Sample Problem Sheet

Nicola Talbot
August 22, 2011

1. Differentiate from first principles $f(x)=\sqrt{ } x$

Solution:

$$
\begin{aligned}
\frac{d f}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{ } x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{(\sqrt{x+\Delta x}-\sqrt{ } x)(\sqrt{x+\delta x}+\sqrt{ } x)}{\Delta x(\sqrt{x+\Delta x}+\sqrt{ } x)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{x+\Delta x-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{ } x)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\Delta x)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{ } x} \\
& =\frac{1}{2 \sqrt{ } x}
\end{aligned}
$$

2. Differentiate the following functions:
(a) $y=\arcsin (x)$

Solution:

$$
\sin (y)=x
$$

diff. w.r.t. x :

$$
\begin{aligned}
\cos y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\cos y} \\
& =\frac{1}{\sqrt{1-\sin ^{2} y}} \\
& =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

(b) $y=\arctan x=\tan ^{-1} x$

Solution:

$$
\tan y=x
$$

diff w.r.t. x :

$$
\begin{aligned}
\sec ^{2} y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\sec ^{2} y} \\
& =\frac{1}{1+\tan ^{2} y} \\
& =\frac{1}{1+x^{2}}
\end{aligned}
$$

(c) $f(x)=g(x)^{h(x)}$.

Solution:

$$
\begin{aligned}
f(x) & =e^{\ln g(x)^{h(x)}} \\
& =e^{h(x) \ln g(x)} \\
f^{\prime}(x) & =e^{h(x) \ln g(x)}\left(h^{\prime}(x) \ln g(x)+h(x) \frac{g^{\prime}(x)}{g(x)}\right) \\
& =g(x)^{h(x)}\left(h^{\prime}(x) \ln g(x)+\frac{h(x) g^{\prime}(x)}{g(x)}\right)
\end{aligned}
$$

(d) $y=(\tan x)^{-1}=\cot x$

Solution:

$$
\begin{aligned}
\frac{d y}{d x} & =-(\tan x)^{-2} \sec ^{2} x \\
& =-\frac{\cos ^{2} x}{\sin ^{2} x} \cdot \frac{1}{\cos ^{2} x} \\
& =\frac{-1}{\sin ^{2} x} \\
& =-\csc ^{2} x
\end{aligned}
$$

(e) $y=\cos \left(x^{2}\right) \sin x$.

Solution:

$$
\frac{d y}{d x}=-\sin \left(x^{2}\right) 2 x \sin x+\cos \left(x^{2}\right) \cos x
$$

3. Differentiate w.r.t. x :

$$
e^{x y}=2 x+y
$$

Solution: Differentiating both sides w.r.t. x :

$$
\begin{aligned}
e^{x y}\left(1 y+x \frac{d y}{d x}\right) & =2+\frac{d y}{d x} \\
x e^{x y} \frac{d y}{d x}-\frac{d y}{d x} & =2-y e^{x y} \\
\frac{d y}{d x}\left(x e^{x y}-1\right) & =2-y e^{x y} \\
\frac{d y}{d x} & =\frac{2-y e^{x y}}{x e^{x y}-1}
\end{aligned}
$$

4. Find the gradient of the unit circle $\left(x^{2}+y^{2}=1\right)$.

Solution: Differentiating with respect to x gives:

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-2 x}{2 y} \\
& =\frac{-x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

5. Under which of the following functions does $S=\left\{a_{1}, a_{2}\right\}$ become a probability space?

$$
\begin{array}{ll}
\text { (a) } P\left(a_{1}\right)=\frac{1}{3}, P\left(a_{2}\right)=\frac{1}{2} & \text { (b) } P\left(a_{1}\right)=\frac{3}{4}, P\left(a_{2}\right)=\frac{1}{4} \\
\text { (c) } P\left(a_{1}\right)=1, P\left(a_{2}\right)=0 & \text { (d) } P\left(a_{1}\right)=\frac{5}{4}, P\left(a_{2}\right)=-\frac{1}{4}
\end{array}
$$

6. A coin is weighted so that heads is four times as likely as tails. Find the probability that: (a) tails appears, (b) heads appears
Solution: Let $p=P(T)$, then $P(H)=4 p$. We require $P(H)+P(T)=1$, so $4 p+p=1$, hence $p=\frac{1}{5}$. Therefore: (a) $P(T)=\frac{1}{5}$, (b) $P(H)=\frac{4}{5}$
7. Which of the following is the derivative of $x \sin (x)$? (Circle the correct answer.)
Solution:
A $\sin (x)$
B $x \cos (x)$
(C) $\sin (x)+x \cos (x)$ (product rule).
8. Describe what is meant by object-oriented programming.
