The physymb package*

David Zaslavsky
diazona@ellipsix.net

May 9, 2011

Abstract

The physymb package is nothing but a bunch of simple macro definitions that may be useful for typesetting physics papers.

Most of the functionality of physymb is provided by importing the siunitx and braket packages. If you're just looking to write numbers in scientific notation, quantities with units, and/or Dirac notation, I recommend using those packages

There are a lot of macros in this package, and it typically doesn't take as many lines to explain their meanings as it does to list them all. For that reason, when there are a bunch of similar macros that I explain together, I've usually only listed one or two in the left margin. In these cases, all the macros are given in the text.

 directly.
1 Options

physymb recognizes the following options, in no particular order.

- arrowvectors causes vectors (specifically, the \vec command) to be rendered with an arrow above the symbol.
- boldvectors causes vectors (again, from \vec) to be rendered by typesetting the symbol in bold. It's the alternative to arrowvectors.
- braket pulls in the braket package. (It's precisely equivalent to e\{braket\},it'sjusthereforconvenience.)undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined
- feynman pulls in the feynmp package. (It's precisely equivalent to e\{feynmp\},it'sjusthereforconvenience.)undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined
- particle enables all the particle physics macros.
- units pulls in the siunitx package and enables the additional unit macros.

[^0]
2 Macros

2.1 Trigonometry

The AMS packages only define inverse trigonometric functions using the "arc" syntax, i.e. they actually prefix "arc" to the name (as in $\arcsin x$). Sometimes you'd rather write them with a superscript -1 to save space, so those versions are included here. We have the inverse functions \asin, \acos, \atan, \asec, \acsc, and \acot.

For some reason, the hyperbolic sine and cosine \sech and \cosh aren't defined in the AMS packages. This fixes that.

Finally, the inverse hyperbolic trig functions written with the superscript -1 are defined just as with the regular inverse trig functions. We have \asinh, \acosh, \atanh, \asech, \acsch, and \acoth.

2.2 Sets

There are certain sets of numbers that are semi-frequently referenced in physics. Typically they're used to say something like $n \in \mathbb{Z}$. Of course, a macro like \intset is not necessarily much quicker than writing \mathbb\{Z\}, but these macros are intended to have names that relate to their meanings so that you don't have to remember which letter goes to which set.
\backslash whlset (\mathbb{Q}) denotes the set of whole numbers, which is typically defined to include all integers greater than zero, although there are different contradictory definitions floating around.
\backslash natset (\mathbb{N}) denotes the set of natural numbers, which is typically defined to include all integers greater than or equal to zero. Some people define "natural numbers" to exclude zero.
\intset (\mathbb{Z}) denotes the set of all integers.
\backslash realset (\mathbb{R}) denotes the set of all real numbers.
\imagset (\mathbb{I}) denotes the set of all imaginary numbers, which is all complex numbers with real part equal to zero. This one is infrequently used.
\cpxset (\mathbb{C}) denotes the set of all complex numbers.

2.3 Calculus

Probably the most useful macros in the package are the derivative operators. Since it's so common to write something of the form $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\partial y}{\partial x}$, we have two-character macros for each:

- $\backslash u d\{\langle$ top $\rangle\}\{\langle$ bottom $\rangle\}$ typesets the normal total derivative
- $\backslash \operatorname{pd}\{\langle t o p\rangle\}\{\langle$ bottom $\rangle\}$ typesets a partial derivative, which is the same thing but with a partial derivative symbol instead of the d.

There are variants of these that produce higher-order derivatives; you can add an order by adding another d , up to a total of three. If you need something higher
than the third derivative, you're on your own, but it's easy to construct it using $\backslash f r a c$ and $\backslash u d c$ or $\backslash p d c$,

$$
\text { \frac\{\udc^4 y\}\{\udc } x \wedge 4\}
$$

\udc
The macro \udc gives you the character that represents a differential. It's typically set in roman type to distinguish it from a variable. $\backslash \mathrm{pdc}$ is also defined as the partial derivative character for consistency. There are variants of each with exponents (up to 3) built in; again, you get them by adding an extra d or two to the name of the command, \uddc and \udddc and so on.

If you're using these in an integral, it's common to want a small space before the differential, so there are variants of the preceding commands defined that include this small space for you; they replace the c with an s. They follow the same pattern of adding additional d's to get exponents. For example:
\iint $e^{\wedge}\{i \backslash v e c\{k\} \backslash \operatorname{cdot} \backslash v e c\{x\}\} \backslash u d d s \backslash v e c\{x\}$

$$
\iint e^{i \mathbf{k} \cdot \mathbf{x}} \mathrm{~d}^{2} \mathbf{x}
$$

2.4 Vector Calculus

\div
\grad
\curl
$\backslash l a p l$ \lapl

2.5 Complex Analysis

\conj There is a macro to indicate the conjugate of a number, $\backslash \operatorname{conj}\{\langle n u m b e r\rangle\}$. It puts a superscript star after the number, as in z^{*}.

The traditional keywords indicating the real and imaginary parts of a com-
\realop
\imagop
\real
\imag
\abs

2.6 Linear Algebra

There are several assorted macros for linear algebra keywords and concepts.
\vec
\vecvar plex number are given macros \realop and \imagop. They typeset Re and Im respectively.

Why the op? Well, there are alternate versions that will also put curly braces around the following argument, \real and \imag. This is the way Re and Im are often used. (I'm open to changing the definitions of these based on feedback.)

$$
\backslash \text { real }\{z\}, \backslash i m a g\{z\} \quad \operatorname{Re}\{z\}, \operatorname{Im}\{z\}
$$

The macro $\backslash \operatorname{abs}\{\langle$ value $\rangle\}$ surrounds its argument with vertical bars.

Vectors can be written using the macro \vec\{〈label $\rangle\}$, which typesets the \langle label \rangle either in bold or with an arrow over it, according to which option was passed to the package (arrowvectors or boldvectors). The default is to use an arrow, to resemble the builtin definition of \vec (which, by the way, is overridden
by this package）．In many cases I prefer bold．\vecvar\｛$\{\langle a b e l\rangle\}$ is another macro that does the exact same thing，for consistency with the other kinds of variables．
\tnsvar
\identitym
\determinant
\trace
\backslash diag
\norm
\unitx
\unity
\unitz
\unitvec
\herm
\transpose
\commut
\acommut

The macro \tnsvar\｛〈label $\rangle\}$ is for typesetting tensors．This just makes the〈label〉 bold，it doesn＇t do anything with indices．If you want a way to typeset tensor indices，look at the tensor package．
\backslash matvar $\{\langle l a b e l\rangle\}$ is intended to designate matrices．It makes the label bold．
The macro \identitym represents the identity matrix．It typesets a 1 in the same style as \matvar（so，bold）．

The macro \determinant $\{\langle$ matrix $\rangle\}$ uses vertical bars to denote the determi－ nant of the \langle matrix \rangle ．It＇s an alternative to the keyword operator \backslash det，which just typesets as det．

The macro \trace just typesets Tr．It＇s akin to \det．
This just typesets diag，which is used to represent a matrix with the given entries on the diagonal．For example，one might write $\backslash \operatorname{diag}(1,2,3,4)$ ．

The norm of a vector can be denoted by double vertical bars．This is imple－ mented by \backslash norm $\{\langle$ value $\rangle\}$ ．

Since it＇s so common to refer to unit vectors using hat notation，there are a bunch of macros for them using various letters．The package defines \unitd， \unite，\uniti，\unitj，\unitk，\unitl（which typesets as $\hat{\ell}$ ，not the normal $l)$ ，\unitn，\unitp，\unitq，\unitr，\units，\unitt，\unitu，\unitv，\unitw， \unitx，\unity，\unitz，and for non－roman characters，\unitphi，\unitrho， \unittheta，and \unitomega．If you want to use a different letter as a unit vector，it can be done with \unitvec\｛〈symbol $\rangle\}$ ．
\backslash herm $\{\langle$ operator $\rangle\}$ designates the hermitian conjugate of an operator with a superscript dagger．
\backslash transpose $\{\langle$ matrix $\rangle\}$ sets a superscript T after the matrix to denote the transpose．

There are simple macros for the commutator，\commut $\{\langle$ operator $\rangle\}\{\langle$ operator $\rangle\}$ ， and the anticommutator，\acommut $\{\langle$ operator $\rangle\}\{\langle$ operator $\rangle\}$ ．They just put the appropriate kind of braces around the arguments（and the comma between them， of course）．

2．7 Differential Geometry

\exd

\hodge though，because $\mathbf{d}^{2}=0$ ．

The macro \hodge just puts a star（not superscript）to represent the Hodge dual．Use it as a prefix to the variable，$\star \mathbf{d} x$ ．

2．8 Classical Mechanics

\pbrac The Poisson brackets of a pair of variables can be typeset using the macro \backslash pbrac $\{\langle$ function $\rangle\}\{\langle$ function $\rangle\}$ ．This just surrounds the two arguments with curly braces，producing $\{f, g\}$ ．
\pbracvars
If you want to specify which variables the derivatives in the Poisson brackets
are being taken with respect to, use the variant
$\backslash \mathrm{pbracvars}\{\langle$ function $\rangle\}\{\langle$ function $\rangle\}\{\langle$ variable $\rangle\}\{\langle$ variable $\rangle\}$
It comes out looking like $\{f, g\}_{q, p}$.

2.9 Quantum Mechanics

If the braket option is passed, physymb pulls in the braket package for writing Dirac notation. See the documentation for that package for details.

2.10 Units

If the units option is provided to physymb, it automatically includes the siunitx package and defines some additional units that are often useful in practice. See the documentation of siunitx for commands provided by that package.

Additional units The siunitx package only includes SI units (as the name would suggest), but there are certain non-SI units that turn out to be occasionally useful when dealing with American non-scientists. physymb defines a selection of them as macros.
\torr
$\backslash \mathrm{mmHg}$
\amu

$\backslash y r$

\erg
\gauss \molar
\backslash poise
\foot
\backslash mileperhour
\pound
\backslash poundforce

Torr, \torr, and millimeters of mercury, $\backslash \mathrm{mmHg}$, are common atmospheric pressure units.
\amu represents the atomic mass unit, defined as $\frac{1}{12}$ of the mass of a carbon 12 atom.
\yr represents a year with the symbol yr. There are various definitions of different kinds of years floating around, but generally the symbol is the same.
\erg represents an erg, the CGS unit of energy, which still finds occasional use. Its value is $1 \times 10^{-7} \mathrm{~J}$.

Igauss is the Gauss, a unit of magnetic field equal to $1 \times 10^{-4} \mathrm{~T}$.
\molar represents a molar, a unit of concentration equal to one mole per liter. Strictly speaking, this is a chemistry unit, but it occasionally comes up in physics so it shouldn't hurt to have the macro around.

The poise is the CGS unit of viscosity, equal to 0.1 Pas.
The foot is the Imperial unit of length, equal to 30.48 cm .
This is typically (or perhaps almost exclusively) used to measure transportation speeds: cars, trains, airplanes, etc. It's equal to about $0.447 \mathrm{~m} \mathrm{~s}^{-1}$.

The pound is the Imperial unit of either force or mass, depending on who you ask. Technically I believe it is a force, but in many situations I've often found it clearer to treat it as a unit of mass and use lbf (pound of force) as the unit of force. physymb defines macros for both.

In this sense, a pound is equal to about 453.59 g , and the pound of force is the weight of that mass under standard Earth surface gravity, which works out to about 4.448 N .

2.11 Particle Physics

As a particle physicist, I do a lot of work that involves notation for elementary particles, so it's become useful to have a set of macros that produce standard written representations for them ${ }^{1}$ The names of the commands are pretty cryptic, but I've found that once you get used to using them, the names aren't hard to remember and the effort saved by having short macro names at least feels worthwhile.

In general, all the macro names follow the same pattern. Each one ends with a type code that identifies the type of particle: q for quark, lp for a "regular" lepton, nu for a neutrino, br for a baryon, m for a meson, and bsn for a boson. At the beginning is a particle code consisting of one or two letters that identify the specific particle within that type.

Most of the basic macros consist of just those two parts. Antifermion macros are constructed by prepending an a to the type code. For vector bosons that occur in charge triplets, you prepend one of p (plus), z (zero), or m (minus) to indicate which one of the triplet you want. The same goes for baryons which occur in "triplets" with the same name (three particles denoted by the same letter, even though they may not actually be a triplet). Singlet baryons have the z as well for consistency.

The proton and neutron are named differently because their names are so common.

Quarks Each of the quark macros is named with three letters. The first two letters are the particle code representing the name of the quark, and the third is the type code q. The macros are \upq, \dnq, \srq, \chq, \btq, and \tpq, representing the up, down, strange, charm, bottom, and top quarks, respectively.
\upaq
\backslash dnaq
\elp

\enu

= \enu, \unu, and \tnu.

Antileptons are named with an a between the particle code and the type code. So we get \ealp, \ualp, and \talp for the "regular" antileptons and \eanu, \uanu, and \tanu for the antineutrinos.

Baryons Many of the most commonly referenced baryons in the standard model
The corresponding macros for the antiquarks are obtained by prepending a to the type code q. We have \upaq, \dnaq, \sraq, \chaq, \btaq, and \tpaq. have macros defined. Each of these ends with the type code br. Most of them are built by putting a particle code and a charge letter together: we have \lmzbr for the lambda baryon; \sgpbr, \sgzbr, \sgmbr for the sigmas, \xizbr and \ximbr

[^1]for the xi particles, and \ommbr for the omega of charge -1 . The delta macros are named on the same principle but since there are four of them, we use two charge letters to indicate the +2 charge: $\backslash d l p p b r, \backslash d l p b r, \backslash d l z b r$, and $\backslash d l m b r$.

In addition, there are macros for the starred (excited) versions of the sigmas and xis (only), obtained by adding an s before the charge letter: \sgspbr etc. and \xiszbr etc.

The proton and neutron don't quite fall into the pattern because their names aren't used for multiple particles. The proton is $\backslash \mathrm{prbr}$ and the neutron is \backslash nebr.

The antiparticles to all these are obtained in almost the usual way, by adding a just before the type code br. The one difference is that the charge letters are updated to reflect the actual charge of the antiparticle, so for example the antipartcle of the Δ^{++}($\backslash \mathrm{dlppbr}$), the $\bar{\Delta}^{--}$, is written \dlmmabr, with two m's because of its double-minus charge.
\pipm
\backslash pizm
\backslash pimm
\sgspbr
\sgszbr
\sgsmbr $\backslash p r b r$ \nebr \dlmmabr
（and yes，this is not really complex analysis）
\round Occasionally it＇s useful to have some way to designate rounding a number．The \round macro can be used for that．It comes out as $\operatorname{round}(x)$（I do recommend the parentheses）．
\evalat The macro \evalat\｛〈expression $\rangle\}\{\langle$ lower limit $\rangle\}\{\langle$ upper limit $\rangle\}$ is mainly useful for when you want to denote the numerical value of a derivative at a spe－ cific point，or when you want to represent the evaluation of an integral at the endpoints of the range of integration．It produces a vertical bar at the right of the \langle expression \rangle ，with the 〈lower limit〉 and 〈upper limit〉 typeset at the lower and upper endpoints of the bar，respectively．

$$
\backslash e v a l a t\left\{x^{\wedge} 3+3 \mathrm{x}-5\right\}\{2\}\{7\} \quad x^{3}+3 x-\left.5\right|_{2} ^{7}
$$

3 Feedback

This package is always a work in progress，both in terms of adding new macros to the collection and fixing any errors or inconveniences in the ones that are already here．Any feedback you may have will be welcome at my email address，given at the top of the document．

4 Implementation

4．1 Initialization

```
1\RequirePackage{ifthen}
```

This flag is set if the particle option is enabled．It enables definitions of particle symbol macros．
2 \newboolean\｛pparticle\}
This flag is set if the feynman option is enabled．It pulls in the feynmf package．
3 \newboolean\｛pfeynman\}
This flag is set if the braket option is enabled．It pulls in the braket package．
4 \newboolean\｛pbraket\}
This flag is set if the units option is enabled．It pulls in the siunitx package and provides additional unit definitions．
5 \newboolean\｛punits\}
This flag is set if the boldvectors option is enabled．It causes vectors to be rendered using a bold font instead of an overset arrow．
6 \newboolean\｛pboldvectors\}

4．2 Option Declarations

These are the option declarations，pretty self－explanatory．

```
7\DeclareOption{braket}{\setboolean{pbraket}{true}}
8\DeclareOption{particle}{\setboolean{pparticle}{true}}
9 \DeclareOption{units}{\setboolean{punits}{true}}
10 \DeclareOption{feynman}{\setboolean{pfeynman}{true}}
```

```
11\DeclareOption{arrowvectors}{\setboolean{pboldvectors}{false}}
12 \DeclareOption{boldvectors}{\setboolean{pboldvectors}{true}}
13\ProcessOptions\relax
```


4.3 Macro Definitions

Here we bring in the AMS packages for mathematical notation.

```
14 \RequirePackage{amsbsy}
15 \RequirePackage{amsmath}
16 \RequirePackage{amsfonts}
17 \RequirePackage{amssymb}
18 \allowdisplaybreaks[2]
19 \RequirePackage{accents}
calligra is the package that includes the script r, %.
\RequirePackage{calligra}
\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}
2\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}
3\newcommand{\scriptr}{\mathcalligra{r}}
```

Here we load the braket package if the corresponding option was passed.

```
\ifthenelse{\boolean{pbraket}}
{
\RequirePackage{braket}
27}
28 {}
```

Here we load siunitx if the units option was passed.

```
\ifthenelse{\boolean{punits}}
30 {
31 \RequirePackage{siunitx}
```

These are some useful non-SI units

```
\DeclareSIUnit{\torr}{torr}
\DeclareSIUnit{\mmhg}{mmHg}
\DeclareSIUnit{\amu}{amu}
\DeclareSIUnit{\yr}{yr}
\DeclareSIUnit{\erg}{erg}
\DeclareSIUnit{\gauss}{Ga}
\DeclareSIUnit{\molar}{\textsc{M}} % this follows the style set up in the siunitx manual
\DeclareSIUnit{\poise}{P}
\DeclareSIUnit{\foot}{ft}
\DeclareSIUnit{\mileperhour}{mph}
\DeclareSIUnit{\pound}{lb}
\DeclareSIUnit{\poundforce}{lbf}
4}
{}
\orderof uses the calligraphic capital O,\mathcal{O}
46\newcommand{\orderof}[1]{\ensuremath{\mathcal{0}\left(#1\right)}}
```

Now we come to assorted functions and keywords. First some inverse trig functions:

```
47\DeclareMathOperator{\asin}{\\sin^{-1}}
48 \DeclareMathOperator{\acos}{\cos^{-1}}
49 \DeclareMathOperator{\atan}{\tan^{-1}}
50 \DeclareMathOperator{\asec}{\sec^{-1}}
51\DeclareMathOperator{\acsc}{\csc^{-1}}
52\DeclareMathOperator{\acot}{\cot^{-1}}
and hyperbolic trig functions:
```

```
53\DeclareMathOperator{\sech}{sech}
54 \DeclareMathOperator{\csch}{csch}
55\DeclareMathOperator{\asinh}{\sinh^{-1}}
56\DeclareMathOperator{\acosh}{\cosh^{-1}}
57\DeclareMathOperator{\atanh}{\tanh^{-1}}
58\DeclareMathOperator{\asech}{\sech^{-1}}
59\DeclareMathOperator{\acsch}{\csch^{-1}}
60 \DeclareMathOperator{\acoth}{\coth^{-1}}
```

Next are some linear algebra keywords.
61 \DeclareMathOperator\{\diag\}\{diag\}
$62 \backslash$ DeclareMathOperator $\{\backslash$ realop\} \{Re\}
63 \DeclareMathOperator\{\imagop\}\{Im\}
64 \newcommand $\{\backslash$ real $\}$ [1] $\{\backslash$ realop $\backslash\{\# 1 \backslash\}\}$
65 \newcommand\{\imag\} [1]\{\imagop
{\#1
}\}
The sign and absolute value keywords:
66 \DeclareMathOperator\{\sgn\}\{sgn\}
67 \newcommand\{\abs\}[1]\{\left\lvert\#1\right } \backslash rvert \}
Norm of a vector:
68 \newcommand\{\norm\}[1]\{\left\lVert\#1\right\rVert\}
Evaluation at endpoints uses \left. to get no visible mark on the left side.
69 \newcommand\{\evalat\}[3]\{\left.\#1\rightl_\{\#2\}^\{\#3\}\}
Poisson brackets are just braces

```
70 \newcommand{\pbrac}[2]{\left\{#1,#2\right\}}
71 \newcommand{\pbracvars}[4]{\left\{#1,#2\right\}_{#3,#4}}
```

This handles the redefinition of \vec. If the boldvectors option was passed, a vector is denoted by bolding the argument. If arrowvectors was passed, the vector is denoted by putting an arrow over the argument. Some people use an undertilde, which will probably be added in the future.

```
72 \ifthenelse{\boolean{pboldvectors}}%
73 {\renewcommand{\vec}[1]{\mathbf{#1}}}%
74 {\renewcommand{\vec}[1]{\accentset{\rightharpoonup}{#1}}}
\vecvar is just a synonym for \vec
75 \newcommand{\vecvar}[1]{\vec{#1}}
\tnsvar always uses bold. Some people use undertildes, which will be added.
76 \newcommand{\tnsvar}[1]{\mathbf {#1}}
```

\matvar always uses bold.
$77 \backslash$ newcommand $\{\backslash$ matvar $\}$ [1] \{ \backslash mathbf $\{\# 1\}\}$
\identitym is a bold 1
78 \newcommand\{\identitym\}\{\mathbf\{1\}\}
\determinant uses vertical bars.
79 \newcommand\{\determinant\}[1]\{\left\lvert\#1\right\rvert\}
\trace uses capital Tr.
$80 \backslash$ DeclareMathOperator $\{\backslash$ trace $\}\{T r\}$
Now we get to some unit vectors, all just the relevant letter with a hat.
81 \newcommand\{\unitd\}\{\hat\{d\}\}
$82 \backslash$ newcommand $\{\backslash$ unite $\}\{$ hat $\{e\}\}$
$83 \backslash$ newcommand\{\uniti\}\{\hat\{\imath\}\}
84 \newcommand\{\unitj\}\{\hat $\{\backslash j$ jmath $\}\}$
85 \newcommand\{\unitk\}\{\hat $\{\mathrm{k}\}\}$
$86 \backslash$ newcommand $\{\backslash u n i t l\}\{\backslash$ hat $\{\backslash e l l\}\}$
$87 \backslash$ newcommand $\{\backslash$ unitn $\}\{$ hat $\{n\}\}$
$88 \backslash$ newcommand $\{\backslash$ unitp $\}\{$ hat $\{p\}\}$
89 \newcommand\{\unitq\}\{\hat\{q\}\}
$90 \backslash$ newcommand $\{\backslash$ unitr $\}\{$ hat $\{r\}\}$
91 \newcommand\{\units\}\{\hat\{s\}\}
$92 \backslash$ newcommand $\{\backslash u n i t t\}\{\backslash$ hat $\{\mathrm{t}\}\}$
93 \newcommand\{\unitu\}\{\hat\{u\}\}
94 \newcommand\{\unitv\}\{\hat\{v\}\}
95 \newcommand\{\unitw\}\{\hat\{w\}\}
$96 \backslash$ newcommand $\{\backslash$ unitx $\}\{\backslash$ hat $\{x\}\}$
97 \newcommand\{\unity\}\{\hat\{y\}\}
98 \newcommand\{\unitz\}\{\hat\{z\}\}
99 \newcommand\{\unitphi\}\{\hat\{\phi\}\}
$100 \backslash$ newcommand $\{\backslash$ unitrho $\} \backslash$ hat $\{\backslash$ rho $\}\}$
101 \newcommand\{\unittheta\}\{\hat\{\theta\}\}
102 \newcommand\{\unitomega\}\{\hat\{\omega\}\}
This turns any letter into a unit vector.
103 \newcommand\{ \unitvec\} [1] \{\hat \{\#1\}\}
\udc is just an upright (roman) d, and similarly for higher-order differentials.
104 \newcommand\{ \backslash udc\} $\{\backslash$ mathrm\{d\}\}
105 \newcommand\{\uddc\}\{\mathrm\{d\}^2\}
106 \newcommand\{\udddc\}\{\mathrm\{d\}^3\}
$\backslash p d c$ is just \partial, defined for similarity with \udc.
$107 \backslash$ newcommand $\{\backslash p d c\}\{\backslash$ partial $\}$
108 \newcommand\{\pddc\}\{\partial^2\}
109 \newcommand\{\pdddc\}\{\partial^3\}
\uds is just like \udc but it includes a small space in front. If I can figure out how to do it I'll make the command autodetect the preceding character(s) and figure out whether to add the space or not.

```
110 \newcommand{\uds}{\,\mathrm{d}}
111 \newcommand{\udds}{\,\mathrm{d}^2}
112 \newcommand{\uddds}{\,\mathrm{d}^3}
```

$\backslash \mathrm{pds}$ is also defined for similarity as just \backslash partial with a space in front, although
I'm not sure this one is really useful.

```
113 \newcommand{\pds}{\,\partial}
114 \newcommand{\pdds}{\,\partial^2}
115 \newcommand{\pddds}{\,\partial^3}
```

\ud typesets a derivative using \udc. Similarly for second and third derivatives.
$116 \backslash$ newcommand $\{\backslash$ ud\} [2] \{\frac $\{\backslash$ mathrm\{d\}\#1\}\{\mathrm\{d\}\#2\}\}
117 \newcommand\{\udd\}[2]\{\frac\{\mathrm\{d\}^2\#1\}\{\mathrm\{d\} \#2^2\}\}
118 \newcommand\{\uddd\}[2]\{\frac\{\mathrm\{d\}^3\#1\}\{\mathrm\{d\} \#2^3\}\}
$\backslash p d$ does the same for partial derivatives with $\backslash p d c$.
119 \newcommand\{ \backslash pd $\}$ [2] \{ \backslash frac $\{\backslash$ partial \#1\}\{\partial \#2\}\}
120 \newcommand\{\pdd\}[2]\{\frac\{\partial^2\#1\}\{\partial \#2^2\}\}
121 \newcommand\{\pddd\}[2]\{\frac\{\partial^3\#1\}\{\partial \#2^3\}\}
\grad typesets the gradient symbol, a nabla with an arrow over it (actually a harpoon). This is done the same way regardless of the arrowvectors or boldvectors setting.
122 \newcommand\{\grad\}\{\accentset $\{\backslash$ rightharpoonup\} $\{\backslash$ nabla $\}\}$
\div is the divergence, defined using \grad. Ordinarily \div stands for the division symbol but nobody really uses that, so I figured it's worth replacing.
$123 \backslash$ renewcommand $\{\backslash \operatorname{div}\}\{\backslash \operatorname{grad} \backslash c \operatorname{cdot}\}$
\curl is done in the obvious way using \grad
124 \newcommand\{\curl\}\{\grad \backslash times $\}$
\lapl is written without a harpoon since it's a scalar operator
125 \newcommand\{\lapl\}\{\nabla^2\}
\conj just puts a superscript star
126 \newcommand\{\conj\}[1]\{\{\#1 `\{*\}\}\} \herm is the same thing but for operators or matrices, so with a dagger 127 \newcommand\{\herm\}[1]\{\{\#1 ^\{\dagger\}\}\} \transpose does the same with a \(T\) 128 \newcommand\{\transpose\}[1]\{\{\#1 `\{T\}\}\}
These set notations are mostly done with \mathbb
129 \newcommand $\{\backslash$ natset $\}\{\backslash$ mathbb $\{\mathrm{N}\}\}$
130 \newcommand\{\intset\}\{\mathbb\{Z\}\}
131 \newcommand\{\cpxset\}\{\mathbb\{C\}\}
132 \newcommand\{\whlset\}\{\mathbb\{Q\}\}
$133 \backslash$ newcommand $\{\backslash$ realset $\}\{\backslash$ mathbb $\{R\}\}$
134 \newcommand\{\imagset\}\{\mathbb\{I\}\}
Commutators and anticommutators are done in the obvious way

```
135 \newcommand{\commut}[2]{\left[ #1, #2 \right]}
136 \newcommand{\acommut}[2]{\left\{ #1, #2 \right\}}
```

The \round operator just typesets the word "round"

```
137 \DeclareMathOperator{\round}{round}
```

The exterior derivative is typeset in bold, in contrast to the differential d which is just a plain roman font

```
138\DeclareMathOperator{\exd}{\mathbf{d}}
```

The Hodge dual uses a star, but not superscript like \conj.

```
139 \newcommand{\hodge}{\star}
```

These are short macros to typeset the symbols for the elementary (and common non-elementary) particles. Each one is set in math roman font, as opposed to text roman font if it makes a difference. They're followed by an empty token \{\} for reasons which I forget.

These are only defined if the particle option was passed.

```
140 \ifthenelse{\boolean{pparticle}}
141 {
142\newcommand{\upq}{\ensuremath{\mathrm{u}}{}}
143\newcommand{\dnq}{\ensuremath{\mathrm{d}}{}}
144 \newcommand{\srq}{\ensuremath{\mathrm{s}}{}}
145 \newcommand{\chq}{\ensuremath{\mathrm{c}}{}}
146 \newcommand{\btq}{\ensuremath{\mathrm{b}}{}}
147\newcommand{\tpq}{\ensuremath{\mathrm{t}}{}}
148 \newcommand{\upaq}{\ensuremath{\bar{\mathrm{u}}}{}}
149\newcommand{\dnaq}{\ensuremath{\bar{\mathrm{d}}}{}}
150\newcommand{\sraq}{\ensuremath{\bar{\mathrm{s}}}{}}
151 \newcommand{\chaq}{\ensuremath{\bar{\mathrm{c}}}{}}}
152\newcommand{\btaq}{\ensuremath{\bar{\mathrm{b}}}{}}
153 \newcommand{\tpaq}{\ensuremath{\bar{\mathrm{t}}}{}}
154 \newcommand{\elp}{\ensuremath{\mathrm{e}^-}{}}
155\newcommand{\enu}{\ensuremath{\nu_\mathrm{e}}{}}
156 \newcommand{\ulp}{\ensuremath{\mu^-}{}}
157 \newcommand{\unu}{\ensuremath{\nu_{\mu}}{}}
158 \newcommand{\tlp}{\ensuremath{\tau^-}{}}
159\newcommand{\tnu}{\ensuremath{\nu_{\tau}}{}}
160 \newcommand{\ealp}{\ensuremath{\mathrm{e}`+}{}}
161 \newcommand{\eanu}{\ensuremath{\bar{\nu}_\mathrm{e}}{}}
162\newcommand{\ualp}{\ensuremath{\mu^+}{}}
163\\mathrm{ \newcommand{\uanu}{\ensuremath{\bar{\nu}_{\mu}}{}}}
164 \newcommand{\talp}{\ensuremath{\tau^+}{}}
165 \newcommand{\tanu}{\ensuremath{\bar{\nu}_{\tau}}{}}
166 \newcommand{\prbr}{\ensuremath{\mathrm{p}^+}{}}
167 \newcommand{\nebr}{\\ensuremath{\mathrm{n}`0}{}}
168\newcommand{\lmzbr}{\\ensuremath{\Lambda^0}{}}
169 \newcommand{\sgpbr}{\ensuremath{\Sigma^+}{}}
170 \newcommand{\sgzbr}{\ensuremath{\Sigma`0}{}}
171 \newcommand{\sgmbr}{\ensuremath{\Sigma^-}{}}
172 \newcommand{\dlppbr}{\ensuremath{\Delta^{++}}{}}
173 \newcommand{\dlpbr}{\ensuremath{\Delta^+}{}}
174 \newcommand{\dlzbr}{\ensuremath{\Delta^0}{}}
```

```
175 \newcommand\{\dlmbr\}\{\ensuremath\{\Delta^-\}\{\}\}
176 \newcommand \(\{\backslash x i z b r\}\left\{\backslash\right.\) ensuremath \(\left\{\backslash \mathrm{Xi}^{\wedge} 0\right\}\}\}\)
177 \newcommand\{\ximbr\}\{\ensuremath\{\Xi^-\}\{\}\}
178 \newcommand\{\ommbr\}\{\ensuremath\{\0mega^-\}\{\}\}
179 \newcommand \(\{\backslash\) sgspbr\} \(\{\backslash\) ensuremath \(\{\backslash\) Sigma^\{*+\}\}\{\}\}
180 \newcommand\{\sgszbr\}\{\ensuremath\{\Sigma^\{*0\}\}\{\}\}
181 \newcommand\{\sgsmbr\}\{\ensuremath\{\Sigma^\{*-\}\}\{\}\}
182 \newcommand \(\{\backslash x i s z b r\}\left\{\backslash\right.\) ensuremath \(\left\{\backslash X_{i} \wedge\{* 0\}\right\}\}\}\)
\(183 \backslash\) newcommand \(\{\backslash x i s m b r\}\left\{\backslash\right.\) ensuremath \(\left\{\backslash X i n^{\wedge}\{*-\}\right\}\}\}\)
184 \newcommand\{\prabr\}\{\ensuremath\{\mathrm\{p\}^-\}\{\}\}
\newcommand\{\neabr\}\{\ensuremath\{\bar\{\mathrm\{n\}\}^0\}\{\}\}
\newcommand\{\dlpabr\}\{\ensuremath\{\bar\{\Delta\}^\{+\}\}\{\}\}
\newcommand\{\dlzabr\}\{\ensuremath\{\bar\{\Delta\}^\{0\}\}\{\}\}
\newcommand\{\dlmabr\}\{\ensuremath\{\bar\{\Delta\}^\{-\}\}\{\}\}
\newcommand\{\dlmmabr\}\{\ensuremath\{\bar\{\Delta\}^\{--\}\}\{\}\}
\newcommand\{\pipm\}\{\ensuremath\{\pi^+\}\{\}\}
\(\backslash\) newcommand \(\{\backslash\) pizm \(\}\{\backslash\) ensuremath \(\{\backslash \mathrm{pi} \sim 0\}\}\}\)
\newcommand\{\pimm\}\{\ensuremath\{\pi^-\}\{\}\}
\(\backslash\) newcommand \(\{\backslash\) kapm \(\}\left\{\backslash\right.\) ensuremath \(\left\{\mathrm{K}^{\wedge}+\right\}\}\}\)
\newcommand \(\{\backslash\) kazm \(\}\left\{\backslash\right.\) ensuremath \(\left\{K^{\wedge} 0\right\}\}\}\)
\(\backslash\) newcommand \(\{\backslash\) kazam \(\}\{\backslash\) ensuremath \(\{\backslash \operatorname{bar}\{K\} \sim 0\}\}\}\)
\newcommand \(\{\backslash\) kamm \(\}\left\{\backslash\right.\) ensuremath \(\left\{\mathrm{K}^{\wedge}-\right\}\}\}\)
\newcommand \(\{\backslash\) ropm \(\}\{\backslash\) ensuremath \(\{\backslash\) rho^+\} \(\}\}\)
\newcommand\{\rozm\}\{\ensuremath\{\rho^0\}\{\}\}
\newcommand\{\romm\}\{\ensuremath\{\rho^-\}\{\}\}
\newcommand\{\etam\}\{\ensuremath \(\{\backslash\) eta \(\}\}\}\)
\newcommand\{\etapm\}\{\ensuremath\{\eta'\}\{\}\}
\newcommand\{\kaspm\}\{\ensuremath\{\mathrm\{K\}^\{*+\}\}\{\}\}
\newcommand \(\{\backslash\) kaszm \(\}\{\backslash\) ensuremath \(\{\backslash\) mathrm \(\{K\} \wedge\{* 0\}\}\}\}\)
\(\backslash\) newcommand \(\{\backslash\) kaszam \(\}\{\) ensuremath \(\{\backslash\) bar \(\{\backslash\) mathrm \(\{K\}\}\) ^\{ \(\{0\}\}\}\}\)
\newcommand \(\{\backslash\) kasmm \(\}\{\backslash\) ensuremath \(\{\backslash\) mathrm \(\{K\}\) ^ \(\{*-\}\}\}\}\)
\(\backslash\) newcommand \(\{\backslash\) \omm \(\}\{\) \ensuremath \(\{\backslash\) omega \(\}\}\}\)
\newcommand\{\phim\}\{\ensuremath\{\phi\}\{\}\}
\newcommand\{\phbsn\}\{\ensuremath\{\gamma\}\{\}\}
\newcommand \(\{\backslash\) Wbsn \(\}\{\backslash\) ensuremath \(\{\backslash\) mathrm\{W\}\}\{\}\}
\newcommand\{\Wpbsn\}\{\ensuremath\{\mathrm\{W\}^\{+\}\}\{\}\}
\newcommand\{\Wmbsn\}\{\ensuremath\{\mathrm\{W\}^\{-\}\}\{\}\}
\newcommand\{\Zzbsn\}\{\ensuremath\{\mathrm\{Z\}^\{0\}\}\{\}\}
\newcommand\{\hbsn\}\{\ensuremath\{\mathrm\{h\}\}\{\}\}
\newcommand\{\photon\}\{\phbsn\}
5 \}
216 \{\}
```

The feynman option is implemented by just loading the package feynmp.
217 \ifthenelse\{\boolean\{pfeynman\}\}\%
218 \{\RequirePackage\{feynmp\}\}\%
\{\}

Change History

v0.1 \quad General: Conversion from sty to \quad dtx $\ldots \ldots$.

[^0]: *This document corresponds to physymb v0.2, dated 2011/05/09.

[^1]: ${ }^{1}$ If there are other areas of physics in which a lot of short macros like these would be useful, I'm open to suggestions for adding them.

