\shapepar: a macro to typeset paragraphs in a specific shape. The size is
adjusted automatically so that the entire shape is filled with text. This package
is for Plain TEX, LATEX, or similar.

1 \shapepar and \Shapepar

The \shapepar macro (or ‘command’) is used to typeset paragraphs of a spec-
ified shape, where the total size is adjusted automatically so that the entire
shape is filled with text, and the shape may include separate pieces and holes.
This is distinct from the normal \parshape command which specifies a simple
shape and a size that may be partially filled, or over-filled, from top to bottom.
In a \shapepar there can be no displayed math, and no ‘\vadjust’ material,
(including \vspace). This style is mainly intended for cards, invitations etc.,
not for whole books! Although short paragraphs process much faster, only long
paragraphs accurately fill complex shapes.

These macros work for both LATEX and Plain TEX. For LATEX, specify
\usepackage{shapepar}, or for Plain, \input shapepar.sty.

The command \shapepar should be used at the beginning of a paragraph,
and it applies to the entire paragraph. There is one optional length parameter:
a fixed scale, 〈scale len〉; and one required parameter: a description of the shape,
〈shape spec〉.

\shapepar [〈scale len〉]{〈shape spec〉} Text of the paragraph

The text of the paragraph is delimited by a blank line or \par, but is not
literally a parameter, so verbatim macros will work there. If you want to typeset
two paragraphs in one shape, then use \endgraf or \\ to split them.

Ordinarily, the scale is calculated automatically so the pargaraph best fills
the shape. If a scale length is given, then the shape is reproduced so one unit
of the 〈shape spec〉 equals the 〈scale len〉, and the shape is filled with white
space after the paragraph text. The 〈scale len〉 is much like \unitlength for
the picture environment. For an application of a fixed scale, see the \CDlabel
macro.

1



With the \shapepar command, the text will be typeset centered on the page
using the specified shape (specifically, the shape’s 〈h center〉 will be centered
on the page; see below). A \shapepar should not break across pages (due to
inter-line penalties) but that feature is not guaranteed.

The \Shapepar macro (capital S) typesets the shaped paragraph in a box
(\vtop or \parbox[t]) without extra horizontal padding. If it occurs in vertical
mode, special care is taken with the line-spacing around this box, but the line-
spacing might be better with plain \shapepar. \Shapepar is particularly useful
for \fbox or \put.

2 \cutout

A shaped paragraph can be incorporated with the page in a third way: nestled
in a cut-out at the side of the running text.

\cutout {〈side〉} (〈h offset〉,〈v offset〉) 〈settings〉 \shapepar . . .

The 〈side〉 argument is required, and must be ‘l’ or ‘r’, indicating which margin
(left or right) the shape should occupy. By default (in the absence of other
parameters) the shaped paragraph will be placed so its center-line (〈h center〉)
is at the specified edge of the running text, and its first line is level with the first
line of the ensuing text. This position may be changed by specifying the optional
horizontal and vertical offset distances (〈h offset〉,〈v offset〉) in parentheses. A
positive 〈h offset〉 moves the shape further right, and a positive 〈v offset〉 moves
it down. A negative 〈v offset〉 will move the shape upwards, where it might
overlap preceding text, which will not be cut away to accommodate.

Yes, the text coming after the \cutout \shapepar is cut out (surprise!) to
fit the shape, leaving a gap of ‘\cutoutsep’. This length (dimen) parameter
is initialized to 12 pt; you may set it as you please. The cutout separation
is applied by looking at the paragraph shape expanded by \cutoutsep in all
directions, to give the same gap at every slope. The cutout only lasts for one
paragraph.1 To extend the effect further, divide paragraphs with ‘\\[\parskip]
\indent’ (LATEX) or ‘\hfill \break \indent’ so TEX does not treat them as
separate paragraphs. Furthermore, the cut-out paragraph should not end in a
local group, so make sure there is an explicit \par or blank line there, outside
of braces.

⊗
The combination of \cutout with fixed scale allows an entirely different

application: producing cutouts for graphics. First, produce a rough
〈shape spec〉 for the image to delineate its left and right borders
(you can ignore all internal detail) or use an appropriate pre-
defined shape. Then use \includegraphics as the text of the
shaped paragraph. There is a difficulty though: we want the im-
age to take the place of the entire paragraph, not to stand up on the

1Re-defining \par for the extent of the cutout is an attractive feature, but has conflicts
with various TEX formats. It seems best to leave the paragraph control in the hands of the
user. This will likely change in the future.

2



top line. There are a number of methods for lowering the graphic appropriately
(and some methods that will not work with \shapepar); three that work are:

\hfill \makebox [0pt][c]{\raisebox{1ex-\height} % requires calc.sty
{\includegraphics{〈file〉}}}

or
\hfill
\begin{minipage}[t]{0pt}
\vspace {-1ex} % \vspace works here only
\centerline{ \includegraphics{〈file〉} }
\end{minipage}%
\hfill
and, most general,
\begin{picture}(0,0)
\put (x, y){\includegraphics{〈file〉}}
\end{picture}

The first two adjust the height automatically, but assume the top line of the
shape is horizontally centered. The picture environment handles positioning
more flexibly, but requires you to provide parameters x, y. Just try approximate
values, make a test run, measure the offset, and correct. This should only
require one trial, not an endless cycle. Because the reference point for the
shaped paragraph is based on the text it contains, and not just the specified
shape, some adjustment will usually be needed to position a shaped paragraph
precisely.

3 Shapes

There are some shapes predefined in shapepar.sty (square, rectangle, circle,
circle-with-hole, diamond, heart, star, hexagon and hex-nut) which are used as
examples in the instructions below. Each of these shapes is stored in a macro,
and there is a command to use that shape:

\squareshape \squarepar Square
\circleshape \circlepar Circle
\CDshape \CDlabel Circle with circular hole (\CDlabel uses

a fixed scale to fit a compact disc)
\diamondshape \diamondpar Rhomboid ‘diamond’ (♦)
\heartshape \heartpar Heart (symbolic shape ♥)
\starshape \starpar Five-point star
\hexagonshape \hexagonpar Hexagon
\nutshape \nutpar Nut for bolt (hexagon with circular hole)
\rectangleshape{〈height〉}{〈width〉} Rectangle shapes

For example, \heartpar{〈text〉} performs \shapepar {\heartshape} 〈text〉\
\ $\heartsuit$\par (ending the text with a heart symbol).

3



More shape definitions are provided in separate files named ∗shape.def. Look
on your disk to be sure, but the list should include:

dropshape Rain drop
triangleshapes Triangles in different orientations
candleshape A burning candle
TeXshape The TEX logo
Canflagshape The Canadian flag

Please contribute your shapes!
Although defining shapes by hand can be difficult, there are programs to aid

you.

3.1 ShapePatch by Christian Gollwitzer

ShapePatch
is an amazing utility writ-

ten by Christian Gollwitzer. It allows
you to simply draw the shape you want with

Xfig, and then convert it to a shapepar shape def-
inition, either by manually running fig2dev (a compo-

nent of transfig), or by choosing ‘Export/Shape’ in Xfig. Its
odd name is indicative of its implemen-

tation: it is an upgrade or ‘patch’
to both the Xfig program and the

transfig tool- set. ShapePatch is included
with transfig, or can be found on ctan under
graphics/transfig-shapepatch, which includes instructions (readme)
and sample shapes besides the patch itself. This smiley face is one of
the sample shapes. Besides enabling a graphical utility (Xfig) to pro-
duce shapepar specifications, the ShapePatch upgrade opens up great li-
braries of existing Fig clip-art to be used for paragraph shapes. For ex-
ample, a Canadian
flag taken from the Xfig flag library is one of the examples

provided with ShapePatch, for compari- son with
the hand- coded one bun- dled with

shapepar.sty. (I prefer my
own version because there

is an error in the maple leaf shape
on the Xfig flag library version. The error is not

the fault of ShapePatch, but ShapePatch
faithfully reproduces the faulty

shape!)

4



3.2 proshap.py by Manuel Gutierrez Algaba

proshap.py (ver 1.1) is a python
script written by Manuel Gutierrez Algaba

to produce shape definitions from rough ‘ascii art’. There
is no instruction manual, so here are Donald Arseneau’s

observations. There is not much of a user interface; look
in proshap.py (which is a plain text file) and see how
the various ‘test’ shapes are defined
(note the triple-double quotes).
Choose one of them,

or add a new
one, then change
the line ‘test

= test3’ to select the
desired picture. Execute
‘python proshap.py’ which

will output a definition of \bassshape
to the screen and to the file ‘result.tex’.
The goulish face you see here is the test3
shape. You should be aware that the characters in the
ascii input are treated as square, even though
they are taller than they are wide, so the output
shape specification will be taller and thinner
than the input text. There also seems to
be a problem with all ‘bottoms’: flat
bottoms of text blocks and of holes are expanded
downwards to end at a point. Compare this face
to the original face in proshap.py. Warning: These

instructions and observations
are probably
wrong; the author

does not program
in python so can’t even
read the code properly.

For now, look for proshap.py
bundled with

shapepar.sty.

5



4 Shape Syntax

The syntax rules for 〈shape spec〉 are very specific, and must be followed closely.
In these rules, { } mean explicit braces, [ ] denote optional parts, 〈 〉 surround
a keyword that is defined (perhaps loosely), and | means ‘or’; do not type [ ] 〈 〉
or |, but do type { }.

〈shape spec〉 = {〈h center〉} 〈lines〉

〈lines〉 = 〈line spec〉 [ \\〈lines〉 ]

That is, the shape is specified as a single number in braces, followed by
the specifications for the lines, with the lines separated by \\. The resulting
paragraph will have its 〈h center〉 position centered on the page, or used as
a reference point. It is a number like 10.5, without explicit units, but using
the same length scale as the lengths and positions in the 〈lines〉. Ordinarily,
shapepar will determine the unit length that best fits the text, but will use a
fixed scale when specified for \shapepar.

The lines in the spec are not lines of text, nor are they the lines that you
would use to draw the shape itself. They are horizontal scans across the shape
at regular or irregular intervals. Complex curved shapes need many scan lines
for accurate rendering, while simple shapes need only a few. To determine the
line specifications, start by drawing the shape on paper, then draw a series of
horizontal lines across it, including lines that just touch the top and the bottom
of the figure, and, preferably, lines through each sharp corner. Each line crosses
over pieces of the figure in some region. These intersections of line and figure
define a 〈line spec〉.

〈line spec〉 = {〈v pos〉} 〈segment〉 [ other 〈segment〉s ]

The 〈v pos〉 is the vertical position of the line, increasing from top to bot-
tom. Each 〈line spec〉 usually has a position greater than or equal to that of the
previous line, and with all 〈v pos〉 > −1000. The exception is that between con-
secutive lines relating to completely disconnected parts of the figure the 〈v pos〉
may decrease (backspacing). This allows text to flow from one disconnected
area to another in sequence (see the Canadian flag shape). Each 〈segment〉
represents a region where text will go in the final paragraph; it is the segment
of the horizontal scan line that overlaps the body of the figure. There are five
types of segment:

〈segment〉 = t{〈pos〉}{〈len〉} | b{〈pos〉} | e{〈pos〉} | s | j

b{〈pos〉} begin text block at a point at horizontal position 〈pos〉
e{〈pos〉} end text at a point at horizontal position 〈pos〉
t{〈pos〉}{〈len〉} text segment at position 〈pos〉 with length 〈len〉
s split text block (begin a gap)
j join two text blocks (end a gap)

6



The most common type of segment is t (text). The other types are degen-
erate in that they are single points rather than finite segments. Types s and
j have no explicit position, but they must appear between text segments, and
those texts should abut; e.g., t{3}{2}st{5}{4} (text from 3 to 5 and text from
5 to 9).

Let’s jump right into a simple example, and the meanings will be clearer.
A rhombus ‘diamond’ shape can have the four vertices, with coordinates shown

- x

?y �
�

�
�

�
�

S
S

S
S

S
S

S
S

S
S

S
S

�
�

�
�

�
�

r

r r

r

(x = 3, y = 0)

(0, 4) (6, 4)

(3, 8)

Figure 1: Diamond shape, showing vertex locations and scan lines.

in figure 1. This shape can be exactly specified by just three scan lines passing
through the vertices. The intersections of the scan lines with the shape’s edges
occurs at the vertices and so the shape specification is:

{3} 〈h center〉: x = 3
{0}b{3}\\ text block begins at point y = 0, x = 3
{4}t{0}{6}\\ scan (at y = 4) crosses text (len 6) starting at x = 0
{8}e{3} text block ends at point y = 8, x = 3

Other specification lines, such as

{6}t{1.5}{3}\\

could be inserted, but would make no difference – the shape is interpolated
linearly between scan lines.

Every block of text must start with a b specifier and end with an e spec
on some line below. Every segment specified by t must have a length greater
than zero. If two blocks of text merge to form one (like at the notch of a heart
shape) there should be a j spec at the point of junction. If one block bifurcates
or splits (like at the top of a hole in a doughnut) there should be an s spec.

Thus, the first line for any valid shape description must consist of only b
segment descriptors; the last line can only have e type descriptors. Although

7



the definition of the units is arbitrary, the numbers should range in magnitude
from ∼ 0.1 to 100 to avoid numeric overflows and underflows.

If there are errors in the format of the specification, \shapepar might com-
plain with the error message

Shaped Paragraph Error: Error in specification. Check carefully!

At this point you may as well type x or e, to exit from TEX, as there is very
little chance that TEX will continue successfully. You might also get one of
TEX’s regular error messages, like

Illegal unit of measure (pt inserted).
or
Missing number, treated as zero.

or you might get no error message at all, just ridiculous formatting. Check
shape syntax carefully against the rules and the examples before running them
through TEX.

What to do if the figure does not start at a point – if it has a flat top? It can
start at a single point, but have the next scan line at the same vertical position!
A square paragraph is specified by:

{1} centerline is at x = 1
{0}b{0}\\ begin at (0, 0)
{0}t{0}{2}\\ text at y = 0, width = 2
{2}t{0}{2}\\ text at y = 2, width = 2
{2}e{1} end at (1, 2)

Now let’s get more ambitious. A heart shape must have two simultaneous
beginnings, a short stretch where there are two separated text areas ending with
a join, whereafter there is just one block of text leading to the final bottom point.
Figure 2 shows the heart-shape specification. Find the two b specifiers at the
beginning, and find the j a few lines below; notice that above the j there are
two segments per line, but only one below it – the two lobes join at the j point:
20. I drew this heart freehand, and measured lengths from the sketch, so you
should be able to do better! The spec has many scan lines so that the smooth
curves are preserved, but there are probably more lines than necessary.

Text shapes can have holes. For example, a doughnut-shape would have a
b on the first line, followed by some lines with a single t, then a line with t s
t at the start of the hole. The hole is represented by lines with two t specs –
the gap between them is the hole. A line with t j t ends the hole. There are
more lines with single t, and then an e line to end with. Such a doughnut is
used by the \CDlabel shape, but the example given in Figure 3 is a nut. Not
a doughnut, but a hex-nut (for a machine screw or bolt) – a regular hexagon
with a circular hole in the center. The hexagon is flat on top and bottom so
the specification begins and ends like the square shape. The circle is rendered
as a 24-gon, beginning with a split (s) of the surrounding text and ending with

8



\newcommand\heartshape{
{20}{0} b{13.32} b{26.68}
\\{.14} t{10.12}{4.42} t{25.46}{4.42}
\\{.7} t{9.14}{7.16} t{23.7}{7.16}
\\{1.4} t{8.4}{9.02} t{22.58}{9.02}
\\{2.1} t{7.82}{10.42} t{21.76}{10.42}
\\{2.8} t{7.36}{11.58} t{21.06}{11.58}
\\{3.5} t{6.98}{12.56} t{20.46}{12.56}
\\{4.2} t{6.68}{13.32} j t{20}{13.32}
\\{4.9} t{6.48}{27.04}
\\{5.6} t{6.34}{27.32}
\\{6.3} t{6.28}{27.44}
\\{7} t{6.26}{27.48}
\\{7.7} t{6.27}{27.46}
\\{8.4} t{6.32}{27.36}
\\{9.1} t{6.4}{27.2}
\\{9.8} t{6.52}{26.96}
\\{10.5} t{6.68}{26.64}
\\{11.9} t{7.12}{25.76}
\\{13.3} t{7.72}{24.56}
\\{14.7} t{8.51}{22.98}
\\{16.1} t{9.5}{21}
\\{17.5} t{10.69}{18.62}
\\{18.9} t{12.08}{15.84}
\\{20.3} t{13.7}{12.6}
\\{21.7} t{15.62}{8.76}
\\{22.4} t{16.7}{6.6}
\\{23.1} t{17.87}{4.26}
\\{24.6} e{20}
}

In faith, I do not
love thee with mine eyes, For

they in thee a thou- sand errors note, But
is my heart that loves what they despise, Who
in despite of view is pleased to dote; Nor are mine
ears with thy tongue’s tune delighted, Nor tender
feeling to base touches prone, Nor taste nor smell,
desire to be invited To any sensual feast with thee
alone; But my five wits nor my five senses can
Dissuade one foolish heart from serving thee,
Who leaves unswayed the likeness of a

man, Thy proud heart’s slave and vas-
sal wretch to be; Only my plague

thus far I count my gain,
That she that makes

me sin awards
me pain.

♥

Figure 2: Specification for the heart shape, and an example.

a join (j). If the spacing of the scan lines looks odd, it is because the hexagon
alone would need just 5 scan lines (at only 3 distinct locations), but the circle
needs many; the points on the circle are at 15-degree intervals.

5 Configuration

There are several parameters that control details of how \shapepar functions,
varying from those (one) that will be set often, to some that are cryptic, and re-
quire editing shapepar.sty itself. Here we will explain some of those operational
details and the parameters that control them.

5.1 Cut-out separation

The cutout separation is applied by looking at the paragraph shape expanded
by \cutoutsep in ‘all’ directions, to give the same gap at every slope. That is a
white lie. The shape’s ‘\parshape’ is actually regenerated at a finer line-spacing
(but the same scale factor as for the shaped paragraph), and the leftmost (or

9



\newcommand\nutshape{
{0}
{0} b{0}\\
{0} t{-12.5}{25}\\
{11.65} t{-19.23}{19.23} s t{0}{19.23}\\
{11.99} t{-19.42}{16.835} t{2.59}{16.835}\\
{12.99} t{-20}{15} t{5}{15}\\
{14.58} t{-20.92}{13.85} t{7.07}{13.85}\\
{16.65} t{-22.11}{13.45} t{8.66}{13.45}\\
{19.06} t{-23.51}{13.85} t{9.66}{13.85}\\
{21.65} t{-25}{15} t{10}{15}\\
{24.24} t{-23.51}{13.85} t{9.66}{13.85}\\
{26.65} t{-22.11}{13.45} t{8.66}{13.45}\\
{28.72} t{-20.92}{13.85} t{7.07}{13.85}\\
{30.31} t{-20}{15} t{5}{15}\\
{31.31} t{-19.42}{16.835} t{2.59}{16.835}\\
{31.65} t{-19.23}{19.23} j t{0}{19.23}\\
{43.3} t{-12.5}{25}\\
{43.3} e{0}
}

Figure 3: Specification for the nut shape. (The definition in shapepar.sty is the
same except that the spaces are removed.)

rightmost) position of each finer-parshape line is used to exclude an octagon (as
an approximation to a circle) centered on that position. The octagon is not even
regular, but is extended vertically by \cutoutsepstretch× \baselineskip to
allow for the height and depth of characters. Figure 4 illustrates these parame-
ters.

A good place to set these parameters is between \cutout and \shapepar so
they apply locally to just that instance.

\cutoutsep Distance separating shaped paragraph and the surrounding cut-
out text.
Type: length (dimen register)
Default: 12 pt
Set with: \setlength
Example: \setlength {\cutoutsep }{1cm} or \cutoutsep = 5pt

\cutoutsepstretch Vertical extension of cutout gap, given as a fraction of
\baselineskip, which accounts for the height and depth of characters. Note
that, even with a good setting for \cutoutsepstretch, the separation above
and below the shaped paragraph may not match the side spacing simply because
the cutout text has rigid baseline skips.

10



A

�
�

��

@
@

@@

@
@

@@

�
�

��

�
�

��

@
@

@@

@
@

@@

�
�

��

6

?

6

?� -

� -

6

?

c

b

a

d
a

Figure 4: This is an example with a tiny (unrecognizable) square shaped ‘para-
graph’ and a large cutout separation. Here \cutoutsep is set to 53.0pt, and
\cutoutsepstretch is 1.0. Since the ‘paragraph’ is so small
(‘A’), and the separation so great, the cutout is dominated
by the octagonal expansion of the shape which is drawn
for \cutoutsep alone and for the full exclusion zone in-
cluding \cutoutsepstretch. The labelled distances are
as follows: a = \cutoutsep; b = 0.828 \cutoutsep;
c = b + 2 × \cutoutsepstretch × \baselineskip; d =
a + \cutoutsepstretch × \baselineskip. The exclusion
zone (outer octagon) applies to the baseline position of
each paragraph line, so the characters do intrude into the
octagon from above and below. The vertical expansion factor
\cutoutsepstretch should be chosen to just counteract this effect, leaving a sym-
metric border of white space (inner octagon). In ordinary use, with a larger shaped
paragraph and a smaller separation, the expansion of the shape should appear equal
in all directions (circular); it is only in this contrived example that it is revealed as an
octagon.

Type: macro (‘command’, but really ‘data’)
Default: .5
Set with: \renewcommand or \def
Example: \renewcommand {\cutoutsepstretch }{.75}

\RefineBaselines Fineness of cut-out matching to lines (number of reference
points per line of cut-out text).
Type: integer constant (not a LATEX counter)
Default: 3
Set with: \renewcommand, \def, \chardef, \mathchardef etc.
Example: \renewcommand {\RefineBaselines }{2} or

\chardef \RefineBaselines = 4

5.2 Scale length optimization

When \shapepar is used without an explicit scale length, it must determine
a scale that allows the given text to fill the shape. It makes a first guess
by comparing the length of the text with the area of the shape specification,
and then typesets the paragraph at that scale. If the text does not fit well,
then \shapepar changes the scale and tries again. It will make as many as
\ScaleMaxTries trial paragraphs:

11



\ScaleMaxTries How many times will \shapepar try to get the size of the
paragraph?
Type: integer constant (not a LATEX counter)
Default: 9
Set with: \renewcommand, \def, \chardef, \mathchardef etc.
Example: \renewcommand {\ScaleMaxTries }{7} or

\chardef \ScaleMaxTries = 5

It is quite common that text will not esaily fit a shape even when the
best scaling is chosen, so it is counter-productive to set a very high value for
\ScaleMaxTries.

There are many other numbers explicitly coded into shapepar.sty that con-
trol the scale-optimization process: choosing the initial guess, choosing the ini-
tial step size (‘dscale’), changing dscale by different factors (‘fac’), fitting the
text to the paragraph shape, and more. These are accompanied by the comment
‘optimize’, and they can be changed by editing shapepar.sty.

5.3 Applying the shape

\shapepar cheats a bit when the horizontal gap between two bits of text is small
(like down in the notch of \heartpar). When the gap is less than an interword
space it is eliminated, and the texts are joined; when it is somewhat larger it
is expanded to give it more visibility. Likewise, when a segment of text is too
small, it is eliminated. There are three parameters to control this behavior.
Although they are lengths, they are all macros (commands) rather than dimen
registers in order to use font-size-based length units (em).

\SmallestGap Smallest gap size allowed; smaller gaps will be eliminated
(text joined).
Type: macro (command) giving a length
Default: .4 em
Set with: \renewcommand or \def
Example: \renewcommand {\SmallestGap }{.5em}

\SmallGap Small gap size; smaller gaps will be enlarged.
Type: macro (command) giving a length
Default: 1 em
Set with: \renewcommand or \def
Example: \renewcommand {\SmallGap }{2em}

\SmallestSegment Smallest segment allowed; smaller will be omitted.
Type: macro (command) giving a length
Default: .2 em
Set with: \renewcommand or \def
Example: \renewcommand {\SmallestSegment }{10pt}

12



5.4 Feedback

Since the processing is slow, some messages will be displayed to show how
things are going. LATEX users can disable this feedback by loading shapepar
with \usepackage[quiet]{shapepar}, or they can get more verbose messages
by requesting \usepackage[noisy]{shapepar}. There are even more verbose
messages that can be activated by removing the % that hides them, but they
are only useful for debugging shapepar.sty itself.

6 Deficiencies Future Improvements

• The shape is followed by the text baselines, and this makes the shaped
paragraph marginally taller; mis-fitting of baselines makes the paragraph
squatter.

• Exact placement of CD-labels on label stock and of graphics in a cut-out
requires a box reference-point defined by the shape alone, not the text.
But portions of the text spill out of the shape and might go off the label.
How to handle best?

• The restriction to a single paragraph is a pain, especially for fixed-scale
shapes. The pre-boxing and un-boxing of the text forces a single para-
graph without displays. Omitting pre-boxing is easiest with fixed-scale,
but even then there may be multiple typesettings. Global assignments
will accumulate and my register re-use will cause conflicts.

• The restrictions in cut-out text are likewise a problem. Should upgrade
wrapfig.sty and merge some code.

• Discrete segments and fixed-scale suggest an application to magazine or
poster layout. For this to be useful, excess text should be able to overflow
onto the next page, and complex text (multiple paragraphs, lists, and
displays) must be accepted.

13


