powerdot example 3 - verbatim and random dots

Hendri Adriaens
Christopher Ellison

December 3, 2010
section The direct and file methods Nodes

1. This file demonstrates

- some uses of verbatim

2. and

- some uses of randomdots
section The direct and file methods Nodes

1. This file demonstrates

- some uses of verbatim

2. and

■ some uses of randomdots
section The direct and file methods Nodes

1. This file demonstrates

■ some uses of verbatim
2. and

- some uses of randomdots
section The direct and file methods Nodes

1. This file demonstrates

■ some uses of verbatim
2. and

■ some uses of randomdots

section

Name that quote

Gödel, Escher, Bach: an Eternal Golden Braid G\"odel, Escher, Bach: an Eternal Golden Braid

The two of you may find it amusing to listen to such totally meaningless cacophony, but I assure you it is not at all pleasant for a sensitive composer to be subjected to such excruciating, empty dissonances and meaningless rhythms. Achilles, I thought you had a good feeling for music. Could it be that your previous pieces had merit merely by coincidence?
here

Itemize
section The direct and file methods Nodeswe

\square

Example 3

Itemize
section The direct and file methods Nodes

\square

Example 3

section The direct and file methods Nodes

```
<?php
if ($day == "monday")
{
    $callInSick = true;
}
else
{
    $callInSick = false;
}
?>
```


Quadratic

With method=direct, there are no overlays.
But you can still use display verbatim text.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Attempting a pause...
Plot [3x, $\{x, 0,10\}$]

Quadratic

section The direct and file methods Nodes

With method=file,

Quadratic

section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

Quadratic

section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

$$
x
$$

Quadratic

section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

$$
x=
$$

Quadratic

section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Attempting
section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Attempting a
section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Attempting a pause...
section The direct and file methods Nodes

With method=file, you can display verbatim text and have overlays.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Attempting a pause...
Plot [3x, \{x, 0, 10\}]

Taylor

section The direct and file methods Nodes
$e^{\wedge} x$

Taylor

section The direct and file methods Nodes
$e^{\wedge} x=1+$

Taylor

section The direct and file methods Nodes
$e^{\wedge} x=1+x+$

Taylor

$$
e^{\wedge} x=1+x+x^{\wedge} 2 / 2!+\ldots
$$

Taylor

$$
\begin{aligned}
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+\mathrm{x}^{\wedge} 2 / 2!+\ldots \\
& \mathrm{e}^{\wedge} \mathrm{x}
\end{aligned}
$$

Taylor

$$
\begin{aligned}
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+\mathrm{x}^{\wedge} 2 / 2!+\ldots \\
& \mathrm{e}^{\wedge} \mathrm{x}=1+
\end{aligned}
$$

Taylor

$$
\begin{aligned}
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+\mathrm{x}^{\wedge} 2 / 2!+\ldots \\
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+
\end{aligned}
$$

Taylor

$$
\begin{aligned}
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+\mathrm{x}^{\wedge} 2 / 2!+\ldots \\
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+\frac{x^{2}}{2!}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+\mathrm{x}^{\wedge} 2 / 2!+\ldots \\
& \mathrm{e}^{\wedge} \mathrm{x}=1+\mathrm{x}+\frac{x^{2}}{2!}+\ldots
\end{aligned}
$$

Notice, this fraction is in mathmode.

$$
\begin{aligned}
\mathrm{e}^{\wedge} \mathrm{x} & =1+\mathrm{x}+\mathrm{x}^{\wedge} 2 / 2!+\ldots \\
\mathrm{e}^{\wedge} \mathrm{x} & =1+\mathrm{x}+\frac{x^{2}}{2!}+\ldots
\end{aligned}
$$

Notice, this fraction is in mathmode.

The above (as its own slide) was coded as follows:

```
\begin{slide}[method=file]{Taylor}
    \begin{lstlisting}[escapechar=|,mathescape]
        e^x |\pause| = 1 + |\pause|x + |\pause|x^2/2! + |\color{red}{\ldots}| |\pause|
        e^x |\pause| = 1 + |\pause|x + |\pause|$\rnode{A}{\frac{x^2}{2!}}$ + |\color{red}{\ldots}|
    \end{lstlisting}
    \pause\vspace{.1in}
    Notice, \rnode{B}{this} fraction is in \verb|mathmodel.
    \onslide*{11-}{\ncarc[linecolor=blue,arcangle=-5]{->}{B}{A}}\pause \vspace{.1in}
\end{slide}
```

```
e^x}=1+x+\mp@subsup{x}{}{\wedge}2/2!+
e^x}=1+x+,\frac{\mp@subsup{x}{}{2}}{2!}+
Notice, this fraction is in mathmode.
```


The above (as its own slide) was coded as follows:

```
\begin{slide}[method=file]{Taylor}
    \begin{lstlisting}[escapechar=|,mathescape]
        e^x |\pause| = 1 + |\pause|x + |\pause|x^2/2! + |\color{red}{\ldots}| |\pause|
        e^x |\pause| = 1 + |\pause|x + |\pause|$\rnode{A}{\frac{x^2}{2!}}$ + |\color{red}{\ldots}|
    \end{lstlisting}
    \pause\vspace{.1in}
    Notice, \rnode{B}{this} fraction is in \verb|mathmodel.
    \onslide*{11-}{\ncarc[linecolor=blue,arcangle=-5]{->}{B}{A}}\pause \vspace{.1in}
\end{slide}
```

