
The Polynom Package

Copyright 2000–2006
Carsten Heinz < cheinz@gmx.de >, Hendri Adriaens

2006/04/20 Version 0.17

Abstract

The polynom package implements macros for manipulating polynomials.
For example, it can typeset polynomial long divisions and synthetic divisions
(Horner’s scheme), which can be shown step by step. The main test case
and application is the polynomial ring in one variable with rational coeffi-
cients. Please note that this is work in progress. Multivariate polynomials
are currently not supported.

1 Preface

Because Carsten Heinz could not be reached anymore for a long time, this package
has been taken over according to the LPPL for maintenance by Hendri Adriaens
2006/04/20. This package was using and redefining internals of the keyval package
and hence it was incompatible with xkeyval. This problem has been solved and the
processing of the vars key has been simplified. All following text is the original
by Carsten Heinz. Hendri Adriaens, 2006/04/20

2 Introduction

Donald Arseneau has contributed a lot of packages to the TEX community. In
particular, he posted macros for long division on comp.text.tex, which were also
published in the TUGboat [1] and eventually as longdiv.tex on CTAN. The
polynom package allows to do the job with polynomials, see figure 1. There you
can also see an example of Horner’s scheme for synthetic division.

Figures 2 and 3 show applications of polynomial division. On the one hand the
Euclidean algorithm to determine a greatest common divisor of two polynomials,
and on the other the factorization of a polynomial with at most two nonrational
zeros. This should suffice for many teaching aids.

1

X2 + 2X + 2
X − 1

)
X3 + X2 − 1
−X3 + X2

2X2

− 2X2 + 2X

2X − 1
− 2X + 2

1

1 1 0 − 1

1 1 2 2

1 2 2 1

\polylongdiv{X^3+X^2-1}{X-1} \polyhornerscheme[x=1]{x^3+x^2-1}

Figure 1: Polynomial long division and synthetic division. The commands both
are able to generate partial output, see polydemo.pdf in fullscreen mode.

X4 − 2X3 + 2X2 − 2X + 1 =
(
X3 + X2 −X − 1

)
·
(
X − 3

)
+

(
6X2 − 4X − 2

)
X3 + X2 −X − 1 =

(
6X2 − 4X − 2

)
·
(

1
6X + 5

18

)
+

(
4
9X − 4

9

)
6X2 − 4X − 2 =

(
4
9X − 4

9

)
·

(
27
2 X + 9

2

)
+ 0

\polylonggcd {(X-1)(X-1)(X^2+1)} {(X-1)(X+1)(X+1)}

Figure 2: Euclidean algorithm with polynomials; the last nonzero remainder is a
greatest common divisor. In the case here, it is uniquely determined up to a scalar
factor, so X − 1 and 4

9X − 4
9 are both greatest common divisors

\polyfactorize {(X-1)(X-1)(X^2+1)}
(
X2 + 1

) (
X − 1

)2

\polyfactorize {2X^3+X^2-7X+3}

2
(
X − 1

2

) (
X + 1

2 +
√

13
2

) (
X + 1

2 −
√

13
2

)
\polyfactorize {120X^5-274X^4+225X^3-85X^2+15X-1}

120
(
X − 1

) (
X − 1

2

) (
X − 1

3

) (
X − 1

4

) (
X − 1

5

)
Figure 3: Factorizations of some polynomials

2

3 Hints

As the examples show, the commands get their data through mandatory and
optional arguments. Polynomials are entered as you would type them in math
mode:1 you may use +, -, *, \cdot, /, \frac, (,), natural numbers, symbols like
e, \pi, \chi, \lambda, and variables; the power operator ^ with integer exponents
can be used on symbols, variables, and parenthesized expressions. Never use
variables in a nominator, denominator or divisor.

The support of symbols is very limited and there is neither support of functions
like sin(x) or exp(x), nor of roots or exponents other than integers, for example√

π or ex. For teaching purposes this shouldn’t be a major drawback. Particularly
because there is a simple workaround in some cases: the package doesn’t look at
symbols closely, so define a function like ex or ‘composed symbol’ like

√
π as a

symbol. Take a look at figure 4 for an example.

(
exx3 − exx2 + exx− ex

)
/

(
x− 1

)
= exx2 + ex

− exx3 + exx2

exx− ex

− exx + ex

0

\newcommand\epowerx{e^x}

\[\polylongdiv{\epowerx x^3-\epowerx x^2+\epowerx x-\epowerx}{x-1}\]

Figure 4: Avoiding problems with ex. Be particularly careful in such cases. You
have to take care of the correct result since the package does the computation.
And by the way, it’s always good to keep an eye on plausibility of the results

Optional arguments are used to specify more general options (and also for the
evaluation point for Horner’s scheme). The options are entered in key=value fash-
ion using the keyval package [3]. The available options are listed in the respective
sections below.

4 Commands

4.1 \polyset{〈key=value list〉}
Keys and values in optional arguments affect only that particular operation.
\polyset changes the settings for the rest of the current environment or group.
This could be a single figure or the whole document. Almost every key described

1The scanner is based on the scanner of the calc package [2]. Read its documentation and
the implementation part here if you want to know more.

3

in this manual is allowed — just try it and you’ll see. Table 5 lists all keys, which
are not connected to a particular command. An example is

\polyset{vars=XYZ\xi, % make X, Y, Z, and \xi into variables

delims={[}{]}}% nongrowing brackets

Note that is essential to use vars-declared variables only. The package can’t guess
your intention and \polylongdiv{\zeta^3+\zeta^2-1}{\zeta-1} would divide
a constant by a constant without the information ζ being a variable.

vars=〈token string〉 make each token a variable

delims={〈left〉}{〈right〉} define delimiters used for printing
parenthesized expressions

Table 5: General keys. Default for vars is Xx. The key delims has in fact an
optional argument which takes invisible versions of the left and right delimiter.
The default is delims=[{\left.}{\right.}]{\left(}{\right)}

4.2 \polylongdiv[〈key=value list〉]〈polynomial a〉〈polynomial b〉
The command prints the polynomial long division of a/b. Applicable keys are
listed in table 6. Of course, vars and delims can be used, too.

stage=〈number〉 print long division up to stage 〈number〉
(starting with 1)

style=A|B|C define output scheme for long division,
refer polydemo.pdf

div=〈token〉 define division sign for style=C, default
is ÷

Table 6: Keys and values for polynomial long division. style=A requires stage=3×
(#quotient’s summands)+1 to be carried out fully. The other styles B and C need
one more stage if the remainder is nonzero

4.3 \polyhornerscheme[〈key=value list〉]〈polynomial〉
The command prints Horner’s scheme for the given polynomial with respect to
the specified evaluation point. Note that the latter one is entered as a key=value
pair in the form 〈variable〉=〈value〉. Table 7 lists other keys and their respective
values.

4

〈variable〉=〈value〉 The definition of the evaluation point is
mandatory !

stage=〈number〉 print Horner’s scheme up to stage
〈number〉 (starting with 1)

tutor=true|false turn on and off tutorial comments
tutorlimit=〈number〉 illustrate the recent 〈number〉 steps
tutorstyle=〈font selection〉 define appearance of tutorial comments

resultstyle=〈font selection〉 define appearance of the result
resultleftrule=true|false
resultrightrule=true|false
resultbottomrule=true|false

control rules left to, right to, and at the
bottom of the result

showbase=false|
top|middle|bottom

define whether and in which row the base
(the value) is printed

showvar=true|false print or suppress the variable name (ad-
ditionally to the base)

showbasesep=true|false print or suppress the vertical rule

equalcolwidth=true|false use the same width for all columns or use
their individual widths

arraycolsep=〈dimension〉 space between columns
arrayrowsep=〈dimension〉 space between rows

showmiddlerow=true|false print or suppress the middle row

Table 7: Keys and values for Horner’s scheme. Don’t use showmiddlerow=false
with tutor=true.

5

4.4 \polylonggcd[〈key=value list〉]〈polynomial a〉〈polynomial b〉
The command prints equations of the Euclidean algorithm used to determine the
greatest common divisor of the polynomials a and b, refer figure 2.

4.5 \polyfactorize[〈key=value list〉]〈polynomial〉
The command prints a factorization of the polynomial as long as all except two
roots are rational, see figure 3.

4.6 Low-level commands

To tell the whole truth, the commands above don’t need the polynomials typed in
verbatim. The internal representation of polynomials can be stored as replacement
texts of control sequences and such control sequences can take the role of verbatim
polynomials. This is also the case for 〈a〉 and 〈b〉 in table 8, but each 〈cs...〉 must
be a control sequence, in which the result is saved.

The command in table 8 can be used for low level calculations, and in particular
to store polynomials for later use with the high-level commands. For example one
could write the following.

\polyadd\polya {(X^2+X+1)(X-1)-\frac\pi2}{0}% trick

\polymul\polyb {X-1}{1} % another trick

Let’s see how to divide \polyprint\polya{} by \polyprint\polyb.

\[\polylongdiv\polya\polyb\]

〈csa+b〉 ← a + b \polyadd〈csa+b〉〈a〉〈b〉

〈csa−b〉 ← a− b \polysub〈csa−b〉〈a〉〈b〉

〈csab〉 ← a · b \polymul〈csab〉〈a〉〈b〉

〈csa/b〉 ← ba/bc \polydiv〈csa/b〉〈a〉〈b〉
\polyremainder ← a mod b

〈csgcd〉 ← gcd(a, b) \polygcd〈csgcd〉〈a〉〈b〉

print polynomial a \polyprint〈a〉

Table 8: Low-level user commands

5 Acknowledgments

I wish to thank Ludger Humbert, Karl Heinz Marbaise, and Elke Niedermair for
their tests and error reports.

6

References

[1] Barbara Beeton and Donald Arseneau.

Long division.

In Jeremy Gibbons’ Hey — it works!, TUGboat 18(2), June 1997, p. 75.

[2] Kresten Krab Thorup, Frank Jensen, and Chris Rowley.

The calc package, Infix notation arithmetic in LATEX, 1998/07/07.

Available from CTAN: macros/latex/required/tools.

[3] David Carlisle.

The keyval package, 1999/03/16.

Available from CTAN: macros/latex/required/graphics.

7

	Preface
	Introduction
	Hints
	Commands
	\polyset
	\polylongdiv
	\polyhornerscheme
	\polylonggcd
	\polyfactorize
	Low-level commands

	Acknowledgments

