
An Extension of the LATEX-Theorem Evironment
∗

Wolfgang May‡

Institut für Informatik,
Universität Göttingen

Germany

Andreas Schedler§

2011/02/16

Abstract

ntheorem.sty is a package for handling theorem-like environments. Adition-
ally to several features for defining the layout of theorem-like environments
which can be regarded to be standard requirements for a theorem-package,
it provides solutions for two related problems: placement of endmarks and
generation of lists of theorem-like environments.

In contrast to former approaches, it solves the problem of setting end-
marks of theorem-like environments (theorems, definitions, examples, and
proofs) automatically at the right positions, even if the environment ends
with a displaymath or (even nested) list environments, it also copes with the
amsmath package. This is done in the same manner as the handling of labels
by using the .aux file.

It also introduces the generation of lists of theorem-like environments in
the same manner as listoffigures. Additionally, more comfortable refer-
encing is supported.

After running LATEX several times (depending on the complexity of refer-
ences, in general, three runs are sufficient), the endmarks are set correctly,
and theoremlists are generated.

Since ntheorem.sty uses the standard LATEX \newtheorem command, ex-
isting documents can be switched to ntheorem.sty without having to change
the .tex file. Also, it is compatible with LATEX files using theorem.sty writ-
ten by Frank Mittelbach.

∗This file has version number 1.31, last revised 2011/02/16.
‡may@informatik.uni-goettingen.de
§ntheorem@andreas-schedler.net

1

Contents

1 Introduction 3

2 The User-Interface 3
2.1 How to include the package . 3
2.2 Defining New Theorem Sets . 4
2.3 Defining the Layout of Theorem Sets 5

2.3.1 Common Parameters for all Theorem Sets 5
2.3.2 Parameters for Individual Sets 5
2.3.3 Font Selection . 6
2.3.4 Predefined theorem styles . 6
2.3.5 Default Setting . 6
2.3.6 A Standard Set of Theorems 7
2.3.7 Framed and Boxed Theorems 7
2.3.8 Customization and Local Settings 8

2.4 Generating Theoremlists . 8
2.4.1 Defining the List Layout . 9
2.4.2 Writing Extra Stuff to the Theorem File 9

2.5 For Experts: Defining Layout Styles 10
2.5.1 Defining New Theorem Layouts 10
2.5.2 Defining New Theorem List Layouts 10

2.6 Setting End Marks . 11
2.7 Extended Referencing Features . 11
2.8 Miscellaneous . 12

3 Possible Interferences 12
3.1 Interfering Document Options. 12
3.2 Combination with amslatex. 12

3.2.1 amsmath . 13
3.2.2 amsthm . 13

3.3 Babel . 13
3.4 Hyperref . 13

4 Examples 14
4.1 Extended Referencing Features . 19
4.2 Framed and Shaded Theorems . 19
4.3 Lists of Theorems and Friends . 21

5 The End Mark Algorithm 23
5.1 The Idea . 23
5.2 The Realization . 23

6 Problems and Questions 24
6.1 Known Limitations . 24
6.2 Known “Bugs” and Problems . 26
6.3 Open Questions . 26

2

7 Code Documentation 26
7.1 Documentation of the Macros . 26

7.1.1 Thmmarks-Related Stuff . 27
7.1.2 Option leqno to Thmmarks 33
7.1.3 Option fleqn to Thmmarks 33
7.1.4 Extended Referencing Facilities 34
7.1.5 Option amsmath to Thmmarks 37
7.1.6 Theorem-Layout Stuff . 42
7.1.7 Theorem-Environment Handling Stuff 47
7.1.8 Framed and Boxed Theorems 55
7.1.9 Generation of Theorem Lists 55
7.1.10 Auxiliary macros . 63
7.1.11 Other Things . 64

7.2 The Standard Configuration . 64

8 History and Acknowledgements 65
8.1 The endmark-Story (Wolfgang May) 65
8.2 Lists, Lists, Lists (Andreas Schedler) 65
8.3 Let’s come together . 66
8.4 Acknowledgements . 66

1 Introduction

For our purposes here, “theorems” are labelled enunciations, often set off from the
main text by extra space and a font change. Theorems, corollaries, conjectures,
definitions, examples, remarks, and proofs are all instances of “theorems”. The
“header” of these structures is composed of the type of the structure (such as
Theorem or Remark), a number which serializes the instances of the same type
throughout the document, and an optional name (such as “Correctness Theorem”).
The layout of theorems can be changed by parameters as the fonts of the header
and the body, the way how to arrange the headers, the indentation, and the way
of numbering it. Confronted with these requirements, theorem.sty, a style for
dealing with theorem layout was developed by Frank Mittelbach which was the
standard theorem-environment for long time.
But then the desire for additional features like “endmarks” and “theorem-lists”
arose. Two extensions of theorem.sty were developped: One for handling end-
marks, thmmarks.sty and one for generating lists, newthm.sty. Thus, Frank Mit-
telbach suggested to combine the new features into one “standard-to-be” package.
And now, here it is.

2 The User-Interface

2.1 How to include the package

The package ntheorem.sty is included by

\usepackage[〈options〉]{ntheorem},

3

where the optional parameter 〈options〉 selects predefined configurations and special
requirements.
The following 〈options〉 are available by now, concerning partially independent
issues:

Predefined environments: (see Section 2.3.6) With [standard] and [noconfig], it
can be chosen, if and what file is used for activating a (user-defined) standard
set of theorem environments.

Fancy boxes around theorems: The [framed] option allows to use framed.sty

that provides boxes even across pagebreaks.

Activation of endmarks: [thmmarks] enables the automatical placement of end-
marks (see 2.3); when using the amsmath-package, [thmmarks] must be com-
plemented by [amsmath] (see Section 3.2).

Activation of extended reference features: [thref] enables the extended ref-
erence features (see Section 4.1); when using the amsmath-package, [thref]
must be complemented by [amsmath] (see Section 3.2).

Compatibility with amsthm: option [amsthm] provides compatibility with the
theorem-layout commands of the amsthm-package (see Section 3.2).

Compatibility with hyperref: option [hyperref] provides compability with the
hyperref-package (see Section 3.4).

The package itself loads ifthen.sty.

2.2 Defining New Theorem Sets

The syntax and semantics is exactly the same as in standard LATEX: the command\newtheorem

\newtheorem defines a new “theorem set” or “theorem-like structure”. Two re-
quired arguments name the new environment set and give the text to be typeset
with each instance of the new “set”, while an optional argument determines how
the “set” is enumerated:

\newtheorem{foo}{bar} The theorem set foo (whose name is bar) uses its own
counter.

\newtheorem{foo2}[foo]{bar2} The theorem set foo2 (printed name bar2) uses
the same counter as the theorem set foo.

\newtheorem{foo3}{bar}[section] The theorem set foo3 (printed name bar)
is enumerated within the counter section, i.e. with every new \section the
enumeration begins again with 1, and the enumeration is composed from the
section-number and the theorem counter itself.

For every environment 〈name〉 defined by \newtheorem, two enviroments 〈name〉
and 〈name* 〉 are defined. In the main document, they have exactly the same effect,
but the latter causes no entry in the respective list of theorems (cf. \section and
\section*), see also Section 2.4.
Theorem sets can be redefined by \renewtheorem, with the same arguments as\renewtheorem

explained for \newtheorem. When redefining a theorem set, the counter is not
re-initialized.

4

2.3 Defining the Layout of Theorem Sets

For theorem-like environments, the user can set parameters by setting several
switches and then calling \newtheorem. The layout of a theorem set is defined
with the values of the switches at the time \newtheorem is called.

2.3.1 Common Parameters for all Theorem Sets

These additional parameters affect the vertical space around theorem environments:\theorempreskipamount

\theorempostskipamount \theorempreskipamount and \theorempostskipamount define, respectively, the
spacing before and after such an environment. These parameters apply for all
theorem sets and can be manipulated with the ordinary length macros. They are
rubber lengths, (‘skips’), and therefore can contain plus and minus parts.

2.3.2 Parameters for Individual Sets

The layout of individual theorem sets can be further determined by switches con-
trolling the appearance of the headers and the header-body-layout:� \theoremstyle{〈style〉}: The general structure of the theorem layout is de-\theoremstyle

fined via its \theoremstyle. \ntheorem provides several predefined styles
including those of Frank Mittelbach’s theorem.sty (cf. Section 2.3.4. Addi-
tional styles can be defined by \newtheoremstyle (cf. Section2.5.1).� \theoremheaderfont{〈fontcmds〉}: The theorem header is set in the font\theoremheaderfont

specified by 〈fontcmds〉.

In contrast to theorem.sty, \theoremheaderfont can be set individually for
each environment type.� \theorembodyfont{〈fontcmds〉}: The theorem body is set in the font speci-\theorembodyfont

fied by 〈fontcmds〉.� \theoremseparator{〈thing〉}: 〈thing〉 separates the header from the body of\theoremseparator

the theorem-environment. E.g., 〈thing〉 can be “:” or “.”.� \theoremprework{〈thing〉}: 〈thing〉 is performed before starting the the-\theoremprework

orem structure. E.g., 〈thing〉 can be \bigskip\hrule\leavevmode. If the
vertical space after your theoremprework does not look as intended, try to
put \leavevmode at its end (as in the above example).� \theorempostwork{〈thing〉}: 〈thing〉 is performed after finishing the theorem\theorempostwork

structure. E.g., 〈thing〉 can be \hrule.� \theoremindent{〈dimen〉} can be used to indent the theorem wrt. the sur-\theoremindent

rounding text.

! It’s a ‘(dimen)’, so the user shouldn’t try to specify a plus or minus part,
because this leads to an error.� \theoremnumbering{〈style〉} specifies the appearance of the numbering of\theoremnumbering

the theorem set. Possible 〈styles〉 are arabic (default), alph, Alph, roman,
Roman, greek, Greek, and fnsymbol.

Clearly, if a theorem-environment uses the counter of another environment
type, also the numbering style of that environment is used.

5

� \theoremsymbol{〈thing〉}: This is only active if ntheorem.sty is loaded with\theoremsymbol

option [thmmarks]. 〈thing〉 is set as an endmark at the end of every instance
of the environment. If no symbol should appear, say \theoremsymbol{}.

The flexibility provided by these command should relieve the users from the ugly
hacking in \newtheorem to fit most of the requirements stated by publishers or
supervisors.
With the command \theoremclass{〈theorem-type〉} (where 〈theorem-type〉 must\theoremclass

be an already defined theorem type), these parameters can be set to the values
which were used when \newtheorem was called for 〈theorem-type〉.
With \theoremclass{LaTeX}, the standard LATEX layout can be chosen.

2.3.3 Font Selection

From the document structuring point of view, theorem environments are regarded
as special parts inside a document. Furthermore, the theorem header is only a
distinguished part of a theorem environment. Thus, \theoremheaderfont inherits
characteristics of \theorembodyfont which also inherits in characteristics of the
font of the surrounding environment. Thus, if for example \theorembodyfont is
\itshape and \theoremheaderfont is \bfseries the font selected for the header
will have the characteristics ‘bold extended italic’. If this is not desired, the cor-
responding property has to be explicitly overwritten in \theoremheaderfont, e.g.
by \theoremheaderfont{\normalfont\bfseries}

2.3.4 Predefined theorem styles

The following theorem styles are predefined, covering those from theorem.sty:

plain This theorem style emulates the original LATEX definition, ex-
cept that additionally the parameters \theorem...skipamount

are used.

break In this style, the theorem header is followed by a line break.

change Header number and text are interchanged, without a line break.

changebreak Like change, but with a line break after the header.

margin The number is set in the left margin, without a line break.

marginbreak Like margin, but with a line break after the header.

nonumberplain Like plain, without number (e.g. for proofs).

nonumberbreak Like break, without number.

empty No number, no name. Only the optional argument is typeset.

2.3.5 Default Setting

If no option is given, i.e. ntheorem.sty is loaded by \usepackage{ntheorem.sty},
the following default is set up:

6

\theoremstyle{plain},
\theoremheaderfont{\normalfont\bfseries} and
\theorembodyfont{\itshape},
\theoremseparator{},
\theoremindent0cm,
\theoremnumbering{arabic},
\theoremsymbol{}.

Thus, by only saying \newtheorem{...}{...}, the user gets the same layout as in
standard LATEX.

2.3.6 A Standard Set of Theorems

A standard configuration of theorem sets is provided within the file ntheorem.std,
which will be included by the option [standard]. It uses the amssymb and
latexsym (automatically loaded) packages and defines the following sets:

Theorems: Theorem, Lemma, Proposition, Corollary, Satz, Korollar,

Definitions: Definition,

Examples: Example, Beispiel,

Remarks: Anmerkung, Bemerkung, Remark,

Proofs: Proof and Beweis.

These theorem sets seem to be the most frequently used environments in english
and german documents.
The layout is defined to be theoremstyle plain, bodyfont \itshape, Headerfont
\bfseries, and endmark (theoremsymbol) \ensuremath{_\Box} for all theorem-
like environments1. For the definition-, remark- and example-like sets, the above
setting is used, except bodyfont \upshape. The proof-like sets are handled a bit
differently. There, the layout is defined as theoremstyle nonumberplain, bodyfont
\upshape, headerfont \scshape and endmark \ensuremath{_\blacksquare}. For
a more detailed information look at ntheorem.std or at the code-section.

2.3.7 Framed and Boxed Theorems

With the advent of the framed package (by Donald Arseneau) in 2001, a feature
that has often been asked for for ntheorem could be implemented: theorems that
are framed, or that are put into a colored box. It requires to load the framed

package; shaded theorems also require the pstricks package. Frames and colored
boxes are orthogonal to the existing theoremstyles – thus, they can be combined in
arbitrary ways.
A theorem type can be framed by defining it by\newframedtheorem

\newframedtheorem{...}{...}

with the same parameters as usually for \newtheorem. Note that the use of the
framed package also allows to have longer theorems across a page break framed (in
this case, by default, there are horizontal lines before and after the page break; this
can even be circumvented by combining with mdframed package (since 2010)).

7

\newshadedtheorem

The same ideas hold for theorems in shaded boxes. The declaration

\newshadedtheorem{...}{...}

declares a theorem environment that is shaded. By default, the background color
is gray. This can be changed by defining

\shadecolor{〈color〉}

before declaring the theorem type. Note that later declarations of other shaded
theorem types can use another shadecolor.
By default, the box is given as a \psframebox (see pstricks package) with shade-
color as linecolor and fillcolor. All these parameters can be changed by setting

\def\theoremframecommand{〈any box command〉}

before declaring the theorem type (for examples, the user is referred to section 4).
For using pdflatex (where pstricks is not available), e.g. \usepackage{color} and
\theoremframecommand{\colorbox[rgb]{1,.9,.9}} can be used.
Note that \theorempreskipamount and \theorempostskipamount are applied in-
tegrated with the structure of the theorem itself. Thus, for framed and shaded
theorems, they are applied inside the frame/shade.
To obtain vertical space before and after the shade or frame, \theoremframepreskipamount
and \theoremframepostskipamount can be used (both defined by default to 0pt)
analogously. (i.e., they are also common to all theorem types.)

2.3.8 Customization and Local Settings

Since the user should not change ntheorem.std, we’ve added the possibility to use
an own configuration-file. If one places the file ntheorem.cfg in the path searched
by TEX, this file is read automatically (if [standard] is not given). The usage of
ntheorem.cfg can be prevented by the [noconfig] option. Thus, just a copy of
ntheorem.std to ntheorem.cfg must be made which then can freely be modified
by the user. Note, that if a configuration-file exists, this will always be used (I.e.
with option standard and an existing configuration-file, the .cfg file will be used
and the .std file won’t.

2.4 Generating Theoremlists

Similar to the LATEX command \listoffigures, any theorem set defined with a\listtheorems

\newtheorem statement may be listed at any place in your document by

\listtheorems{〈list〉}

The argument 〈list〉 is a comma-separated list of the theorem sets to be listed.
For a theorem set 〈name〉, only the instances are listed which are instantiated
by \begin{〈name〉}. Those instantiated by \begin{〈name〉*} are omitted (cf.
\section and \section*).
For example, \listtheorems{Corollary,Lemma} leads to a list of all instances of
one of the theorem sets “Corollary” or “Lemma”. Note, that the set name given

1Note, that mathmode is ensured for the symbol.

8

to the command is the first argument which is specified by \newtheorem which is
also the one to be used in \begin{theorem} ... \end{theorem}.
If \listtheorems is called for a set name which is not defined via \newtheorem,
the user is informed that a list is generated, but there will be no typeset output at
all.
Note that in contrast to similar LATEX commands like \listoffigures etc. there
is no automatically created heading. Users have to write it themselves – but are
free to choose what they want to have.

2.4.1 Defining the List Layout

Theoremlists can be formatted in different ways. Analogous to theorem layout,\theoremlisttype

there are several predefined types which can be selected by

\theoremlisttype{〈type〉}

The following four 〈type〉s are available (for examples, the user is referred to section
4).

all List any theorem of the specified set by number, (optional) name and
pagenumber. This one is also the default value.

allname Like all, additionally with leading theoremname.

opt Analogous to all, but only the theorems which have an optional name
are listed.

optname Like opt, with leading theoremname.

2.4.2 Writing Extra Stuff to the Theorem File

Similar to \addcontentsline and \addtocontents, additional entries to theorem-
lists are supported. Since entries to theoremlists are a bit more intricate than entries
to the lists maintained by standard LATEX \addcontentsline and \addtocontents

cannot be used in a straightforward way2.
Analogous to \addcontentsline, an extra entry for a theorem list can be made by\addtheoremline

\addtheoremline{〈name〉}{〈text〉}

where 〈name〉 is the name of a valid theorem set and 〈text〉 is the text, which should
appear in the list. For example,

\addtheoremline{Example}{Extra Entry with number}

generates an entry with the following characteristics:� The Label of the theorem “Example” is used.� The current value of the counter for “Example” is used� The current pagenumber is used.� The specified text is the optional text for the theorem.

2for a theorem, its number has to be stored explicitly since different theorem sets can use the
same counter. Also, it is optional to reset the counter for each section.

9

Thus, the above command has the same effect as it would be for

\begin{Example}[Extra Entry with number] \end{Example}

except, that there would be no output of the theorem, and the counter isn’t ad-
vanced.
Alternatively you can use\addtheoremline*

\addtheoremline*{Example}{Extra Entry}

which is the same as above, except that the entry appears without number.
Sometimes, e.g. for long lists, special control sequences (e.g. a pagebreak) or addi-\addtotheoremfile

tional text should be inserted into a list. This is done by

\addtotheoremfile[〈name〉]{〈text〉}

where 〈name〉 is the name of a theorem set and 〈text〉 is the text to be written
into the theorem file. If the optional argument 〈name〉 is omitted, the given text is
inserted in every list, otherwise it is only inserted for the given theorem set.

2.5 For Experts: Defining Layout Styles

2.5.1 Defining New Theorem Layouts

Additional layout styles for theorems can be defined by\newtheoremstyle

\newtheoremstyle{〈name〉}{〈head〉}{〈opt-head〉}.

After this, \theoremstyle{〈name〉} is a valid \theoremstyle. Here, 〈head〉 has
to be a statement using two arguments, ##1, containing the keyword, and ##2,
containing the number. 〈opt-head〉 has to be a statement using three arguments
where the additional argument ##3 contains the optional parameter.
Since LATEX implements theorem-like environments by \trivlists, both header
declarations must be of the form \item[... \theorem@headerfont ...]...,
where the dotted parts can be formulated by the user. If there are some state-
ments producing output after the \item[...], you have to care about implicit
spaces.
Because of the @, if \newtheoremstyle is used in a .tex file, it has to be put
between \makeatletter and \makeatother.
For details, look at the code documentation or the definitions of the predefined
theoremstyles.
Theorem styles can be redefined by \renewtheoremstyle, with the same arguments\renewtheoremstyle

as explained for \newtheoremstyle.

2.5.2 Defining New Theorem List Layouts

Analogous, additional layouts for theorem lists can be defined by\newtheoremlisttype

\newtheoremlisttype{〈name〉}{〈start〉}{〈line〉 }{〈end〉}.

The first argument, 〈name〉, is the name of the listtype, which can the be used as
a valid \theoremlisttype. 〈start〉 is the sequence of commands to be executed at
the very beginning of the list. Corresponding, 〈end〉 will be executed at the end of
the list. These two are set to do nothing in the standard-types. 〈line〉 is the part to

10

be called for every entry of the list. It has to be a statement using four arguments:
##1 will be replaced with the name of the theorem, ##2 with the number, ##3 with
the theorem’s optional text and ##4 with the pagenumber.
WARNING: Self-defined Layouts will break with the hyperref-package.
Theorem list types can be redefined by \renewtheoremlisttype, with the same\renewtheoremlisttype

arguments as explained for \newtheoremlisttype.

2.6 Setting End Marks

The automatic placement of endmarks is activated by calling ntheorem.sty with
the option [thmmarks]. Since then, the endmarks are set automatically, there are
only a few commands for dealing with very special situations.
If in a single environment, the user wants to replace the standard endmark by\qed

\qedsymbol some other, this can be done by saying \qed, if \qedsymbol has been defined by
\qedsymbol{〈something〉} (in option standard, \qedsymbol is defined to be the
symbol used for proofs, since a potential use of this features is to close trivial
corollaries without explicitly proving them).
Additionally, if in a single environment of a theorem set, that is defined without an
endmark, the user wants to set an endmark, this is done with \qedsymbol and \qed

as described above. \qedsymbol can be redefined everywhere in the document.
On the other hand, if in some situation, the user decides to set the endmark man-\NoEndMark

\TheoremSymbol ually (e.g. inside a figure or a minipage), the automatic handling can be turned
off by \NoEndMark for the current environment. Then – assumed that he current
environment is of type 〈name〉, the endmark can manually be set by just saying
\〈name〉Symbol.
Note that there must be no empty line in the input before the \end{theorem},
since then, the end mark is ignored (cf. Theorem 3 in Section 4).

2.7 Extended Referencing Features

The extended referencing features are activated by calling ntheorem.sty with the
option [thref].
Often, when writing a paper, one changes propositions into theorems, theorems
into corollaries, lemmata into remarks an so on. Then, it is necessary to ad-
just also the references, i.e., from “see Proposition~\ref{completeness}” to
“see Theorem~\ref{completeness}”. For relieving the user from this burden,
the type of the respective labeled entities can be associated with the label itself:

\label{〈label〉}[〈type〉]

associates the type 〈type〉 with 〈label〉.
This task is automated for theorem-like environments:

\begin{Theorem}[〈name〉]\label{〈label〉}

is equivalent to

\begin{Theorem}[〈name〉]\label{〈label〉}[Theorem]

The additional information is used by\thref

\thref{〈label〉}

11

which outputs the respective environment-type and the number, e.g., “Theo-
rem 42”. Note that LATEX has to be run twice after changing labels (similar to
getting references OK; in the intermediate run, warnings about undefined reference
types can occur).
The [thref] option interferes with the babel package, thus in this case, ntheorem
has to be loaded after babel. It also interferes with amsmath; see Section 3.2.

2.8 Miscellaneous

Inside a theorem-like environment 〈env〉, the name given as optional argument is
accessible by \〈env〉name.

3 Possible Interferences

Since ntheorem reimplements the handling of theorem-environments completely, it
is incompatible with every package also concerning those macros.
Additionally, the thmmarks algorithm for placing endmarks requires modifications
of several environments (cf. Section 7). Thus, environments which are reimple-
mented or additionally defined by document options or styles are not covered by
the endmark algorithm of ntheorem.sty.
The [thref] option changes the \label command and the treatment of labels
when reading the .aux file. Thus it is potentially incompatible with all packages
also changing \label (or \newlabel). Compatibility with babel’s \newlabel isa
achieved if babel is loaded before ntheorem.

3.1 Interfering Document Options.

ntheorem.sty also copes with the usual document options leqno and fleqn3. If
one of those options is used in the \documentclass declaration, it is automatically
recognized by the thmmarks part of ntheorem.sty.
If one of those options is not used in \documentclass, but with amsmath (see next
section), it must not be specified for ntheorem, since all amsmath environments
detect this option by themselves.

3.2 Combination with amslatex.

ntheorem.sty interferes with amsmath.sty and amsthm.sty.
Note, that the LaTeX amstex package amstex.sty (LATEX2.09) is obsolete and you
should use amsmath and amstext for LATEX2ε instead. Up to ntheorem-1.18, it is
compatible with amsmath-1.x. Since ntheorem-1.19, it is (hopefully) compatible
with amsmath-2.x.
We would be happy if someone knowing and using amsmath would join the devel-
opment and maintenance of this style.

3although for fleqn and long formulas reaching to the right margin, equation numbers and
endmarks can be smashed over the formula since fleqn does not use \eqno for controlling the
setting of the equation number.

12

3.2.1 amsmath

Compatibility with amsmath (end marks for math environments, and handling
of labels in math environments) is provided in the option [amsmath], (i.e., if
\usepackage{amsmath} is used then� \usepackage[thmmarks]{ntheorem} must be completed to

\usepackage[amsmath,thmmarks]{ntheorem}), and also� \usepackage[thref]{ntheorem} must be completed to
\usepackage[amsmath,thref]{ntheorem}).

Note, that amsmath has to be loaded before ntheorem since the definitions have to
be overwritten.

3.2.2 amsthm

amsthm.sty conflicts with the definition of theorem layouts in theorem.sty, some
features of amsthm.sty have been incorporated into option [amsthm] which has to
be used instead of \usepackage{amsthm}.
The option provides theoremstyles plain, definition, and remark, and a proof

environment as in amsthm.sty.
The \newtheorem* command is defined even without this option. Note that
\newtheorem* always switches to the nonumbered version of the current theorem-
style which thus must be defined.
The command \newtheoremstyle is not taken over from amsthm.sty. Also,
\swapnumbers is not implemented. Here, the user has to express his definitions
by the \newtheoremstyle command provided by ntheorem.sty, including the
use of \theoremheaderfont and \theorembodyfont. The options [amsthm] and
[standard] are in conflict since they both define an environment proof.
Thus, we recommend not to use amsthm, since the features for defining theorem-like
environments in ntheorem.sty—following theorem.sty—seem to be more intu-
itive and user-friendly.

3.3 Babel

The [thref] option interferes with the babel package, thus in case that babel is
used, ntheorem has to be loaded after babel.

3.4 Hyperref

Since hyperref redefines the LATEX \contentsline-command, it breaks with
ntheorem below version 1.17. Since version 1.17, the option [hyperref] makes
ntheorem work with hyperref. The entries of theoremlists then act as hy-
perlinks to the actual theorems. Version 1.31 incorporated some bugfixes wrt.
hyperref for theorem lists and for the thref option. One should always load
\usepackage{hyperref} before the first use of \newtheorem to obtain correct han-
dling and referencing of counters.

WARNING: The definition and redefinition of Theorem List Layouts (see Sec-
tion 2.5.2) isn’t yet working with the hyperref-package.

13

4 Examples

The setting is as follows.� For Theorems:

\theoremstyle{marginbreak}

\theoremheaderfont{\normalfont\bfseries}\theorembodyfont{\slshape}

\theoremsymbol{\ensuremath{\diamondsuit}}

\theoremseparator{:}

\newtheorem{Theorem}{Theorem}� For Lemmas:

\theoremstyle{changebreak}

\theoremsymbol{\ensuremath{\heartsuit}}

\theoremindent0.5cm

\theoremnumbering{greek}

\newtheorem{Lemma}{Lemma}� For Corollaries:

\theoremindent0cm

\theoremsymbol{\ensuremath{\spadesuit}}

\theoremnumbering{arabic}

\newtheorem{Corollary}[Theorem]{Corollary}� For Examples:

\theoremstyle{change}

\theorembodyfont{\upshape}

\theoremsymbol{\ensuremath{\ast}}

\theoremseparator{}

\newtheorem{Example}{Example}� For Definitions:

\theoremstyle{plain}

\theoremsymbol{\ensuremath{\clubsuit}}

\theoremseparator{.}

\theoremprework{\bigskip\hrule}

\theorempostwork{\hrule\bigskip}

\newtheorem{Definition}{Definition}� For Proofs (note that theoremprework and theorempostwork are reset –
proofs do not have lines above and below):

\theoremheaderfont{\sc}\theorembodyfont{\upshape}

\theoremstyle{nonumberplain}

\theoremseparator{}

\theoremsymbol{\rule{1ex}{1ex}}

\newtheorem{Proof}{Proof}

14

Note, that parts of the setting are inherited. For instance, the fonts are not reset
before defining “Lemma”, so the font setting of “Theorem” is used.

1 Example (Simple one) The first example is just a text.
In the next examples, it is shown how an endmark is put at a displaymath, a single
equation and both types of eqnarrays. ∗

1 Theorem (Long Theorem):
The examples are put into this theorem environment.
The next example will not appear in the list of examples since it is written as

\begin{Example*} ... \end{Example*}

2 Example (Ending with a displayed formula) Look, the endmark is really
at the bottom of the line:

f (n)(z) =
n!

2πi

∫

∂D

f(ζ)

(ζ − z)n+1
dζ

∗

At this point, we add an additional entry without number in the Example list:

\addtheoremline*{Example}{Extra Entry}

α Lemma (Display with array):
Lemmata are indented and numbered with greek symbols. Also for displayed
arrays of this form, it looks good:

\[\begin{array}{l}

a = \begin{array}[t]{l}

first\ line \\

second\ line

\end{array}%

\mbox{try to put this text in the lowest line}\end{array}\]

Just try to get this with the presented array structure ... without using dirty
tricks, you can position the outer array either [t], [c], or [b], and you will not
get the desired effect.

a = first line

second line

try to put this text in the lowest line

♥

β Lemma (Equation):
For equations, we decided to put the endmark after the equation number, which
is vertically centered. Currently, we do not know, how to get the equation
number centered and the endmark at the bottom (one has to know the internal
height of the math material) ... If anyone knows, please inform us.

∫
γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt (1) ♥

With the break-theoremstyles, if the environment is labeled and written as

\begin{Lemma}[Breakstyle]\label{breakstyle}

15

γ Lemma (Breakstyle):
you see, there is a leading space . . .
If a percent (comment) (or an explicit \ignorespaces) is put directly after the
label, e.g.

\begin{Lemma}[Breakstyle]\label{breakstyle}%,

the space disappears.
From the predefined styles, this is exactly the case for the break-styles. That’s
no bug, it’s LATEX-immanent.
The example goes on with an eqnarray:

f(z) =
1

2πi

∫

∂D

f(ζ)

ζ − z
dζ (2)

=
1

2π

2π∫

0

f(z0 + reit)dt (3)

♥

Proof (of nothing)

f(z) =
1

2πi

∫

∂D

f(ζ)

ζ − z
dζ

=
1

2π

2π∫

0

f(z0 + reit)dt

That’s it (the end of the Theorem). ♦

If there are some environments in the same thm-environment, the last one gets the
endmark:

Definition 1 (With a list).

∫
γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt (4)� you’ve seen, how it works for text and� math environments,� and it works for lists. ♣

2 Corollary (Q.E.D.):
And here is a trivial corollary, which is ended by \qedsymbol{\textrm{q.e.d}}

and \qed. q.e.d

3 Example

f (n)(z) =
n!

2πi

∫

∂D

f(ζ)

(ζ − z)n+1
dζ

If there is some text after an environment, the endmark is put after the text. ∗

16

The next one is done by the following sequence. Note, that ~\hfill~ is inserted to
prevent LATEX from using its nested list management (a verbatim is also a trivlist),
i.e. this causes LATEX to start the verbatim-Part in a new line.

\begin{Example}

~\hfill~

\begin{verbatim}

And, it also works for verbatim

... when the \end{verbatim} is in the

same line as the text ends. \end{verbatim}

^ this space is important !!
\end{Example}

4 Example (Using verbatim)

And, it also works for verbatim

... when the end{verbatim} is in the

same line as the text ends. ∗

There must be no empty line in the input before the \end{theorem} (since then,
the end mark is ignored)

\begin{Theorem}

some text ... but no end mark

\end{Theorem}

3 Theorem:
some text ... but no end mark

Now, there is a corollary which should appear with a different name in the list of
corollaries:

\begin{Corollary*}[title in text]\label{otherlabel}

...

\end{Corollary*} \addtheoremline{Corollary}{title in list}

4 Corollary (title in text):
let’s do something weird:

It also works in the
center

environment. ♠

5 Theorem (Quote):
In quote environments, the text is normally indented from left and right
by the same space. The endmark is not indented from the right margin,
i.e., it is typeset to the right margin of the surrounding text. ♦

Here is an example for turning off the endmark automatics and manual handling:

\begin{Theorem}[Manual End Mark]\label{somelabel}

a line of text with a manually set endmark \hfill\TheoremSymbol \\

some more text, but no automatic endmark set. \NoEndMark

\end{Theorem}

17

6 Theorem (Manual End Mark):
a line of text with a manually set endmark ♦
some more text, but no automatic endmark set.

Also, one should note, that \hfill is inserted to set the endmark at the right
margin.

5 Example (Quickie) It also works for short one’s. ∗

If you are tired of the greek numbers and the indentation for lemmata ... you can
redefine it:

\theoremstyle{changebreak}

\theoremheaderfont{\normalfont\bfseries}\theorembodyfont{\slshape}

\theoremsymbol{\ensuremath{\heartsuit}}

\theoremsymbol{\ensuremath{\diamondsuit}}

\theoremseparator{:}

\theoremindent0.5cm

\theoremnumbering{arabic}

\renewtheorem{Lemma}{Lemma}

4 Lemma:
another lemma, with arabic numbering ... note that the numbering continues. ♦

the optional argument (i.e. the ‘theorem’-name) can be accessed by \〈env〉name.

\begin{Theorem}[somename]

Obviously, we are in Theorem~\Theoremname.
\end{Theorem}

7 Theorem (somename):
Obviously, we are in Theorem somename. ♦

This feature can e.g. be used for automatically generating executable code and a
commented solution sheet:

\begin{exercise}[quicksort]

〈the exercise text〉
\begin{verbatimwrite}{solutions/\exercisename.c}

〈C-code〉
\end{verbatimwrite}

\verbatiminput{solutions/\exercisename.c}

\end{exercise}

This will write the C-code to a file solutions/quicksort.c and type it also on
the solution sheet.
Now, we define an environment KappaTheorem which uses the same style param-
eters as Theorems and is numbered together with Corollaries (Theorems are also
numbered with Corollaries). Note that we define a complex header text and a
complex end mark.
\theoremclass{Theorem}

\theoremsymbol{\ensuremath{a\atop b}}

\newtheorem{KappaTheorem}[Corollary]{\(\kappa\)-Theorem}

8 κ-Theorem (1st κ-Theorem):
That’s the first Kappa-Theorem. a

b

18

4.1 Extended Referencing Features

The standard \label command is extended by an optional argument which is
intended to contain the “name” of the structure which is labeled, allowing more
comfortable referencing; e.g., this section has been started with

\subsection*{Extended Referencing Features}%

\label{sec-ExtRef}[Section]

As already stated, for theorem-like environments the optional argument is filled in
automatically, i.e.,

\begin{Theorem}[Manual End Mark]\label{somelabel}

(cf. page 18) is equivalent to

\begin{Theorem}[Manual End Mark]\label{somelabel}[Theorem]

\thref{〈label〉} additionally outputs the contents of the optional argument which
has been associated with 〈label〉:

This is \thref{sec-ExtRef}

A theorem end mark has been set manually in \thref{somelabel}.

A center environment has been shown in \thref{otherlabel}.

The first Kappa-Theorem has been given in \thref{kappatheorem1}.

generates

This is Section 4.1.
A theorem end mark has been set manually in Theorem 6. A center
environment has been shown in Corollary 4. The first Kappa-Theorem
has been given in κ-Theorem 8.

Here one must be careful that the handling of the optional argument is automated
only for environments defined by \newtheorem, i.e., not for sectioning, equations,
or enumerations.
Calling \thref{〈label〉} for a label which has been set without an optional argu-
ment can result in different unintended results: If 〈label〉 is not inside a theorem-like
environment, an error message is obtained, otherwise the type of the surrounding
theorem-like environment is output, e.g., calling \thref{label} then results in
“Theorem 〈number〉”! Additionally, currently there is no support for multiple ref-
erences such as “see Theorems 5 and 7” (this would require plural-forms for different
languages and handling of \ref-lists, probably splitting into different sublists for
different environments)4.

4.2 Framed and Shaded Theorems

Framed theorem classes are defined as follows:

\theoremclass{Theorem}

\theoremstyle{break}

\newframedtheorem{importantTheorem}[Theorem]{Theorem}

4If someone is interested in programming this, please contact us; it seems to be algorithmically
easy, but tedious.

19

defines important theorems to use the same design as for theorems (except that the
break header style is used except the margin header style), number them with the
same counter, and put a frame around them:
An instance is created by

\begin{importantTheorem}[Important Theorem]

This is an important theorem.

\end{importantTheorem}

Theorem 9 (Important Theorem):
This is an important theorem.

More important theorems are shaded – by default in grey:

\theoremclass{Theorem}

\theoremstyle{break}

\newshadedtheorem{moreImportantTheorem}[Theorem]{Theorem}

\begin{moreImportantTheorem}[More Important Theorem]

This is a more important theorem.

\end{moreImportantTheorem}

Theorem 10 (More Important Theorem):
This is a more important theorem. ♦

Even more important theorems are shaded in red:

\theoremclass{Theorem}

\theoremstyle{break}

\shadecolor{red}

\newshadedtheorem{evenMoreImportantTheorem}[Theorem]{Theorem}

\begin{evenMoreImportantTheorem}[Even More Important Theorem]

This is an even more important theorem.

\end{evenMoreImportantTheorem}

Theorem 11 (Even More Important Theorem):
This is an even more important theorem. ♦

Most important theorems get a framed, blue colored box with a shadow. Here,
\def\theoremframecommand is used:

\theoremclass{Theorem}

\theoremstyle{break}

\shadecolor{red}

20

\def\theoremframecommand{%

\psshadowbox[fillstyle=solid,fillcolor=blue,linecolor=black]}

\newshadedtheorem{MostImportantTheorem}[Theorem]{Theorem}

\begin{MostImportantTheorem}[Most Important Theorem]

This is a most important theorem.

\end{MostImportantTheorem}

Theorem 12 (Most Important Theorem):
This is a most important theorem. ♦

4.3 Lists of Theorems and Friends

Note, that we put the following lists into the quote-environment to emphazise them
from the surrounding text. So the lists are indented slightly at the margin.
With

\addtotheoremfile{Added into all theorem lists},

in every list, an additional line of text would be inserted. But it isn’t actually done
in this documentation since we want to use different list formats.
Only for the list of Examples, this one is added:

\addtotheoremfile[Example]{Only concerning Example lists}

With

\theoremlisttype{all}

\listtheorems{Lemma},

all lemmas are listed:

α Display with array . 15

β Equation . 15

γ Breakstyle . 16

4 . 18

5 . 25

6 . 25

From the examples, only those are listed which have an optional name:

\theoremlisttype{opt}

\listtheorems{Example}

leads to

0 Extra Entry with number 9

Extra Entry . 10

1 Simple one . 15

Extra Entry . 15

21

4 Using verbatim . 17

5 Quickie . 18

Only concerning Example lists

One should note the line Only concerning example lists, which was added by the
\addtotheoremfile-statement above.
For the next list, another layout, using the tabular-environment, is defined:

\newtheoremlisttype{tab}%

{\begin{tabular*}{\linewidth}{@{}lrl@{\extracolsep{\fill}}r@{}}}%

{##1&##2&##3&##4\\}%

{\end{tabular*}}

Thus, by saying

\theoremlisttype{tab}

\listtheorems{Theorem,importantTheorem,moreImportantTheorem,

evenMoreImportantTheorem,MostImportantTheorem,Lemma},

theorems (of all importance levels) and lemmata are listed:

Theorem 1 Long Theorem 15
Lemma α Display with array 15
Lemma β Equation 15
Lemma γ Breakstyle 16
Theorem 3 17
Theorem 5 Quote 17
Theorem 6 Manual End Mark 18
Lemma 4 18
Theorem 7 somename 18
Theorem 9 Important Theorem 20
Theorem 10 More Important Theorem 20
Theorem 11 Even More Important Theorem 20
Theorem 12 Most Important Theorem 21
Theorem 13 Correctness 24
Theorem 14 Completeness 24
Lemma 5 25
Lemma 6 25
Theorem 15 26

LATEX-lists can also be used to format the theoremlist. The input

\newtheoremlisttype{list}%

{\begin{trivlist}\item}

{\item[##2 ##1:]\ ##3\dotfill ##4}%

{\end{trivlist}}

\theoremlisttype{list}

\listtheorems{Corollary}

leads to

2 Corollary: Q.E.D. 16

4 Corollary: title in list . 17

In this example, after the item, \ is used instead of , because in the latter case,
\dotfill will produce an error if the optional argument (##3) is missing.

22

5 The End Mark Algorithm

5.1 The Idea

The handling of endmarks with thmmarks.sty is based on the same two-pass princi-
ple as the handling of labels: the necessary information about endmarks is contained
in the .aux file.
With thmmarks.sty, TEX is always aware whether it is in some theorem-like envi-
ronment. There, potential positions for endmarks can be

1. at the end of simple text lines in open text,

2. at the end of displaymaths,

3. at the end of equations or equationarrays, or

4. at the end of text lines at the end of lists (or, more general, trivlists, such
as verbatim or center).

The problem is, that in the cases (2)–(4), the endmarks has to be placed in a
box which is already shipped out, when \end{...} is processed. Thus, in those
situations, TEX needs to know from the .aux file, whether is has to put an endmark.
When TEX is in a theorem-like environment and comes to one of the points men-
tioned in (2)–(4), and the .aux file says that there is an endmark, then it is put
there. Anyway, it maintains a counter of the potential positions of an end mark
in the current theorem-like environment. When it comes to an \end{theorem}, it
looks if it is in situation (1) (then the endmark is simply put at the end of the
current line). Otherwise, the last horizontal box is already shipped out (thus it
contains a situation (2)–(4)) and the endmark must be set in it. In this case, a
note is written in the .aux file, where the endmark actually has to be set (ie, at
the latest potential point for setting an endmark inside the theorem).

5.2 The Realization

Let 〈env〉 be a theorem-like environment. Then, additional to the counter 〈env〉,
TEX maintains two counters curr〈env〉ctr and end〈env〉ctr. In the ith environ-
ment of type 〈env〉, curr〈env〉ctr= i (the LATEX counter 〈env〉 cannot be used since
a) environments can use the counter of other environments, and b) often counters
are reinitialized inside a document). end〈env〉ctr counts the potential situations
for putting an endmark inside an environment. It is set to 1 when starting an
environment. Each time, when a situation (2)–(4) is reached, the command

\mark<\thm@romannum{currenvctr}>〈env〉<\thm@romannum{end〈env〉ctr}>

is called (where \thm@romannum just writes the value of a counter as its roman
numeral representation, e.g., 17 as xvii).
(<\thm@romannum{curr〈env〉ctr}>〈env〉<\thm@romannum{end〈env〉ctr}>uniquely
identifies all situations (2)–(4) in a document).
If at this position an endmark has to be set,

\mark<\thm@romannum{curr〈env〉ctr}>〈env〉<\thm@romannum{end〈env〉ctr}>

23

is defined in the .aux file to be \end〈env〉Symbol, otherwise it is undefined and
simply ignored.
When TEX comes to an \end{〈env〉}, it looks if it is in situation (1). If so, the
endmark is simply put at the end of the current line. Otherwise,

\def\mark<\thm@romannum{currenvctr}>〈env〉%
<\thm@romannum{end〈env〉ctr}>{〈env〉Symbol}

is written to the .aux file for setting the endmark at the latest potential position
inside the theorem in the next run.

13 Theorem (Correctness):
1. For a .tex file, which does not contain nested theorem-like environments of

the same type, in the above situation, the following holds: When compiling,
at the ith situation in the jth environment of type 〈env〉, mark j 〈env〉 i is
handled.

For .tex files which contain nested theorem-like environments of the same
type, mark k 〈env〉 l is handled, where k is the number of the latest environ-
ment of type 〈env〉 which has been called at this moment, and l is the number
of situations (2)–(4) which have occurred in environments of type 〈env〉 since
the the kth \begin{〈env〉}.

2. When finishing an environment, either an endmark is set directly (when in a
text line) or an order to put the end symbol at the latest potential position
is written to the .aux file. ♦

14 Theorem (Completeness):
The handling of endmarks is complete wrt. plain text, displaymath, equation,
eqnarray, eqnarray*, and all environments ended by endtrivlist, including
center and verbatim. ♦

So, where can be bugs ?� in the plain TEX handling of endmarks,� in some special situations which have not been tested yet,� in some special environments which have not been tested yet.� in the amsmath environments. We seldom use them, so we do not know their
pitfalls, and we ran only general test cases.

6 Problems and Questions

6.1 Known Limitations� Since ntheorem.sty uses the .aux file for storing information about the posi-
tions of endmarks, LATEX must be run twice for correctly setting the endmarks.� Since ntheorem.sty uses the .aux file for storing information about lists in
the .thm file, a minimum of two runs is needed. If theorems move in any of
these runs up to five runs can be needed to generate correct lists.

24

� Since we need to expand the optional argument of theorems in various ways
for the lists, we decided to copy the text verbatim into the .thm file. Thus,
if you use things like \thesection etc., the list won’t show the correct text.
Therefore you shouldn’t use any command that needs to be expanded.� In nested environments ending at the same time, only the endmark for the
inner environment is set, as the following example shows:

\begin{Lemma}

Some text.

\begin{Proof} The Proof \end{Proof}

\end{Lemma}

yields to

5 Lemma:
Some text.

Proof The Proof

You can handle this by specifying something invisible after the end of the
inner theorem. Then the endmark for the outer theorem is set in the next
line:

\begin{Lemma}

Some text.

\begin{Proof} The Proof \end{Proof}~

\end{Lemma}

yields to

6 Lemma:
Some text.

Proof The Proof

♦� Document option fleqn is problematic: fleqn handles equations not by $$

but by lists (check what happens for

\begin{theorem} \[displaymath \] \end{theorem}

in standard LATEX: The displaymath is not set in an own line). Also, for
long formulas, the equation number and the endmark are smashed into the
formula at the right text margin.� Naturally, ntheorem.sty will not work correctly in combination with other
styles which change the handling of

1. theorem-like environments, or

2. environments concerned with the handling of endmarks, e.g. \[...\],
eqnarray, etc.� ntheorem.sty is compatible with Frank Mittelbach’s theorem.sty, which is

the most widespread style for setting theorems.

It cannot be used with theorem.sty, but it can be used instead of it.

25

6.2 Known “Bugs” and Problems� Ending a theorem directly after the text, e.g.

\begin{Theorem} text\end{Theorem}

suppresses the endmark:

15 Theorem:
text

Therefore a space or a newline should be inserted before \end{...}.� With theoremstyle break, if the linebreak would cause ugly linebreaking in
the following text, it is suppressed.

6.3 Open Questions� For equations, we decided to put the endmark after the equation number,
which is vertically centered. Currently, we do not know, how to get the
equation number centered and the endmark at the bottom (one has to know
the internal height of the math material).� The placement of endmarks is mainly based on a check whether LATEX is in
an ordinary text line when encountering an end-of-environment. This ques-
tion is partially answered by \ifhmode: In a text line, LATEX is always in
\hmode. But, after an displaymath, LATEX is also in \hmode. Thus, ad-
ditionally \lastskip is checked: after a displaymath, \lastskip=0 holds.
In most situations, when text has been written into a line, \lastskip 6=
0. But, this does not hold, if the source code is of the following form:
...text\label{bla}: then, \lastskip=0. In those situations, the endmark
is suppressed.
?? How can it be detected whether LATEX has just ended a displaymath?� The above problem with the label: The break style enforces a linebreak by
\hfill\penalty-8000 after the \trivlist-item. Thus, TEX gets back into
the horizontal mode. The label places a “whatsit” somewhere ... and, it seems
that the “whatsit” makes TEX think that there is a line of text.

If someone has a solution to one of those questions, please inform us. (You can be
sure to be mentioned in the Acknowledgements.)

7 Code Documentation

7.1 Documentation of the Macros

1 \typeout{Style ‘\basename’, Version \fileversion\space <\filedate>}

2 \ProvidesPackage{ntheorem}[\filedate \space\fileversion]

3 \RequirePackage{ifthen}%

4 \newif\if@thmmarks\@thmmarksfalse

5 \newif\if@thref\@threffalse

6 \newif\ifthm@tempif

general setup.

26

7.1.1 Thmmarks-Related Stuff

1 \DeclareOption{thmmarks}{%*********************************

2 \PackageInfo{\basename}{Option ‘thmmarks’ loaded}%

3 %

4 \@thmmarkstrue

5 \newcounter{endNonectr}

6 \newcounter{currNonectr}

7 \newif\ifsetendmark\setendmarktrue

activate placement of endmarks and define counters for upper level.
\ifsetendmark: true if an endmark has to be set in a complex situation which
must be handled by the .aux file. For further comments see \@endtheorem.

\thm@romannum The functionality of latex.ltx’s \roman command converts numbers into strings,
e.g., 17 into xvii. It is used to put notes into the .aux file. It must be locally
defined, just duplicating the definition of \roman in latex.ltx since some packages
redefine \roman:

8 \gdef\thm@romannum#1{\expandafter\thm@roman@num\csname c@#1\endcsname}%

9 \gdef\thm@roman@num#1{\romannumeral #1}%

In the following, all relevant environments are changed for handling potential end
mark positions:

Changes to List Environment
Original: ltlists.dtx

\endtrivlist Replaces LATEX’s \endtrivlist. An augmented functionality of LATEX’s \endtrivlist
is contained in \@endtrivlist.

10 \gdef\endtrivlist{%

11 \@endtrivlist{\PotEndMark{\unskip\nobreak\hfill\nobreak}}}

At an \endtrivlist (which is called at the end of \list environments and several
other environments), \@endtrivlist is called to end the \trivlist and set a
potential position for an endmark at the end of the line if TEX is in a text line.

\@endtrivlist A new command] which augments LATEX’s functionality of \endtrivlist by check-
ing if an end mark has to be set:

12 \gdef\@endtrivlist#1{% % from \endtrivlist

13 \if@inlabel \indent\fi

14 \if@newlist \@noitemerr\fi

15 \ifhmode

16 \ifdim\lastskip >\z@ #1\unskip \par %<<<<<<<<<<<<<<<<<<<<<<

17 \else \unskip \par \fi

18 \fi

19 \if@noparlist \else

20 \ifdim\lastskip >\z@

21 \@tempskipa\lastskip \vskip -\lastskip

22 \advance\@tempskipa\parskip \advance\@tempskipa -\@outerparskip

23 \vskip\@tempskipa

24 \fi

25 \@endparenv

26 \fi}

27

New: parameter #1.
#1 is executed when the \trivlist ends with a text line (ie the endmark can be
put simply at the end of the line):
Line 16: case split: if in hmode and \lastskip > 0, then TEX is in a text line, the
endmark is set here.

Changes to Math Environments
Original: ltmath.dtx

\endequation For equations, end marks are placed behind the equation number:

27 \gdef\SetMark@endeqn{\quad}% as default, cf. option leqno

28 \gdef\endequation{\eqno \hbox{\@eqnnum \PotEndMark{\SetMark@endeqn}}%

29 $$\global\@ignoretrue}

Line 27: As default, work for equation numbers at the right: Then, a \quad is placed
between equation number and endmark.

Line 28: In addition to the equation number (set by \@eqnnum at the right of the
line) \SetMark@endeqn is carried out.

\[If an end mark is set, a displaymath is put into box such that the end marks appears
at its bottom level at the right. Thus, also the definition of \[has to be changed:

30 \gdef\[{%

31 \relax\ifmmode

32 \@badmath

33 \else

34 \ifvmode

35 \nointerlineskip

36 \makebox[.6\linewidth]%

37 \fi

38 $$\stepcounter{end\InTheoType ctr}%

39 \@ifundefined{mark\thm@romannum{curr\InTheoType ctr}%

40 \InTheoType\thm@romannum{end\InTheoType ctr}}{\relax}%

41 {\ifx\csname\InTheoType Symbol\endcsname\@empty\else

42 \boxmaxdepth=.5ex\begin{array}[b]{@{}l}%

43 \boxmaxdepth=\maxdimen\displaystyle\fi}%

44 \addtocounter{end\InTheoType ctr}{-1}%

45 %%$$ BRACE MATCH HACK

46 \fi}

Lines 31–37, 45, 46: the old definition.

Lines 38–41: The end position of a displaymath inside a theorem-environment cor-
responds to end\InTheoType ctr+1. An endmark has to be set there, if

\mark<\thm@romannum{curr#1ctr}>#1<\thm@romannum{end#1ctr}+1 >

is defined and not the empty symbol.

Lines 42–43: If so, the whole displayed stuff is put in an array with maximal depth
0.5ex and vertically adjusted with its bottom line (then, the endmarks will
appear adjusted to its bottom line).

Line 44: The counter has to be re-decremented.

\] At the end of a displaymath, the end marks is set at its bottom level:

47 \gdef\]{%

48 \stepcounter{end\InTheoType ctr}%

28

49 \@ifundefined{mark\thm@romannum{curr\InTheoType ctr}%

50 \InTheoType\thm@romannum{end\InTheoType ctr}}{\relax}%

51 {\ifx\csname\InTheoType Symbol\endcsname\@empty\else

52 \end{array}\fi}%

53 \addtocounter{end\InTheoType ctr}{-1}%

54 \relax\ifmmode

55 \ifinner

56 \@badmath

57 \else

58 \PotEndMark{\eqno}\global\@ignoretrue$$%%$$ BRACE MATCH HACK

59 \fi

60 \else

61 \@badmath

62 \fi

63 \ignorespaces}

Lines 48–53: Look, if an endmark has to be set in this displaymath (analogous to
lines 38–44 of \def\[) If so, there is an inner array which has to be closed (line
52).

Lines 54–63: the old definition.

Line 58: changed to set an endmark at the right of the line if necessary (this is done
by \eqno).

\endeqnarray For \eqnarrays, the end marks is set below the number of the last equation:

64 \gdef\SetMark@endeqnarray#1{\llap{\raisebox{-1.3em}{#1}}}

65 \gdef\endeqnarray{%

66 \global\let\Oldeqnnum=\@eqnnum

67 \gdef\@eqnnum{\Oldeqnnum\PotEndMark{\SetMark@endeqnarray}}%

68 \@@eqncr

69 \egroup

70 \global\advance\c@equation\m@ne

71 $$\global\@ignoretrue

72 \global\let\@eqnnum\Oldeqnnum}

Line 64: As default work for equation numbers at the right: Then, the endmark is
placed below the last equation number at the right margin.

New: Lines 66, 67, 72:

Line 66: save \@eqnnum.

Line 67: define \@eqnnum to carry out \Oldeqnnum, then a potential endmark po-
sition is handled: if an endmark is set, between the equation number and the
endmark, the command sequence \SetMark@endeqnarray is carried out – there,
since \SetMark@endeqnarray is a function of one argument, the endmark will
be this argument.

Lines 68–71: from latex.ltx. Line 68 sets the equation number.

Line 72: restore \@eqnnum.

\endeqnarray* In an \eqnarray*, the end mark is set at the right of the last equation:

73 \@namedef{endeqnarray*}{%

74 % from \@@eqncr:

75 \let\reserved@a\relax

76 \ifcase\@eqcnt \def\reserved@a{& & &}\or \def\reserved@a{& &}%

77 \or \def\reserved@a{&}\else

29

78 \let\reserved@a\@empty

79 \@latex@error{Too many columns in eqnarray environment}\@ehc\fi

80 \reserved@a {\normalfont \normalcolor \PotEndMark{}}%

81 \global\@eqnswtrue\global\@eqcnt\z@\cr

82 %

83 \egroup

84 \global\advance\c@equation\m@ne

85 $$\global\@ignoretrue}

This is just LATEX’s \endeqnarray where lines 75–81 are inserted from \@@eqncr

and augmented (line 80) to set a potential endmark (with no additional commands)
at the end of the current line.

Changes to Tabbing Environment
Original: lttab.dtx

\endtabbing Here, the \endtrivlist modification is not sufficient: LATEX is not in hmode when
it calls \endtrivlist from \endtabbing; additionally, \@stopline already outputs
a linebreak. Thus, the end mark is inserted before \@stopline at the right margin
(using \‘).

86 \gdef\endtabbing{%

87 \PotEndMark{\‘}\@stopline\ifnum\@tabpush >\z@ \@badpoptabs

88 \fi\endtrivlist}

Changes to Center Environment
Original: ltmiscen.dtx

\endcenter In LATEX, \endcenter just calls \endtrivlist. Here, the situation is more complex
since the the endmark has to be put in the last line without affecting its centering:
if in a text line (only then, here is a potential endmark position):

89 \gdef\endcenter{%

90 \@endtrivlist

91 {\PotEndMark{\rightskip0pt%

92 \settowidth{\leftskip}%

93 { \csname mark\thm@romannum{curr\InTheoType ctr}\InTheoType

94 \thm@romannum{end\InTheoType ctr}\endcsname}%

95 \advance\leftskip\@flushglue\hskip\@flushglue}}}

The \rightskip of the line is set to 0, \leftskip is set to the width of one space
(since on the right, one space is added after the text) plus the endmark and infinitely
stretchable glue (\@flushglue), and also the line is continued with \@flushglue

(the actual position is one space after the text), and then the endmark is placed
(by \PotEndMark).

Handling of Endmarks

\@endtheorem-thmmarks \@endtheorem is called for every \end{〈env〉}, where 〈env〉 is a theorem-like envi-
ronment. \@endtheorem is extended to organize the placement of the corresponding
end mark (\InTheoType gives the innermost theorem-like environment, i.e. the one
to be ended):

96 \gdef\@empty{}

97 \gdef\@endtheorem{%

30

98 \expandafter

99 \ifx\csname\InTheoType Symbol\endcsname\@empty\setendmarkfalse\fi

100 \@endtrivlist

101 {\ifsetendmark

102 \unskip\nobreak\hfill\nobreak\csname\InTheoType Symbol\endcsname

103 \setendmarkfalse \fi}%

104 \ifsetendmark\OrganizeTheoremSymbol\else\global\setendmarktrue\fi

105 \csname\InTheoType @postwork\endcsname

106 }

Lines 98, 99: if the end symbol of the environment 〈env〉 to be closed is empty,
simply no end symbol has to be set (it makes a difference, if no end symbol is
set, or if an empty end symbol is set).

Lines 100, 104: (originally, it calls \endtrivlist):

Lines 100, 102, 103: \@endtrivlist is called to put 〈env〉Symbol at the end of the
line and set setendmark to false if TEX is in a text line and setendmark is true.
At this point, setendmark is false iff the user has disabled it locally or the end
symbol is empty.

Line 101: the endmark is not set, if setendmark is false.

Line 104: if setendmark is true, the correct placement of the end symbol is orga-
nized, else (ie either setendmarkfalse is set by the user, or the endmark is
already set by \@endtrivlist) reset setendmark to true.
For further comments see \@endtrivlist and \OrganizeTheoremSymbol.

The construction in line 102 guarantees that the endmark is put at the end of the
line, even if it is the only letter in this line.

\NoEndMark By \NoEndMark, the automatical setting of an end mark is blocked for the current

environment.

107 \gdef\NoEndMark{\global\setendmarkfalse}

set setendmark to false. It is automatically reset to true after the end of the
current environment.

\qed With \qed, the user can locally change the end symbol to appear:

108 \gdef\qed{\expandafter\def\csname \InTheoType Symbol\endcsname

109 {\the\qedsymbol}}%

When calling \qed, the end symbol of the innermost theorem-like environment at
that time is set to the value stored in \qedsymbol at that time.

\PotEndMark Handling a potential endmark position:

110 \gdef\PotEndMark#1{\SetEndMark{\InTheoType}{#1}}%

Argument: 〈cmd seq〉:=#1 is a command sequence to be executed when setting the
endmark.
It adds the current theorem type 〈env〉 to the parameters, and calls
\PotEndMark{〈env〉}{〈cmd seq〉}.

\SetEndMark \SetEndMark sets an endmark for an environment. It is called by \PotEndMark.

111 \gdef\SetEndMark#1#2{%

112 \stepcounter{end#1ctr}%

31

113 \@ifundefined{mark\thm@romannum{curr#1ctr}#1\thm@romannum{end#1ctr}}%

114 {\relax}%

115 {#2{\csname mark\thm@romannum{curr#1ctr}#1\thm@romannum{end#1ctr}\endcsname

116 \ifdim\rightmargin>\z@\hskip-\rightmargin\fi

117 \hbox to 0cm{}}}}%

Arguments:
〈env〉:=#1: current theorem-environment.
〈cmd seq〉:= #2: is a command sequence to be executed when setting the endmark.
Both arguments are transmitted from by \PotEndMark.

Line 112: increments end〈env〉ctr for preparing the next situation for setting a po-
tential endmark.

Line 113, 114: if

\mark<\thm@romannum{curr〈env〉ctr}>〈env〉<\thm@romannum{end〈env〉ctr}>

is undefined – which is the case iff at this position no endmark has to be set –,
nothing is done,

Line 115: otherwise, 〈cmd seq〉 and then

\mark<\thm@romannum{curr〈env〉ctr}>\env<\thm@romannum{end〈env〉ctr}>,

which is defined in the .aux file to be the end symbol are called.
The construction 〈cmd seq〉{. . . } in line 115 allows the handling of the end
symbol as an argument of 〈cmd seq〉 as needed for \endeqnarray.

Line 116: By \hskip-\rightmargin\hbox to 0cm{}, a negative hspace of amount
\rightmargin is added after the end symbol – thus, the symbol is set as there
were no right margin (this concerns, e.g., \quote environments).
(applied only if \rightmargin is more than 0 – otherwise bug if preceding line
ends with hyphenation.)

Writing to .aux file. (copied from \def\label (ltxref.dtx))

118 \newskip\mysavskip

119 \gdef\@bbsphack{%

120 \ifvmode\else\mysavskip\lastskip

121 \unskip\fi}

122 %

123 \gdef\@eesphack{%

124 \ifdim\mysavskip>\z@

125 \vskip\mysavskip \else\fi}

Lines 119–121 and 122–124 are similar to \@bsphack and \@bsphack of latex.ltx.
They undo resp. redo the last skip.

Note that @bbsphack and @eesphack are also part of the thref option. Change
both if you change them.

\OrganizeTheoremSymbol The information for setting the end marks is written to the .aux file:

126 \gdef\OrganizeTheoremSymbol{%

127 \@bbsphack

128 \edef\thm@tmp{\expandafter\expandafter\expandafter\thm@meaning

129 \expandafter\meaning\csname\InTheoType Symbol\endcsname\relax}%

130 \protected@write\@auxout{}%

32

131 {\string\global\string\def\string\mark%

132 \thm@romannum{curr\InTheoType ctr}\InTheoType \thm@romannum{end\InTheoType ctr}%

133 {\thm@tmp}}%

134 \@eesphack}

Lines 130–132: Write
\global\def\mark<\thm@romannum{curr〈env〉ctr}> 〈env〉 <\thm@romannum{end〈env〉ctr}>
{<〈env〉Symbol>} to the .aux file.
〈env〉:=\InTheoType gives the innermost theorem-like environment, i.e. the one
the end symbol has to be set for.

135 } % end of option [thmmarks]

7.1.2 Option leqno to Thmmarks

136 \DeclareOption{leqno}{% ***

137 \if@thmmarks

138 \PackageInfo{\basename}{Option ‘leqno’ loaded}%

139 \gdef\SetMark@endeqn#1{\hss\llap{#1}}

140 \gdef\SetMark@endeqnarray#1{\hss\llap{#1}}

141 \fi}%

leqno is only active it thmmarks is also active.

Line 139, 140: Since with leqno, the equation number is placed on the left, after
infinitely stretchable glue, the endmark can be set straight at the right margin.

7.1.3 Option fleqn to Thmmarks

142 \DeclareOption{fleqn}{% ***

143 \if@thmmarks

144 \PackageInfo{\basename}{Option ‘fleqn’ loaded}%

fleqn is only active it thmmarks is also active.
\[Since fleqn treats displayed math as trivlists, it’s quite another thing:

145 \renewcommand\[{\relax

146 \ifmmode\@badmath

147 \else

148 \begin{trivlist}%

149 \@beginparpenalty\predisplaypenalty

150 \@endparpenalty\postdisplaypenalty

151 \item[]\leavevmode

152 \hb@xt@\linewidth\bgroup $\m@th\displaystyle %$

153 \hskip\mathindent\bgroup

154 \stepcounter{end\InTheoType ctr}%

155 \@ifundefined{mark\thm@romannum{curr\InTheoType ctr}%

156 \InTheoType\thm@romannum{end\InTheoType ctr}}{\relax}%

157 {\ifx\csname\InTheoType Symbol\endcsname\@empty\else

158 \boxmaxdepth=.5ex\begin{array}[b]{@{}l}%

159 \boxmaxdepth=\maxdimen\displaystyle\fi}%

160 \addtocounter{end\InTheoType ctr}{-1}%

161 \fi}

Lines 145–153, 161: the old definition.

33

Line 154–160: if an endmark has to be set in this displaymath, it is put into an array
with depth ≤ 0.5ex, and vertically adjusted to the bottom line.

\] Here, the end mark is placed after a \hfil ate the end of the line containing the
displaymath:

162 \renewcommand\]{%

163 \stepcounter{end\InTheoType ctr}%

164 \@ifundefined{mark\thm@romannum{curr\InTheoType ctr}%

165 \InTheoType\thm@romannum{end\InTheoType ctr}}{\relax}%

166 {\ifx\csname\InTheoType Symbol\endcsname\@empty\else

167 \end{array}\fi}%

168 \addtocounter{end\InTheoType ctr}{-1}%

169 \relax\ifmmode

170 \egroup $\hfil\PotEndMark{}% $

171 \egroup

172 \end{trivlist}%

173 \else \@badmath

174 \fi}

Lines 163–167: Look, if an endmark has to be set in this displaymath. If so, close
the inner array.

Lines 169–174: the old definition.

Line 170: Added \PotEndMark.

\endequation for equations, the end mark is also set with the equation number:

175 \gdef\endequation{%

176 $\hfil % $

177 \displaywidth\linewidth\hbox{\@eqnnum \PotEndMark{\SetMark@endeqn}}%

178 \egroup

179 \endtrivlist}

Line 177: When the equation number is set, also the endmark is set with the same
trick as for \endequation without fleqn.

\endeqnarray When the equation number is set, also the endmark is set with the same trick as
for \endeqnarray without fleqn (see Lines 181, 182, 187):

180 \gdef\endeqnarray{%

181 \global\let\Oldeqnnum=\@eqnnum

182 \gdef\@eqnnum{\Oldeqnnum\PotEndMark{\SetMark@endeqnarray}}%

183 \@@eqncr

184 \egroup

185 \global\advance\c@equation\m@ne$$% $$

186 \global\@ignoretrue

187 \global\let\@eqnnum\Oldeqnnum}

188 \fi}% end of option fleqn

7.1.4 Extended Referencing Facilities

189 \DeclareOption{thref}{%**

190 \PackageInfo{\basename}{Option ‘thref’ loaded}%

191 \@threftrue

Option thref needs a special handling when combined with amsmath. This is also
a reason why it is handled first.

34

\bbsphack(2)

192 \newskip\mysavskip

193 \gdef\@bbsphack{%

194 \ifvmode\else\mysavskip\lastskip

195 \unskip\fi}

196 %

197 \gdef\@eesphack{%

198 \ifdim\mysavskip>\z@

199 \vskip\mysavskip \else\fi}

Note that @bbsphack and @eesphack are also part of the thmmarks option. Change
both if you change them.

Communication of theorem types for references. The thref functionality
needs to know the respective theorem type of the referenced labels. This is incor-
porated as additional arguments in label and newlabel/@newl@abel. Note that
if the hyperref package is used, the handling is different (see Option hyperref).

\label The original \label macro is extended (cf. ltxref.dtx) with an optional argument,
containing the type of the labeled construct. (when option hyperref is used,)

200 \def\label#1{%

201 \@ifnextchar[%]

202 {\label@optarg{#1}}%

203 {\thm@makelabel{#1}}}

204 %

205 \def\thm@makelabel#1{%

206 \@bbsphack

207 \edef\thm@tmp{\expandafter\expandafter\expandafter\thm@meaning

208 \expandafter\meaning\csname\InTheoType Keyword\endcsname\relax}%

209 \protected@write\@auxout{}%

210 {\string\newlabel{#1}{{\@currentlabel}{\thepage}}[\thm@tmp]}%

211 \@eesphack}

212 %

213 \def\label@optarg#1[#2]{%

214 \@bsphack

215 \protected@write\@auxout{}%

216 {\string\newlabel{#1}{{\@currentlabel}{\thepage}}[#2]}%

217 \@esphack}

thm@makelabel: If no optional argument is given, the keyword of the current envi-
ronment type is used instead.

label@optarg: The original definition, extended with the optional argument which
is appended to the \newlabel-command to be written to the .aux-file.

\newlabel The original behavior of \newlabel (called when evaluating the .aux-file) is also
adapted.
Original syntax: \newlabel{〈label〉}{{〈section〉}{〈page〉}}
Modified syntax: \newlabel{〈label〉} {{〈section〉}{〈page〉}}[〈type〉]
Definition of \newlabel: \def\newlabel{\@newl@bel r}.
Therefore, the modification is encoded into the \@newl@bel macro:

218 \def\@newl@bel#1#2#3{%

219 \@ifpackageloaded{babel}{\@safe@activestrue}\relax%

220 \@ifundefined{#1@#2}%

35

221 \relax

222 {\gdef \@multiplelabels {%

223 \@latex@warning@no@line{There were multiply-defined labels}}%

224 \@latex@warning@no@line{Label ‘#2’ multiply defined}}%

225 \global\@namedef{#1@#2}{#3}%

226 \@ifnextchar[{\set@label@type{#1}{#2}}%]

227 \relax}%

228 \def\set@label@type#1#2[#3]{%

229 \global\@namedef{#1@#2@type}{#3}}

the macro is called with three arguments (same as originally):
#1=r,
〈labelname〉 := #2 is the label name,
#3 is a pair (section, page-number) consisting of the values needed for \ref and
\pageref, respectively.

Line 219: adaptation to babel

Lines 220–225: The original definition (both standard LATEX and babel).

Line 226: if an optional argument follows (containing the environment-type), con-
tinue with \set@label@type, otherwise return (the original behavior).

Lines 228,229: set \r@〈labelname〉@type to the type of the respective environment.

\thref \thref is an adaptation of \ref:

230 \def\thref#1{%

231 \expandafter\ifx\csname r@#1@type\endcsname\None

232 \PackageWarning{\basename}{thref: Reference Type of ‘#1’ on page

233 \thepage \space undefined}\G@refundefinedtrue

234 \else\csname r@#1@type\endcsname~\fi%

235 \expandafter\@setref\csname r@#1\endcsname\@firstoftwo{#1}}

Lines 230,235: similar to \ref.

Line 219: if a legal theorem type is given, then output \r@〈labelname〉@type and
avoid linebreaking between the type and the number.

\testdef A problem occurred, when about 250 labels to theorem-like environments have been
defined: after the end of a document, the .aux file is read once more (to check if
references changed). Here, LATEX redefines \@newl@bel into \@testdef – and LATEX
does not know that ntheorem’s \label has an additional optional argument. Thus,
the argument values are not processed, but are output as normal text. Normally,
this did not matter since output has already been finished by a \clearpage in
\end{document}. For so many labels, a page gets filled and the output routine is
called.

236 \newcommand\org@testdef{}

237 \let\org@testdef\@testdef

238 \def\@testdef#1#2#3{%

239 \org@testdef{#1}{#2}{#3}%

240 \@ifnextchar[{\thm@gobbleopt}{}%

241 }

242 \newcommand\thm@gobbleopt{}

243 \long\def\thm@gobbleopt[#1]{}

Line 239: process the optional argument.

244 }% end of option thref **

36

7.1.5 Option amsmath to Thmmarks

Most of the commands are extensions of commands in amsmath.sty.

245 \DeclareOption{amsmath}{% ***

246 \if@thref

247 \PackageInfo{\basename}{option ‘amsmath’ handling for ‘thref’ loaded}%

if thref is active, the handling of labels in amsmath equations has also to be
adapted.

ams-thref

248 \let\ltx@label\label

keep the handling of \label ... (the one defined above in the thref option).
amsmath implements a special handling of \label inside of displaymath environ-
ments. It is extended to process the optional argument provided be the thref option:

249 \global\let\thm@df@label@optarg\@empty

250 \def\label@in@display#1{%

251 \ifx\df@label\@empty\else

252 \@amsmath@err{Multiple \string\label’s:

253 label ’\df@label’ will be lost}\@eha

254 \fi

255 \gdef\df@label{#1}%

256 \@ifnextchar[{\thm@label@in@display@optarg}{\thm@label@in@display@noarg}%]

257 }

258 \def\thm@label@in@display@noarg{%

259 \global\let\thm@df@label@optarg\@empty

260 }

261 \def\thm@label@in@display@optarg[#1]{%

262 \gdef\thm@df@label@optarg{#1}%

263 }

The contents of \df@label is handled when the equation is finished. (Cur-
rently) this happens in three macros. The modification consists of the check if
\thm@df@label@optarg is non-empty (i.e., holds the optional argument), and to
handle it.

264 \def\endmathdisplay@a{%

265 \if@eqnsw \gdef\df@tag{\tagform@\theequation}\fi

266 \if@fleqn \@xp\endmathdisplay@fleqn

267 \else \ifx\df@tag\@empty \else \veqno \alt@tag \df@tag \fi

268 \ifx\df@label\@empty \else

269 \ifx\thm@df@label@optarg\@empty \@xp\ltx@label\@xp{\df@label}%

270 \else \@xp\ltx@label\@xp{\df@label}[\thm@df@label@optarg]\fi

271 \fi

272 \fi

273 \ifnum\dspbrk@lvl>\m@ne

274 \postdisplaypenalty -\@getpen\dspbrk@lvl

275 \global\dspbrk@lvl\m@ne

276 \fi

277 }

278 \def\make@display@tag{%

279 \if@eqnsw

280 \refstepcounter{equation}%

281 \tagform@\theequation

37

282 \else

283 \iftag@

284 \df@tag

285 \global\let\df@tag\@empty

286 \fi

287 \fi

288 \ifmeasuring@

289 \else

290 \ifx\df@label\@empty\else

291 \ifx\thm@df@label@optarg\@empty \@xp\ltx@label\@xp{\df@label}%

292 \else \@xp\ltx@label\@xp{\df@label}[\thm@df@label@optarg]\fi

293 \global\let\df@label\@empty

294 \fi

295 \fi

296 }

297 \def\endmathdisplay@fleqn{%

298 $\hfil\hskip\@mathmargin\egroup

299 \ifnum\badness<\inf@bad \let\too@wide\@ne \else \let\too@wide\z@ \fi

300 \ifx\@empty\df@tag

301 \else

302 \setbox4\hbox{\df@tag

303 \ifx\thm@df@label@optarg\@empty \@xp\ltx@label\@xp{\df@label}%

304 \else \@xp\ltx@label\@xp{\df@label}[\thm@df@label@optarg]\fi

305 }%

306 \fi

307 \csname emdf@%

308 \ifx\df@tag\@empty U\else \iftagsleft@ L\else R\fi\fi

309 \endcsname

310 }

311 \fi

312 % end of option amsmath/thref **

313 \if@thmmarks

314 \PackageInfo{\basename}{option ‘amsmath’ handling for ‘thmmarks’ loaded}%

315 \newdimen\thm@amstmpdepth

A temporarily used register.

\TagsPlusEndmarks Since amsmath uses “tags” for setting end marks, some macros are defined which
prepare tags which include endmarks:

316 \gdef\TagsPlusEndmarks{%

317 \global\let\Old@maketag@@@=\maketag@@@

318 \global\let\Old@df@tag=\df@tag

319 \if@eqnsw\SetTagPlusEndMark

320 \else

321 \iftag@\SetTagPlusEndMark

322 \else\SetOnlyEndMark

323 \fi

324 \fi}

Lines 317, 318: store the original macros.

Line 319: if equation numbers are set as default, call \SetTagPlusEndMark to set
tag and end mark.

Lines 320, 321: if a tag is set manually, call \SetTagPlusEndMark to set tag and end
mark.

38

Line 322: otherwise, call \SetOnlyEndMark to set only an end mark.

\SetOnlyEndMark

325 \gdef\SetOnlyEndMark{%

326 \global\tag@true

327 \iftagsleft@

328 \gdef\df@tag{\hbox

329 to \displaywidth{\hss\PotEndMark{\maketag@@@}}}%

330 \else

331 \gdef\df@tag{\PotEndMark{\maketag@@@}}%

332 \fi}

Set only an end mark:

Line 326: force setting the end mark as a tag:

Lines 328,329: if tags are set to the left, the tag consists of a \hbox over the whole
displaywidth, with the (potential) endmark at its right.

Line 331: if tags are set to the right, the tag consists only of the (potential) endmark.

\SetTagPlusEndMark

333 \newdimen{\tagwidth}

334 \gdef\SetTagPlusEndMark{%

335 \iftagsleft@

336 \gdef\maketag@@@##1{%

337 \settowidth{\tagwidth}{$##1$}%% %% WM 17.10.2007

338 \hbox to \tagwidth{%

339 \hbox to \displaywidth{\m@th\normalfont##1%

340 \hss\PotEndMark{\hss}}\hss}}%

341 \else

342 \gdef\maketag@@@##1{\hbox{\m@th\normalfont##1%

343 \llap{\hss\PotEndMark{\raisebox{-1.3em}}}}}%

344 \fi}

Set a tag and an end mark:
Lines 334–343: redefine the \maketag@@@ macro:

Lines 335–339: if tags are set to the left, build a box of the whole displaywidth and
put the original tag on the left, and the (potential) endmark at the right. Put
this box with width 0 and continue.

Lines 340,341: if the tags are set to the right, the (potential) end mark is put below
it.

\tagform@ \maketag@@@ is also used via \tagform@ in eqref that may be called inside an
environment. There, the original functionality must be used.

345 \let\ams@@maketag@@@\maketag@@@

346 \gdef\tagform@#1{%

347 \ams@@maketag@@@{(\ignorespaces#1\unskip\@@italiccorr)}}

\RestoreTags

348 \gdef\RestoreTags{%

349 \global\let\maketag@@@=\Old@maketag@@@

350 \global\let\df@tag=\Old@df@tag}

Lines 349,350: restore the original macros.

39

\endgather In the gather environment, just the augmented tag is used:

351 \gdef\endgather{%

352 \TagsPlusEndmarks % <<<<<<<<<

353 \math@cr

354 \black@\totwidth@

355 \egroup

356 $$%

357 \RestoreTags % <<<<<<<<<

358 \ignorespacesafterend}

359 %

360 \expandafter\let\csname endgather*\endcsname\endgather

New:
Line 352: the last tag contains the potential endmark.

Line 357: restore the original macros.

Line 360: Since let always takes the expansion of a macro when the let is executed,
all let’s have to be adjusted (this is the same for all subsequent let-statements).

\math@cr@@@align

\endalign \endalign also uses the augmented tags:

361 \def\endalign{%

362 \ifingather@\else % <<<<<<<<<

363 \TagsPlusEndmarks\fi % <<<<<<<<<

364 \math@cr

365 \black@\totwidth@

366 \egroup

367 \ifingather@

368 \restorealignstate@

369 \egroup

370 \nonumber

371 \ifnum0=‘{\fi\iffalse}\fi

372 \else

373 $$%

374 \RestoreTags % <<<<<<<<<

375 \fi

376 \ignorespacesafterend}

New:
Lines 362, 363: if the align is not inside another environment, its tags have to

contain the endmarks.

Line 374: this case, the original macros have to be restored.

377 \expandafter\let\csname endalign*\endcsname\endalign

378 \let\endxalignat\endalign

379 \expandafter\let\csname endxalignat*\endcsname\endalign

380 \let\endxxalignat\endalign

381 \let\endalignat\endalign

382 \expandafter\let\csname endalignat*\endcsname\endalign

383 \let\endflalign\endalign

384 \expandafter\let\csname endflalign*\endcsname\endalign

Adjust let-statements.

40

\lendmultline The multline environment has two different \end commands, depending if the
equation numbers are set on the left or on the right:

385 \def\lendmultline@{%

386 \global\@eqnswfalse\tag@false\tagsleft@false

387 \rendmultline@}

End of multline environment if tags are set to the left: in this case, the last line
of a multline does not contain a tag. Thus the situation of setting an endmark
tag at the right is faked:

Lines 386, 387: display no equation number, don’t set an equation tag (but use the
tag mechanism for the end mark - see \TagsPlusEndmarksand \SetOnlyEndMark),
set it at the right, and call \rendmultline.

\rendmultline \rendmultline also uses the augmented tags:

388 \def\rendmultline@{%

389 \TagsPlusEndmarks % <<<<<<<<<

390 \iftag@

391 $\let\endmultline@math\relax

392 \ifshifttag@

393 \hskip\multlinegap

394 \llap{\vtop{%

395 \raise@tag

396 \normalbaselines

397 \setbox\@ne\null

398 \dp\@ne\lineht@

399 \box\@ne

400 \hbox{\strut@\make@display@tag}%

401 }}%

402 \else

403 \hskip\multlinetaggap

404 \make@display@tag

405 \fi

406 \else

407 \hskip\multlinegap

408 \fi

409 \hfilneg

410 \math@cr

411 \egroup$$%

412 \RestoreTags} % <<<<<<<<<

New:
Line 389: last tag contains the potential endmark.
Line 413: restore the original macros

\endmathdisplay

413 \def\endmathdisplay#1{%

414 \ifmmode \else \@badmath \fi

415 \TagsPlusEndmarks % <<<<<<<<<

416 \endmathdisplay@a

417 $$%

418 \RestoreTags % <<<<<<<<<

419 \global\let\df@label\@empty \global\let\df@tag\@empty

420 \global\tag@false \global\let\alt@tag\@empty

421 \global\@eqnswfalse

422 }

41

Added Line 416: set potential end mark at bottom niveau of displaymath.

equation

423 \renewenvironment{equation}{%

424 \edef\reset@equation{%

425 \@nx\setcounter{equation}{\number\c@equation}}%

426 \refstepcounter{equation}%

427 \st@rredfalse \global\@eqnswtrue

428 \mathdisplay{equation}%

429 }{%

430 \endmathdisplay{equation}%

431 \ignorespacesafterend

432 }

433 \renewenvironment{equation*}{%

434 \st@rredtrue \global\@eqnswfalse

435 \mathdisplay{equation*}%

436 }{%

437 \endmathdisplay{equation*}%

438 \ignorespacesafterend

439 }

unchanged from amsmath.sty.

440 \fi

441 }% end of option amsmath/thmmarks **************************************

7.1.6 Theorem-Layout Stuff

442 \let\thm@usestd\@undefined

443 \DeclareOption{standard}{\let\thm@usestd\relax}

444 \let\thm@noconfig\@undefined

445 \DeclareOption{noconfig}{\let\thm@noconfig\relax}

Options for selection of a configuration: if no such option is given ntheorem.cfg

will be loaded (which has to be provided by the user), [standard] will load
ntheorem.std, a predefined setting, and [noconfig] does not preload any con-
figuration.

446 \gdef\InTheoType{None}

447 \gdef\NoneKeyword{None}

448 \gdef\NoneSymbol{None}

449 \gdef\None{None}

Set \InTheoType to none on the upper document level.
\newtheoremstyle With \newtheoremstyle, new theorem-layout styles are defined.

450 \gdef\newtheoremstyle#1#2#3{%

451 \expandafter\@ifundefined{th@#1}%

452 {\expandafter\gdef\csname th@#1\endcsname{%

453 \def\@begintheorem####1####2{#2}%

454 \def\@opargbegintheorem####1####2####3{#3}}}%

455 {\PackageError{\basename}{Theorem style #1 already defined}\@eha}}

Arguments:
〈style〉:=#1: the name of the theoremstyle to be defined,
〈cmd seq1 〉:=#2: command sequence for setting the header for environment in-
stances with no optional text,

42

〈cmd seq2 〉:=#3: command sequence for setting the header for environment in-
stances with optional text.
Line 451: if this style is not yet defined, define it.
Line 452: define \th@〈style〉 to be a macro which defines
Line 453: a) the two-argument macro \@begintheorem#1#2 to be 〈cmd seq1 〉,
Line 454: b) \@opargbegintheorem#1#2#3 to be 〈cmd seq2 〉.

The predefined theorem styles use this command.

\renewtheoremstyle

456 \gdef\renewtheoremstyle#1#2#3{%

457 \expandafter\@ifundefined{th@#1}%

458 {\PackageError{\basename}{Theorem style #1 undefined}\@ehc}%

459 {}%

460 \expandafter\let\csname th@#1\endcsname\relax

461 \newtheoremstyle{#1}{#2}{#3}}

Arguments:
〈style〉:=#1: the name of the theoremstyle to be defined,
#2, #3 as for \newtheoremstyle.
Checks, if theoremstyle 〈style〉 is already defined. If so, \th@〈style〉 is made unde-
fined and \newtheoremstyle is called with the same arguments.

Predefined Theorem Styles

theoremstyles th@plain, th@change, and th@margin taken from theorem.sty by Frank Mittelbach;
the break-styles have been changed.

462 \newtheoremstyle{plain}%

463 {\item[\hskip\labelsep \theorem@headerfont ##1\ ##2\theorem@separator]}%

464 {\item[\hskip\labelsep \theorem@headerfont ##1\ ##2\ (##3)\theorem@separator]}

465 %

466 \newtheoremstyle{break}%

467 {\item[\rlap{\vbox{\hbox{\hskip\labelsep \theorem@headerfont

468 ##1\ ##2\theorem@separator}\hbox{\strut}}}]}%

469 {\item[\rlap{\vbox{\hbox{\hskip\labelsep \theorem@headerfont

470 ##1\ ##2\ (##3)\theorem@separator}\hbox{\strut}}}]}

471 %

472 \newtheoremstyle{change}%

473 {\item[\hskip\labelsep \theorem@headerfont ##2\ ##1\theorem@separator]}%

474 {\item[\hskip\labelsep \theorem@headerfont ##2\ ##1\ (##3)\theorem@separator]}

475 %

476 \newtheoremstyle{changebreak}%

477 {\item[\rlap{\vbox{\hbox{\hskip\labelsep \theorem@headerfont

478 ##2\ ##1\theorem@separator}\hbox{\strut}}}]}%

479 {\item[\rlap{\vbox{\hbox{\hskip\labelsep \theorem@headerfont

480 ##2\ ##1\ (##3)\theorem@separator}\hbox{\strut}}}]}

481 %

482 \newtheoremstyle{margin}%

483 {\item[\theorem@headerfont \llap{##2}\hskip\labelsep ##1\theorem@separator]}%

484 {\item[\theorem@headerfont \llap{##2}\hskip\labelsep ##1\ (##3)\theorem@separator]}

485 %

486 \newtheoremstyle{marginbreak}%

487 {\item[\rlap{\vbox{\hbox{\theorem@headerfont

43

488 \llap{##2}\hskip\labelsep\relax ##1\theorem@separator}\hbox{\strut}}}]}

489 {\item[\rlap{\vbox{\hbox{\theorem@headerfont

490 \llap{##2}\hskip\labelsep\relax ##1\

491 (##3)\theorem@separator}\hbox{\strut}}}]}

492 %

493 \newtheoremstyle{nonumberplain}%

494 {\item[\theorem@headerfont\hskip\labelsep ##1\theorem@separator]}%

495 {\item[\theorem@headerfont\hskip \labelsep ##1\ (##3)\theorem@separator]}

496 %

497 \newtheoremstyle{nonumberbreak}%

498 {\item[\rlap{\vbox{\hbox{\hskip\labelsep \theorem@headerfont

499 ##1\theorem@separator}\hbox{\strut}}}]}%

500 {\item[\rlap{\vbox{\hbox{\hskip\labelsep \theorem@headerfont

501 ##1\ (##3)\theorem@separator}\hbox{\strut}}}]}

502 %

503 \newtheoremstyle{empty}%

504 {\item[]}%

505 {\item[\theorem@headerfont \hskip\labelsep\relax ##3]}

506 \newtheoremstyle{emptybreak}%

507 {\item[]}%

508 {\item[\rlap{\vbox{\hbox{\hskip\labelsep\relax \theorem@headerfont

509 ##3\theorem@separator}\hbox{\strut}}}]}

510 %

511 \@namedef{th@nonumbermargin}{\th@nonumberplain}

512 \@namedef{th@nonumberchange}{\th@nonumberplain}

513 \@namedef{th@nonumbermarginbreak}{\th@nonumberbreak}

514 \@namedef{th@nonumberchangebreak}{\th@nonumberbreak}

515 \@namedef{th@plainNo}{\th@nonumberplain}

516 \@namedef{th@breakNo}{\th@nonumberplain}

517 \@namedef{th@marginNo}{\th@nonumberplain}

518 \@namedef{th@changeNo}{\th@nonumberplain}

519 \@namedef{th@marginbreakNo}{\th@nonumberbreak}

520 \@namedef{th@changebreakNo}{\th@nonumberbreak}

For instance, break is commented:
\newtheoremstyle{break} results in

\gdef\th@break{%

\def\@begintheorem##1##2{%

\item[\hskip\labelsep \theorem@headerfont

##1\ ##2\theorem@separator]%

\hfill\penalty-8000}%

\def\@opargbegintheorem##1##2##3{%

\item[\hskip\labelsep \theorem@headerfont

##1\ ##2\ (##3)\theorem@separator]%

\hfill\penalty-8000}}

Then, calling \th@break sets \@begintheorem as follows:
Since each theorem environment is basically a trivlist, the header is set as the item
contents: \theorem@headerfont holds the font commands for the header font, ##1
is the keyword to be displayed, and ##2 its environment number. The linebreak
after the header is achieved by offering to fill the line with space and the distinct
wish to put a linebreak after it. Thus, if plain text follows, the line break is executed,
but if a list or a display follows, it is not executed.

44

Note: The \hfill\penalty-8000 causes TEX to leave vertical mode, setting the
item contents (ie the header) and entering horizontal mode to perform the \hfill.

\theoremstyle The handling of \theoremstyle, \theorembodyfont, and \theoremskipamounts

is taken from theorem.sty by Frank Mittelbach:

521 \gdef\theoremstyle#1{%

522 \@ifundefined{th@#1}{\@warning

523 {Unknown theoremstyle ‘#1’. Using ‘plain’}%

524 \theorem@style{plain}}%

525 {\theorem@style{#1}}}

526 \newtoks\theorem@style

527 \newtoks\theorem@@style

528 \global\theorem@style{plain}

If \theoremstyle is called, it is checked if the argument is a valid theoremstyle,
and if so, it is stored in the token \theorem@style. It is initialized to plain.

\theorembodyfont

529 \newtoks\theorembodyfont

530 \global\theorembodyfont{\itshape}

\theoremnumbering

531 \newtoks\theoremnumbering

532 \global\theoremnumbering{arabic}

\theorempreskipamount

\theorempostskipamount 533 \newskip\theorempreskipamount

534 \newskip\theorempostskipamount

535 \newskip\theoremframepreskipamount

536 \newskip\theoremframepostskipamount

537 \global\theorempreskipamount\topsep

538 \global\theorempostskipamount\topsep

539 \global\theoremframepreskipamount0pt

540 \global\theoremframepostskipamount0pt

\theoremindent

541 \newdimen\theoremindent

542 \global\theoremindent0cm

543 \newdimen\theorem@indent

\theoremheaderfont

544 \newtoks\theoremheaderfont

545 \global\theoremheaderfont{\normalfont\bfseries}

546 \def\theorem@headerfont{\normalfont\bfseries}

\theoremseparator

547 \newtoks\theoremseparator

548 \global\theoremseparator{}

549 \def\theorem@separator{}

45

\theoremprework

\theorempostwork 550 \newtoks\theoremprework

551 \global\theoremprework{\relax}

552 \newtoks\theorempostwork

553 \global\theorempostwork{\relax}

554 \def\theorem@prework{}

\theoremsymbol

555 \newtoks\theoremsymbol

556 \global\theoremsymbol{}

\qedsymbol

557 \newtoks\qedsymbol

558 \global\qedsymbol{}

\theoremkeyword

559 \newtoks\theoremkeyword

560 \global\theoremkeyword{None}

\theoremclass

561 \gdef\theoremclass#1{%

562 \csname th@class@#1\endcsname}

563 \gdef\th@class@LaTeX{%

564 \theoremstyle{plain}

565 \theoremheaderfont{\normalfont\bfseries}

566 \theorembodyfont{\itshape}

567 \theoremseparator{}

568 \theoremprework{\relax}

569 \theorempostwork{\relax}

570 \theoremindent0cm

571 \theoremnumbering{arabic}

572 \theoremsymbol{}}

Calling \theoremclass{〈env〉} calls \th@class@〈env〉 (which is defined in \@newtheorem

in Lines –45674). \th@class@〈env〉 restores all style parameters to their values
given for 〈env〉. Especially, \th@class@LaTeX restores the standard LaTeX param-
eters.

\qedsymbol

573 \newtoks\qedsymbol

574 \global\qedsymbol{}

Compatibility with amsthm.

amsthm

575 \DeclareOption{amsthm}{% ***

576 \PackageInfo{\basename}{Option ‘amsthm’ loaded}%

577 \def\swapnumbers{\PackageError{\basename}{swapnumbers not implemented.

578 Use theoremstyle change instead.}\@eha}

579

580 \gdef\th@plain{%

581 \def\theorem@headerfont{\normalfont\bfseries}\itshape%

582 \def\@begintheorem##1##2{%

46

583 \item[\hskip\labelsep \theorem@headerfont ##1\ ##2.]}%

584 \def\@opargbegintheorem##1##2##3{%

585 \item[\hskip\labelsep \theorem@headerfont ##1\ ##2\ (##3).]}}

586 \gdef\th@nonumberplain{%

587 \def\theorem@headerfont{\normalfont\bfseries}\itshape%

588 \def\@begintheorem##1##2{%

589 \item[\hskip\labelsep \theorem@headerfont ##1.]}%

590 \def\@opargbegintheorem##1##2##3{%

591 \item[\hskip\labelsep \theorem@headerfont ##1\ (##3).]}}

592 \gdef\th@definition{%

593 \th@plain\def\theorem@headerfont{\normalfont\bfseries}\itshape}

594 \gdef\th@nonumberdefinition{%

595 \th@nonumberplain\def\theorem@headerfont{\normalfont\bfseries}\itshape}

596 \gdef\th@remark{%

597 \th@plain\def\theorem@headerfont{\itshape}\normalfont}

598 \gdef\th@nonumberremark{%

599 \th@nonumberplain\def\theorem@headerfont{\itshape}\normalfont}

600 \newcounter{proof}%

601 \if@thmmarks

602 \newcounter{currproofctr}%

603 \newcounter{endproofctr}%

604 \fi

605 \newcommand{\openbox}{\leavevmode

606 \hbox to.77778em{%

607 \hfil\vrule

608 \vbox to.675em{\hrule width.6em\vfil\hrule}%

609 \vrule\hfil}}

610 \gdef\proofSymbol{\openbox}

611 \newcommand{\proofname}{Proof}

612 \newenvironment{proof}[1][\proofname]{

613 \th@nonumberplain

614 \def\theorem@headerfont{\itshape}%

615 \normalfont

616 \theoremsymbol{\ensuremath{_\blacksquare}}

617 \@thm{proof}{proof}{#1}}%

618 {\@endtheorem}

619 }% end of option amsthm **

Defines theorem styles plain, definition, and remark, and environment proof

according to amsthm.sty.

7.1.7 Theorem-Environment Handling Stuff

Original: ltthm.dtx

620 \newskip\thm@topsepadd

An auxiliary variable.

Defining New Theorem-Environments.

\newtheorem

621 \gdef\newtheorem{%

622 \newtheorem@i%

623 }

47

\newtheorem@i The syntax of the original \newtheorem is retained. The macro is extended to deal
with the additional requirements:

624 \gdef\newtheorem@i{%

625 \@ifstar

626 {\expandafter\@ifundefined{th@nonumber\the\theorem@style}%

627 {\PackageError{\basename}{Theorem style {nonumber\the\theorem@style}

628 undefined (you need it here for newtheorem*) }\@ehc}%

629 {}%

630 \edef\@tempa{{nonumber\the\theorem@style}}%

631 \expandafter\theorem@@style\@tempa\@newtheorem}%

632 {\edef\@tempa{{\the\theorem@style}}%

633 \expandafter\theorem@@style\@tempa\@newtheorem}}

Defines \theorem@@style to be the current \theoremstyle or – in case of
\newtheorem* – to be its non-numbered equivalent (which has to be defined!),
and then calls \@newtheorem.

\renewtheorem

634 \gdef\renewtheorem{%

635 \@ifstar

636 {\expandafter\@ifundefined{th@nonumber\the\theorem@style}%

637 {\PackageError{\basename}{Theorem style {nonumber\the\theorem@style}

638 undefined (you need it here for newtheorem*) }\@ehc}%

639 {}%

640 \edef\@tempa{{nonumber\the\theorem@style}}%

641 \expandafter\theorem@@style\@tempa\@renewtheorem}%

642 {\edef\@tempa{{\the\theorem@style}}%

643 \expandafter\theorem@@style\@tempa\@renewtheorem}}

Analogous to \newtheorem.

\@newtheorem \@newtheorem does the main job for initializing a new theorem environment type.
It is called by \newtheorem.

644 \gdef\@newtheorem#1{%

645 \thm@tempiffalse

646 \expandafter\@ifdefinable\csname #1\endcsname

647 {\expandafter\@ifdefinable\csname #1*\endcsname

648 {\thm@tempiftrue

649 \thm@definelthm{#1}% for lists

650 \if@thmmarks

651 \expandafter\@ifundefined{c@curr#1ctr}%

652 {\newcounter{curr#1ctr}}{}%

653 \expandafter\@ifundefined{c@end#1ctr}%

654 {\newcounter{end#1ctr}}{}%

655 \fi

656 \expandafter\protected@xdef\csname #1Symbol\endcsname{\the\theoremsymbol}%

657 \expandafter\protected@xdef\csname #1@postwork\endcsname{%

658 \the\theorempostwork}%

659 \expandafter\gdef\csname#1\endcsname{%

660 \let\thm@starredenv\@undefined

661 \csname mkheader@#1\endcsname}%

662 \expandafter\gdef\csname#1*\endcsname{%

663 \let\thm@starredenv\relax

664 \csname mkheader@#1\endcsname}%

48

665 \def\@tempa{\expandafter\noexpand\csname end#1\endcsname}%

666 \expandafter\xdef\csname end#1*\endcsname{\@tempa}%

667 \expandafter\xdef\csname setparms@#1\endcsname

668 {\noexpand \def \noexpand \theorem@headerfont

669 {\the\theoremheaderfont\noexpand\theorem@checkbold}%

670 \noexpand \def \noexpand \theorem@separator

671 {\the\theoremseparator}%

672 \noexpand \def \noexpand \theorem@prework

673 {\the\theoremprework}%

674 \noexpand \def \noexpand \theorem@indent

675 {\the\theoremindent}%

676 \the \theorembodyfont

677 \noexpand\csname th@\the \theorem@@style \endcsname}%

678 \expandafter\xdef\csname th@class@#1\endcsname

679 {\noexpand\theoremstyle{\the\theorem@style}%

680 \noexpand\theoremheaderfont{\the\theoremheaderfont}%

681 \noexpand\theorembodyfont{\the \theorembodyfont}%

682 \noexpand\theoremseparator{\the\theoremseparator}%

683 \noexpand\theoremprework{\the\theoremprework}%

684 \noexpand\theorempostwork{\the\theorempostwork}%

685 \noexpand\theoremindent\the\theoremindent%

686 \noexpand\theoremnumbering{\the\theoremnumbering}%

687 \noexpand\theoremsymbol{\the\theoremsymbol}}%

688 }}%

689 \theoremprework{\relax}%

690 \theorempostwork{\relax}%

691 \@ifnextchar[{\@othm{#1}}{\@nthm{#1}}}% MUST NOT BE IN ANY IF !!!

Argument: 〈env〉:=#1 is the (internal) environment name to be defined, which is
read from the LATEX source.

Line 646: check if 〈env〉 is not yet defined (or is redefined).

Lines 648–673 are executed exactly if 〈env〉 and 〈env〉* are not yet defined.

Line 648: \thm@tempif=true iff 〈env〉 and 〈env〉* are not yet defined.

Line 649: Initialize theorem list handling for 〈env〉.

Lines 651–654: if thmmarks is active and the counters are not yet defined, for every
theorem-like, define
curr〈env〉ctr: in the ith environment of type 〈env〉, curr〈env〉ctr = i, and
end〈env〉ctr: when the innermost environment is of type 〈env〉, in the jth
potential position for an end mark in this environment, end〈env〉ctr = j. (if
the counters are already defined, 〈env〉 is redefined, and these internal counters
have to be continued).

Lines 656–673: define several commands: (\xdef expands the definition at the time
it is called and makes it global):

Line 656: store the current value of \theoremsymbol (\edef: expand \the\theoremsymbol

now) as 〈env〉Symbol.

Line 657: store the current value of \theorempostwork (\edef: expand \the\theorempostwork

now) as 〈env〉postwork.

Lines 658–660, 661–663: Define the commands \env and \env* to set the header of
\env. (using a switch \thm@starredenv: \relax iff starred).

Lines 664, 665: Set \end〈env〉* to \end〈env〉.

49

Lines 666–676: define \setparms@〈env〉 to set the style parameters of the header
for every 〈env〉 environment (in the sequel, current means, at the moment
\@newtheorem is called):

Lines 667, 668: setting \theorem@headerfont to the current value of \theoremheaderfont,
followed by a check if it is a bold style,

Lines 669, 670: setting \theorem@separator to the current value of \theoremseparator,

Lines 671, 672: setting \theorem@prework to the current value of \theoremprework,

Lines 673, 674: setting \theorem@indent to the current value of \theoremindent,

Line 675: executing the command sequence currently stored in \theorembodyfont,
and

Line 676: calling th@\the\theorem@@style (which initializes \@begintheorem and
\@opargbegintheorem according to the current value of \theoremstyle by
calling th@\the\theorem@@style).

Line 677–691: define \th@class@〈env〉 to initialize all style parameters as they are
set for the 〈env〉 environment.

Note, that the \@ifdefinable from line 646 ends after line 691.

Line 692: According to the next character, call \@othm{〈env〉} (if another counter
is used) or \@nthm{〈env〉}.

Thus, when calling \@newthmwith #1=〈env〉, for current values \theoremstyle=plain,
\theorembodyfont=\upshape, \theoremheaderfont=\bf, \theoremseparator=:,
\theoremindent=1cm, \theoremnumbering=arabic, and \theoremsymbol=\Box,
the macro \setparms@〈env〉 is defined as

\setparms@〈env〉 == \def\theorem@headerfont{\bf\theorem@checkbold}

\def\theorem@separator{:}

\def\theorem@indent{0cm}

\upshape

\th@plain

and the macro \th@class@〈env〉 is defined as

\th@class@〈env〉 == \def\theoremstyle{plain}

\def\theoremheaderfont{\bf}

\def\theorembodyfont{\upshape}

\def\theoremseparator{:}

\def\theoremindent{0cm}

\def\theoremnumbering{arabic}

\def\theoremsymbol{\Box}

Note, that line 675 must not be inside any \if...\fi construct.

\@renewtheorem

692 \gdef\@renewtheorem#1{%

693 \expandafter\@ifundefined{#1}%

694 {\PackageError{\basename}{Theorem keyword #1 undefined}\@ehc}%

695 {}%

696 \expandafter\let\csname #1\endcsname\relax

697 \expandafter\let\csname #1*\endcsname\relax

698 \@newtheorem{#1}}

50

Argument: 〈env〉:=#1 is the (internal) environment name to be redefined, which is
read from the LATEX source.
If 〈env〉 is already defined, make it (and 〈env〉*, too) undefined and call
\@newtheorem{〈env〉}.

\@nthm \@nthm is called by \@newtheorem if the environment to be defined has a counter
of its own.

699 \gdef\@nthm#1#2{%

700 \expandafter\protected@xdef\csname num@addtheoremline#1\endcsname{%

701 \noexpand\@num@addtheoremline{#1}{#2}}%

702 \expandafter\protected@xdef\csname nonum@addtheoremline#1\endcsname{%

703 \noexpand\@nonum@addtheoremline{#1}{#2}}%

704 \theoremkeyword{#2}%

705 \expandafter\protected@xdef\csname #1Keyword\endcsname

706 {\the\theoremkeyword}%

707 \@ifnextchar[{\@xnthm{#1}{#2}}{\@ynthm{#1}{#2}}}

Arguments:
〈env〉:=#1 is the (internal) environment name to be defined (transmitted from
\@newtheorem).
〈output name〉:=#2 is its keyword to be used in the output (read from the LATEX
source).

Lines 700–703: Define \(no)num@addtheoremline〈env〉 to call
\@(no)num@addtheoremline{〈env〉}{〈output name〉}.
For comments on \@num@addtheoremline and \@nonum@addtheoremline see
Section 7.1.9.

Lines 704–706: Define \〈env〉Keyword〈env〉 to typeset/output 〈output name〉. (note
the similarity with the handling of \theoremsymbol for handling complex key-
words)

Line 707: According to the next character, call \@xnthm{〈env〉}{〈output name〉} (if
〈env〉-environments should be numbered relative to some structuring level) or
\@ynthm{〈env〉}{〈output name〉}.

\@othm \@othm is called by \@newtheorem if the environment to be defined uses another
counter.

708 \gdef\@othm#1[#2]#3{%

709 \@ifundefined{c@#2}{\@nocounterr{#2}}%

710 {\ifthm@tempif

711 \global\@namedef{the#1}{\@nameuse{the#2}}%

712 \expandafter\protected@xdef\csname num@addtheoremline#1\endcsname{%

713 \noexpand\@num@addtheoremline{#1}{#3}}%

714 \expandafter\protected@xdef\csname nonum@addtheoremline#1\endcsname{%

715 \noexpand\@nonum@addtheoremline{#1}{#3}}%

716 \theoremkeyword{#3}%

717 \expandafter\protected@xdef\csname #1Keyword\endcsname

718 {\the\theoremkeyword}%

719 \expandafter\gdef\csname mkheader@#1\endcsname

720 {\csname setparms@#1\endcsname

721 \@thm{#1}{#2}{#3}}%

722 \global\@namedef{end#1}{\@endtheorem}\fi}}

Arguments:
〈env〉:=#1 is the (internal) environment name to be defined (transmitted from

51

\@newtheorem).
〈use ctr〉:=#2 is the internal name of the theorem which counter is used, and
〈output name〉:=#3 is its “name” to be used in the output (both read from the
LATEX source).

Line 709: if the counter to be used is undefined, goto error, else set \the〈env〉 to
use \the〈use ctr〉 and do the following:

Lines 711–719 happen only if 〈env〉 is not yet defined or gets redefined:

Line 711: (from latex.ltx) make 〈env〉 use the counter 〈use ctr〉.

Lines 712–718 similar to lines 700–706 of \@nthm.

Lines 719–721 define \mkheader@〈env〉 to set the style parameters of the header and
set the header (by \@thm):

\mkheader@〈env〉== \setparms@〈env〉\@thm{〈env〉}{〈use ctr〉}{〈output name〉}.

(\setparms@〈env〉 is defined when \@newtheorem{〈env〉} is carried out).

Line 722: (from latex.ltx): \end〈env〉 calls \@endtheorem.

\@xnthm \@xnthm is called by \@nthm if the numbering is relative to some structuring level.

723 \gdef\@xnthm#1#2[#3]{%

724 \ifthm@tempif

725 \expandafter\@ifundefined{c@#1}%

726 {\@definecounter{#1}}{}%

727 \@newctr{#1}[#3]%

728 \expandafter\xdef\csname the#1\endcsname{%

729 \expandafter\noexpand\csname the#3\endcsname \@thmcountersep

730 {\noexpand\csname\the\theoremnumbering\endcsname{#1}}}%

731 \expandafter\gdef\csname mkheader@#1\endcsname

732 {\csname setparms@#1\endcsname

733 \@thm{#1}{#1}{#2}}%

734 \global\@namedef{end#1}{\@endtheorem}\fi}

Arguments:
〈env〉:=#1 is the (internal) environment name to be defined (transmitted from
\@newtheorem).
〈output name〉:=#2 is its keyword to be used in the output,
〈level〉:=#3 is the structuring level relative to which 〈env〉 has to be numbered
(both read from the LATEX source).

Lines 725–734 happen only if 〈env〉 is not yet defined or gets redefined:

Lines 725,726: in not yet defined, define 〈env〉- counter (otherwise, 〈env〉 is rede-
fined).

Line 728: (from latex.ltx): define the counter for 〈env〉 and add 〈level〉 to its reset-
triggers.

Lines 729, 730: define \the〈env〉 to be the command sequence

\the〈level〉\@thmcountersep〈numbering〉{〈env〉} ,

where 〈numbering〉 is the value of \theoremnumberingwhen \@xnthm (and thus,
\newtheorem{〈env〉}) is called.

Lines 731–733: define \mkheader@〈env〉 to set the style parameters of the header
and set the header (by \@thm):

\mkheader@〈env〉== \setparms@〈env〉\@thm{〈env〉}{〈env〉}{〈output name〉}.

52

(\setparms@〈env〉 is defined when \@newtheorem{〈env〉} is carried out).

Line 734: (from latex.ltx): \end〈env〉 calls \@endtheorem.

\@ynthm \@ynthm is called by \@nthm if the counter is not relative to any structuring level.

735 \gdef\@ynthm#1#2{%

736 \ifthm@tempif

737 \expandafter\@ifundefined{c@#1}%

738 {\@definecounter{#1}}{}%

739 \expandafter\xdef\csname the#1\endcsname

740 {\noexpand\csname\the\theoremnumbering\endcsname{#1}}%

741 \expandafter\gdef\csname mkheader@#1\endcsname

742 {\csname setparms@#1\endcsname

743 \@thm{#1}{#1}{#2}}%

744 \global\@namedef{end#1}{\@endtheorem}\fi}

Arguments:
〈env〉:=#1 is the (internal) environment name to be defined (transmitted from
\@newtheorem).
〈output name〉:=#2 is its keyword to be used in the output.
\@ynthm works analogous to \@xnthm.

Handling Instances of Theorem-Environments.

\@thm \@thm is called by \@〈env〉 (which is defined by \@othm/\@xnthm/\@ynthm).

745 \gdef\@thm#1#2#3{%

746 \if@thmmarks

747 \stepcounter{end\InTheoType ctr}%

748 \fi

749 \renewcommand{\InTheoType}{#1}%

750 \if@thmmarks

751 \stepcounter{curr#1ctr}%

752 \setcounter{end#1ctr}{0}%

753 \fi

754 \refstepcounter{#2}%

755 \theorem@prework

756 \thm@topsepadd \theorempostskipamount % cf. latex.ltx: \@trivlist

757 \ifvmode \advance\thm@topsepadd\partopsep\fi

758 \trivlist

759 \@topsep \theorempreskipamount

760 \@topsepadd \thm@topsepadd % used by \@endparenv

761 \advance\linewidth -\theorem@indent

762 \advance\@totalleftmargin \theorem@indent

763 \parshape \@ne \@totalleftmargin \linewidth

764 \@ifnextchar[{\@ythm{#1}{#2}{#3}}{\@xthm{#1}{#2}{#3}}}

Changed to three instead of two parameters (the first one is new):
〈env〉:=#1: (added) internal name of the theorem environment,
〈use ctr〉:=#2: internal name of the theorem which counter is used,
〈output name〉:=#3: keyword to be displayed in the output; all arguments are
transmitted from \@othm/\@xnthm/\@ynthm.

Lines 746–748: if thmmarks is active, the counter for the current environment 〈env’〉
is incremented, since the last endmark in environment 〈env’〉 is definitely not

53

the position for its endmark (necessary for nested environments ending at the
same time).

Line 749: set \InTheoType to 〈env〉.

Lines 750–753: if thmmarks is active, increment curr〈env〉ctr and set end〈env〉ctr
to 0.

Line 754: adapted from latex.ltx: increment the corresponding counter.

Line 755: perform prework (before theorem structure is generated).

Lines 756–760: handle \theorempreskipamount and \theorempostskipamount (if
in vmode, there is additional space, cf. \trivlist and \@trivlist in latex.ltx).

Lines 761–763: handle \theoremindent.

Line 764: if there is an optional argument, call \@ythm{〈env〉}{〈use ctr〉}{〈output name〉},
otherwise call \@xthm{〈env〉}{〈use ctr〉}{〈output name〉}.

\@xthm \@xthm is called by \@thm if there is no optional text in the theorem header.

765 \def\@xthm#1#2#3{%

766 \@begintheorem{#3}{\csname the#2\endcsname}%

767 \ifx\thm@starredenv\@undefined

768 \thm@thmcaption{#1}{{#3}{\csname the#2\endcsname}{}}\fi

769 \ignorespaces}

Changed to three instead of two parameters (the first one is new):
〈env〉:=#1: (added) internal name of the theorem environment,
〈use ctr〉:=#2: internal name of the theorem which counter is used,
〈output name〉:=#3: keyword to be displayed in the output.
All arguments are transmitted from \@thm.
For comments, see \@ythm.

\@ythm \@ythm is called by \@thm if there is an optional text in the theorem header.

770 \def\@ythm#1#2#3[#4]{%

771 \expandafter\global\expandafter\def\csname#1name\endcsname{#4}%

772 \@opargbegintheorem{#3}{\csname the#2\endcsname}{#4}%

773 \ifx\thm@starredenv\@undefined

774 \thm@thmcaption{#1}{{#3}{\csname the#2\endcsname}{#4}}\fi%

775 \ignorespaces}

Changed to four instead of three parameters (the first one is new):
〈env〉:=#1: (added) internal name of the theorem environment,
〈use ctr〉:=#2: internal name of the theorem which counter is used,
〈output name〉:=#3: keyword to be displayed in the output.
〈opt text〉:=#4: optional text to appear in the header.
#1–#3 are transmitted from \@thm, #4 is read from the LATEX source.

Line 771: define \〈env〉name to be the optional argument.

Line 772: call

\@opargbegintheorem{〈output name〉}{\the〈use ctr〉}{〈opt text〉}

which outputs the header.

Line 773, 774: if 〈env〉 is not the starred version, call

\thm@thmcaption{〈env〉}{{〈output name〉}{\the〈use ctr〉}{〈opt text〉}}

which makes an entry into the theorem list.

54

\@endtheorem \@endtheorem is called for every \end{〈env〉}, where 〈env〉 is a theorem-like en-
vironment. (note that \@endtheorem it is also changed by option [thmmarks] to
organize the placement of the corresponding end mark). \InTheoType gives the
innermost theorem-like environment, i.e. the one to be ended:

776 \gdef\@endtheorem{%

777 \endtrivlist

778 \csname\InTheoType @postwork\endcsname

779 }

7.1.8 Framed and Boxed Theorems

The option ‘framed’ activates framed and boxed layouts. It requires to load the
framed package and the pstricks package.

framed

780 \DeclareOption{framed}{%*********************************

781 \newtoks\shadecolor

782 \shadecolor{gray}

783 \let\theoremframecommand\relax

\newshadedtheorem

784 \def\newshadedtheorem#1{%

785 \expandafter\global\expandafter\xdef\csname#1@shadecolor\endcsname{%

786 \the\shadecolor}%

787 \ifx\theoremframecommand\relax

788 \expandafter\global\expandafter\xdef\csname#1@framecommand\endcsname{%

789 \noexpand\psframebox[fillstyle=solid,

790 fillcolor=\csname#1@shadecolor\endcsname,

791 linecolor=\csname#1@shadecolor\endcsname]}%

792 \else

793 \expandafter\global\expandafter\let\csname#1@framecommand\endcsname%

794 \theoremframecommand%

795 \fi

796 \theoremprework{%

797 \def\FrameCommand{\csname#1@framecommand\endcsname}%

798 \vskip\theoremframepreskipamount\framed}%

799 \theorempostwork{\endframed\vskip\theoremframepostskipamount}%

800 \newtheorem@i{#1}%

801 }

\newframedtheorem

802 \def\newframedtheorem#1{%

803 \theoremprework{\vskip\theoremframepreskipamount\framed}%

804 \theorempostwork{\endframed\vskip\theoremframepostskipamount}%

805 \newtheorem@i{#1}%

806 }

807 }% end of option framed **

7.1.9 Generation of Theorem Lists

The generation of lists of theorems, definitions, etc. is based
The following macros are are needed for the generation of theorem-lists. We will
document it for the theorem \begin{definition}[optional], which we assume
to be the first definition at all and which is placed on page 5.

55

\thm@thmcaption This macro, used internally, strips of the outer brackets from the second argument
and calls \thm@@thmcaption. It’s typically called like this

\thm@thmcaption{definition}{{Definition}{1}{optional}}

(internal name of the environment, output keyword, running number, optional text)

808 \def\thm@thmcaption#1#2{\thm@@thmcaption{#1}#2}

\thm@@thmcaption \thm@caption is called from \thm@caption; it writes an appropriate entry to the
.thm-file.

809 \def\thm@@thmcaption#1#2#3#4{%

810 \thm@parseforwriting{#2}%

811 \let\thm@tmpii\thm@tmp

812 \thm@parseforwriting{#4}%

813 \edef\thm@t{{\thm@tmpii}{#3}{\thm@tmp}}%

814 \addcontentsline{thm}{#1}{\thm@t}}

Arguments: 〈env〉:=#1 is the internal environment name, 〈output name〉:=#2 is its
keyword to be used in the output, #3 is the running number, and #4 is the optional
text argument in the header.

Lines 809,810: the command sequence for the output keyword is prepared by
\thm@parseforwriting (which returns \thm@tmpii) and then stored in \thm@tmpii.

Line 811: the optional text is also prepared by \thm@parseforwriting

Lines 812,813: The output is collected and written into the .aux file, which will
forward it to the theorem-file.

The following two macros are just shortcuts, often needed for the output of one
single line in the theorem-lists. The first one is used in unnamed lists, the second
one in named. Warning: Don’t remove the leading \let, since you will get wrong
\if-\fi-nesting without it, if you don’t use hyperref.

\thm@@thmline@noname

815 \def\thm@@thmline@noname#1#2#3#4{%

816 \@dottedtocline{-2}{0em}{2.3em}%

817 {\protect\numberline{#2}#3}%

818 {#4}}

\thm@@thmline@name

819 \def\thm@@thmline@name#1#2#3#4{%

820 \@dottedtocline{-2}{0em}{2.3em}%

821 {#1 \protect\numberline{#2}#3}%

822 {#4}}

\thm@thmline This is another short one, which only discards the outer brackets from the first
argument and calls \thm@@thmline. It’s normally called like this:

\thm@@thmline{{Definition}{1}{optional}}{5}

823 \def\thm@thmline#1#2{\thm@@thmline#1{#2}}

\thm@lgobble The following macros are used to ignore entries for theorem sets, that should not
occur in a given list:

824 \long\def\thm@lgobble@entry#1#2{\ignorespaces}

825 \long\def\thm@lgobble@freetext#1#2{\ignorespaces}

56

The following four macros set up the predefined list-types. To do so, they define
the internal macros \thm@@thmlstart (containing the code to be executed at the
beginning of the list), \thm@@thmlend (code to be executed at the end of the list)
and \thm@@thmline (code to be executed for every line). In order to gain compati-
bility with newthm.sty, we decided not to make this commands inaccessible to the
user. But we recommend not using these commands, because they may disappear
in later distributions.

\theoremlistall This one implements the type all.

826 \def\theoremlistall{%

827 \let\thm@@thmlstart=\relax

828 \let\thm@@thmlend=\relax

829 \let\thm@@thmline=\thm@@thmline@noname}

\theoremlistallname And here’s the type allname.

830 \def\theoremlistallname{%

831 \let\thm@@thmlstart=\relax

832 \let\thm@@thmlend=\relax

833 \let\thm@@thmline=\thm@@thmline@name}

\theoremlistoptional This one is the list-type opt. In case of [hyperref], the fifth argument, which is
provided by hyperref.sty is automatically given to \thm@@thmline@noname.

834 \def\theoremlistoptional{%

835 \let\thm@@thmlstart=\relax

836 \let\thm@@thmlend=\relax

837 \def\thm@@thmline##1##2##3##4{%

838 \ifx\empty ##3%

839 \else

840 \thm@@thmline@noname{##1}{##2}{##3}{##4}%

841 \fi}}

\theoremlistoptname And the last type, optname. In case of [hyperref], the fifth argument, which is
provided by hyperref.sty is automatically given to \thm@@thmline@name.

842 \def\theoremlistoptname{%

843 \let\thm@@thmlstart=\relax

844 \let\thm@@thmlend=\relax

845 \def\thm@@thmline##1##2##3##4{%

846 \ifx\empty ##3%

847 \else%

848 \thm@@thmline@name{##1}{##2}{##3}{##4}%

849 \fi}}

\theoremlisttype The next one is the user-interface for selecting the list-type. It simply calls
\thm@thml@〈type〉, if the given 〈type〉 is defined.

850 \def\theoremlisttype#1{%

851 \@ifundefined{thm@thml@#1}%

852 {\PackageError{\basename}{Listtype #1 not defined}\@eha}%

853 {\csname thm@thml@#1\endcsname}}

Now, here is the code, which maps the types – selected by \theoremlisttype – to
the defined macros.

854 \def\thm@thml@all{\theoremlistall}

57

855 \def\thm@thml@opt{\theoremlistoptional}

856 \def\thm@thml@optname{\theoremlistoptname}

857 \def\thm@thml@allname{\theoremlistallname}

\newtheoremlisttype According to the given documentation, this one can be used to define new list-
types. It’s done by defininig the macro \thm@thml@〈type〉, which locally redefines
the commands \thm@thmlstart, \thm@@thmline and \thm@@thmlend.

858 \def\newtheoremlisttype#1#2#3#4{%

859 \@ifundefined{thm@thml@#1}%

860 {\expandafter\gdef\csname thm@thml@#1\endcsname{%

861 \def\thm@@thmlstart{#2}%

862 \def\thm@@thmline####1####2####3####4{#3}%

863 \def\thm@@thmlend{#4}}%

864 }{\PackageError{\basename}{list type #1 already defined}\@eha}}

\renewtheoremlisttype

865 \def\renewtheoremlisttype#1#2#3#4{%

866 \@ifundefined{thm@thml@#1}%

867 {\PackageError{\basename}{List type #1 not defined}\@ehc}{}%

868 \expandafter\let\csname thm@thml@#1\endcsname\relax

869 \newtheoremlisttype{#1}{#2}{#3}{#4}}

if the list type to be redefined is already defined, make it undefined and define it.

\thm@definelthm For each theorem-set, we need to initialize two commands:� how to typeset entries in the list, \l@〈theorem-set〉. it is called for each
theorem when the list is generated.� how to typeset additional text in the list, \thm@listdo〈theorem-set〉. It is
called, when something is to a list with \addtotheoremfile.

These macros are initially defined by \newtheorem to discard the input by calling
\thm@lgobble@entry (for actual entries) and \thm@lgobble@freetext (for free
text added by the user). These macros must be adapted if a package uses another
format for \contentsline entries in the .aux file (e.g., hyperref).

870 \def\thm@definelthm#1{%

871 \expandafter\gdef\csname l@#1\endcsname{\thm@lgobble@entry}%

872 \expandafter\gdef\csname thm@listdo#1\endcsname{\thm@lgobble@freetext}}

\thm@inlistdo When additional text is added to a theorem list via \addtotheoremfile, this is
typeset by the following is macro. It simply discards the first argument and strips
of the outer brackets from the second one.

873 \long\def\thm@inlistdo#1#2{#2}%

\listtheorems The following macro provides the user interface:

874 \def\listtheorems#1{\begingroup

875 \c@tocdepth=-2%

876 \def\thm@list{#1}\thm@processlist

877 \endgroup}

Line 874: #1 is a list of theorem sets, i.e., of the form Theorem or Theorem, Definition,

Line 875: set tocdepth to −2 to assure that the predefined list-types work.

58

Line 876: store the list of names in thm@list and call \thm@processlist, which
actually generates the list.

\thm@processlist The file 〈jobname〉.thm contains commands of the form
\contentsline{〈list-of-theoremsets〉}{{〈header〉}{〈number〉}}{〈page〉}.

Thus, dependent on which theoremsets should be listed, \contentsline must be
defined to evaluate the first argument and then to output all arguments, or to
discard the second and third one.
This is done as follows: The commands \l@〈theorem-set〉 and \thm@listdo〈theorem-set〉
(which initially were set to ignore everything by \newtheorem) are redefined for the
theorem sets which should be listed to generate output. \contentsline is defined
to call \l@〈theorem-set〉, adding a line to the list or ignoring the entry. Since for
theorem sets which are not yet known (i.e., if the list is created at the beginning of
the document, and the theoremset is only defined later), \l@〈theorem-set〉 is not yet
defined, \contentsline has to check if the command is defined, otherwise ignore
the arguments.
Then, the .thm file is processed, evaluating the \contentsline commands. After
processing the .thm file, the mentioned commands are again redefined to discard
everything. We need to define the macros globally for dealing with complex, user-
defined, list-types.

878 \def\thm@processlist{%

879 \begingroup

880 \typeout{** Generating table of \thm@list}%

881 \def\contentsline##1{%

882 \expandafter\@ifundefined{l@##1}%

883 {\thm@lgobble@entry}{\csname l@##1\endcsname}}%

884 \thm@@thmlstart

885 \@for\thm@currentlist:=\thm@list

886 \do{%

887 \ifx\thm@currentlist\@empty\else

888 \expandafter\gdef\csname l@\thm@currentlist\endcsname{\thm@thmline}%

889 \expandafter\gdef\csname thm@listdo\thm@currentlist\endcsname{\thm@inlistdo}%

890 \fi

891 }%

892 \@input{\jobname .thm}%

893 \thm@@thmlend

894 \@for\thm@currentlist:=\thm@list

895 \do{%

896 \ifx\thm@currentlist\@empty\else

897 \expandafter\gdef\csname l@\thm@currentlist\endcsname

898 {\thm@lgobble@entry}%

899 \expandafter\gdef\csname thm@listdo\thm@currentlist\endcsname

900 {\thm@lgobble@freetext}%

901 \fi

902 }%

903 \endgroup}

\thm@enablelistoftheorems Up to now, we’ve set up various macros for writing and reading the theorem-file.
Thus, it’s time to set up the file itself. This is done by the next macro. We simply
took the lines for \@starttoc from the LATEX-base and changed some things. The
main intention to copy \@starttoc is that we don’t want the file to be input when
it is set up – like it’s done by \@starttoc.

59

904 \def\thm@enablelistoftheorems{%

905 \begingroup

906 \makeatletter

907 \if@filesw

908 \expandafter\newwrite\csname tf@thm\endcsname%

909 \immediate\openout \csname tf@thm\endcsname \jobname.thm\relax%

910 \fi

911 \@nobreakfalse

912 \endgroup}

\addtheoremline By \addtheoremline{〈theorem-set〉}{〈entry〉}, the user can insert an extra entry
into the theorem-file. \addtheoremline* calls the internal macro \nonum@addtheoremline,
otherwise \num@addtheoremline is called. \num/nonum@addtheoremline{〈theorem-set〉}{〈entry〉}
calls \num/nonum@addtheoremline〈theorem-set〉{〈entry〉} which are defined when
〈theorem-set〉 is declared (cf. \@nthm). These in turn call \@num/nonum@addtheoremline{〈theorem-set〉
}{〈keyword〉}{〈entry〉} which write information to the theorem file.

913 \def\addtheoremline{\@ifstar{\nonum@addtheoremline}{\num@addtheoremline}}

914 \def\nonum@addtheoremline#1{\csname nonum@addtheoremline#1\endcsname}%

915 \def\num@addtheoremline#1{\csname num@addtheoremline#1\endcsname}%

\@nonum@addtheoremline \@num@addtheoremline and \@nonum@addtheoremline write the actual entries to
the .thm file.
Syntax: \@num/nonum@addtheoremline{ 〈theorem-set〉}{〈keyword〉}{〈entry〉}

916 \def\@nonum@addtheoremline#1#2#3{%

917 \thm@parseforwriting{#3}%

918 \edef\thm@t{{#2}{}{\thm@tmp}}%

919 \addcontentsline{thm}{#1}{\thm@t}}

\@num@addtheoremline

920 \def\@num@addtheoremline#1#2#3{%

921 \thm@parseforwriting{#3}%

922 \edef\thm@t{{#2}{\csname the#1\endcsname}{\thm@tmp}}%

923 \addcontentsline{thm}{#1}{\thm@t}}%

\addtotheoremfile To write any additional stuff into the theorem-file, the next macro is used. It first
checks, if the optional name of a theorem-set is given. In that case, the macro
\@@addtotheoremfile, otherwise \@addtotheoremfile is used to write the stuff
into the file.

924 \long\def\addtotheoremfile{%

925 \@ifnextchar[{\@@addtotheoremfile}{\@addtotheoremfile}}

\@addtotheoremfile Write additional stuff for all theorems.

926 \long\def\@addtotheoremfile#1{%

927 \thm@parseforwriting{#1}%

928 \protected@write\@auxout%

929 {}{\string\@writefile{thm}{\thm@tmp}}}

\@@addtotheoremfile Write additional stuff for a given theorem-set.

930 \long\def\@@addtotheoremfile[#1]#2{%

931 \thm@parseforwriting{#2}%

932 \protected@write\@auxout%

933 {}{\string\@writefile{thm}{\string\theoremlistdo{#1}{\thm@tmp}}}}

60

\theoremlistdo This one is called from the theorem-file to insert the additional stuff for a theorem-
set.

934 \long\def\theoremlistdo#1#2{\expandafter\@ifundefined{thm@listdo#1}%

935 \relax{\csname thm@listdo#1\endcsname{#1}{#2}}}

Now we assure, that the theorem-file is activated. This is done by inserting a hook
at the end of the document.

936 \AtEndDocument{\thm@enablelistoftheorems}

Theoremlists and Hyperref Since the hyperref-package redefines \contentsline,
some commands are redefined:

1. Let the different versions of \thm@@thmline@.. take a 5th argument, the one
provided by hyperref.

2. handle contentsline: restore the normal definition at the beginning of
\thm@processlist (see there), that calls l@〈theorem-set〉 that in turn calls
the adapted commands for typestting the entries (see below). .

3. Let \thm@lgobble@entry take one more argument, the one provided by hy-
perref.

4. Do the hyperlinks manually in the different versions of \thm@@thmline as
defined by the theoremtypes.

hyperref

937 \DeclareOption{hyperref}{% **

938 \def\thm@@thmline@noname#1#2#3#4#5{%

939 \ifx\\#5\\%

940 \@dottedtocline{-2}{0em}{2.3em}%

941 {\protect\numberline{#2}#3}%

942 {#4}%

943 \else

944 \ifHy@linktocpage\relax\relax

945 \@dottedtocline{-2}{0em}{2.3em}%

946 {\protect\numberline{#2}#3}%

947 {\hyper@linkstart{link}{#5}{#4}\hyper@linkend}

948 \else

949 \@dottedtocline{-2}{0em}{2.3em}%

950 {\hyper@linkstart{link}{#5}{\protect\numberline{#2}#3}%

951 \hyper@linkend}%

952 {#4}%

953 \fi

954 \fi}%

955 \def\thm@@thmline@name#1#2#3#4#5{%

956 \ifx\\#5\\%

957 \@dottedtocline{-2}{0em}{2.3em}%

958 {#1 \protect\numberline{#2}#3}%

959 {#4}

960 \else

961 \ifHy@linktocpage\relax\relax

962 \@dottedtocline{-2}{0em}{2.3em}%

963 {#1 \protect\numberline{#2}#3}%

61

964 {\hyper@linkstart{link}{#5}{#4}\hyper@linkend}%

965 \else

966 \@dottedtocline{-2}{0em}{2.3em}%

967 {\hyper@linkstart{link}{#5}%

968 {#1 \protect\numberline{#2}#3}\hyper@linkend}%

969 {#4}%

970 \fi

971 \fi}

972 \def\thm@thmline#1#2#3{\thm@@thmline#1{#2}{#3}}

973 \long\def\thm@lgobble@entry#1#2#3{\ignorespaces}

974 \def\theoremlistoptional{%

975 \let\thm@@thmlstart=\relax

976 \let\thm@@thmlend=\relax

977 \def\thm@@thmline##1##2##3##4##5{%

978 \ifx\empty ##3%

979 \else%

980 \thm@@thmline@noname{##1}{##2}{##3}{##4}{##5}%

981 \fi}}

982 \def\theoremlistoptname{%

983 \let\thm@@thmlstart=\relax

984 \let\thm@@thmlend=\relax

985 \def\thm@@thmline##1##2##3##4##5{%

986 \ifx\empty ##3%

987 \else%

988 \thm@@thmline@name{##1}{##2}{##3}{##4}{##5}%

989 \fi}}

Theorem References and Hyperref

hyperref-thref When hyperref is active, the handling of thref described above via the .aux

file redefinition of \@newl@bel is not possible (hyperref forces its definitions at
\AtBeginDocument). Instead, an internal identifier of the form Theorem.1.1 is
used in the .aux file for the hypertarget (using the type of the counter; thus when
a theorem type uses another counter, this does not give the theorem type itself).
The same id is stored in the .thm file for the respective theorem. by this, given the
id from the \newlabel in the .aux file, the .thm file can be searched for the actual
type information.

990 \if@thref

991 \def\@firstofthree#1#2#3{#1}%

992 \def\getKeywordOf#1{%

993 \let\thm@oldcontentsline\contentsline

994 \def\contentsline##1##2##3##4{%

995 \ifthenelse{\equal{#1}{##4}}{\@firstofthree##2}{}%

996 \ignorespaces}%

997 \@input{\jobname .thm}%

998 \let\contentsline\thm@oldcontentsline

999 }

1000 \def\thm@fmt@hyplabel@i#1#2#3#4#5{%

1001 \getKeywordOf{#4}~\thm@fmt@hyplabel@ii#4}

1002 \def\thm@fmt@hyplabel@ii#1.#2{#2}%

1003 \def\thref#1{%

1004 \expandafter\@setref\csname r@#1\endcsname\thm@fmt@hyplabel@i{#1}}%

1005 \fi % end of \if@thref

62

1006 }% end of option hyperref ***

Lines 991-999: given an id #1 of the form Theorem.1.1, scan the .thm file for a
\contentsline whose 4th argument equals the id. If found, the third compo-
nent of its second argument gives its theorem type.

Lines 1000-1002: this command must have 5 arguments because it is applied to the
information stored with \newlabel in the .aux file. The 4th argument is the id
#4 of the form Theorem.1.1.
Get the correct keyword by \getKeywordOf{#4} and its number (which is the
part following the first “.”).

Lines 1003-1004: create a hyperlink via \@setref (see hyperref.sty): \@setref

takes three arguments: r@〈label〉 := arg1 is the information from \newlabel in
the .aux file (consisting of 5 components). The 2nd argument arg2 must be a
command that uses 5 arguments, here \thm@fmt@hyplabel@i{#1} as defined in
Lines 1000-1002. The 3rd one is the label, and is only used for error messages.
\@setref then –roughly– applies arg2 on arg1.

7.1.10 Auxiliary macros

For generating theorem-lists, we need to write information into a separate file.
Beause we don’t want to expand this information, we parse it specially for writing.

1007 \def\thm@meaning#1->#2\relax{#2}% remove "macro: ->"

1008 \long\def\thm@parseforwriting#1{%

1009 \def\thm@tmp{#1}%

1010 \edef\thm@tmp{\expandafter\thm@meaning\meaning\thm@tmp\relax}}

In some countries it’s usual to number theorems with greek letters:

\theorem@checkbold For correctness, we need to check if a bold font is active. This is done by the
following macro:

1011 \def\theorem@checkbold{\if b\expandafter\@car\f@series\@nil\boldmath\fi}

\@greek Accoding to LATEX-base, this is the internal command for generating lowercase greek
numberings.

1012 \def\@greek#1{\theorem@checkbold%

1013 \ifcase#1\orα\orβ\orγ\orδ\orε%

1014 \orζ\orη\orϑ\orι\orκ\orλ\or$%

1015 \mu\or\nu\or\xi\or o\or\varpi\or\varrho\or\varsigma\or\tau$%

1016 \orυ\orφ\orχ\orψ\orω\else\@ctrerr\fi}

\@Greek According to LATEX-base, this is the internal command for generating uppercase
greek numberings.

1017 \def\@Greek#1{\theorem@checkbold%

1018 \ifcase#1\or A\or B\orΓ\orΔ\or E%

1019 \or Z\or H\orΘ\or I\or K\orΛ\or M%

1020 \or N\orΞ\or O\orΠ\or P\orΣ\or T%

1021 \orΥ\orΦ\or X\orΨ\orΩ\else\@ctrerr\fi}

\greek According to LATEX-base, this is the user interface for lowercase greek numberings.

1022 \def\greek#1{\@greek{\csname c@#1\endcsname}}

\Greek According to LATEX-base, this is the user interface for uppercase greek numberings.

1023 \def\Greek#1{\@Greek{\csname c@#1\endcsname}}

63

7.1.11 Other Things

After declaring several package-options, we need to process the specified ones. The
additional \relax was mentioned by Rainer Schöpf at DANTE’97.

1024 \ProcessOptions\relax

Now we set up the default theorem listtype. Make sure this is called after processing
the options. Otherwise, ntheorem will break with hyperref.

1025 \theoremlistall

If automatical configuration is not disabled by [noconfig], it is checked if the file
ntheorem.cfg exists and in this case the definitions in this file are read. If it does
not exist and the option standard was specified, the file ntheorem.std is used.

1026 \ifx\thm@noconfig\@undefined

1027 \InputIfFileExists{ntheorem.cfg}%

1028 {\PackageInfo{\basename}{Local config file ntheorem.cfg used}}%

1029 {\ifx\thm@usestd\@undefined%

1030 \else%

1031 \InputIfFileExists{ntheorem.std}%

1032 {\PackageInfo{\basename}{Standard config file ntheorem.std used}}{}

1033 \fi}

1034 \fi

7.2 The Standard Configuration

1 \theoremnumbering{arabic}

2 \theoremstyle{plain}

3 \RequirePackage{latexsym}

4 \theoremsymbol{\ensuremath{_\Box}}

5 \theorembodyfont{\itshape}

6 \theoremheaderfont{\normalfont\bfseries}

7 \theoremseparator{}

8 \newtheorem{Theorem}{Theorem}

9 \newtheorem{theorem}{Theorem}

10 \newtheorem{Satz}{Satz}

11 \newtheorem{satz}{Satz}

12 \newtheorem{Proposition}{Proposition}

13 \newtheorem{proposition}{Proposition}

14 \newtheorem{Lemma}{Lemma}

15 \newtheorem{lemma}{Lemma}

16 \newtheorem{Korollar}{Korollar}

17 \newtheorem{korollar}{Korollar}

18 \newtheorem{Corollary}{Corollary}

19 \newtheorem{corollary}{Corollary}

20

21 \theorembodyfont{\upshape}

22 \newtheorem{Example}{Example}

23 \newtheorem{example}{Example}

24 \newtheorem{Beispiel}{Beispiel}

25 \newtheorem{beispiel}{Beispiel}

26 \newtheorem{Bemerkung}{Bemerkung}

27 \newtheorem{bemerkung}{Bemerkung}

28 \newtheorem{Anmerkung}{Anmerkung}

29 \newtheorem{anmerkung}{Anmerkung}

64

30 \newtheorem{Remark}{Remark}

31 \newtheorem{remark}{Remark}

32 \newtheorem{Definition}{Definition}

33 \newtheorem{definition}{Definition}

34

35 \theoremstyle{nonumberplain}

36 \theoremheaderfont{\scshape}

37 \theorembodyfont{\normalfont}

38 \theoremsymbol{\ensuremath{_\blacksquare}}

39 \RequirePackage{amssymb}

40 \newtheorem{Proof}{Proof}

41 \newtheorem{proof}{Proof}

42 \newtheorem{Beweis}{Beweis}

43 \newtheorem{beweis}{Beweis}

44 \qedsymbol{\ensuremath{_\blacksquare}}

45 \theoremclass{LaTeX}

8 History and Acknowledgements

8.1 The endmark-Story (Wolfgang May)

In 1995, I started a hack for setting endmarks semiautomatically at the end of dis-
played formulas. The work on thmmarks.sty begun in October 1996 by a thread
asking for a routine for setting endmarks in de.comp.tex initiated by Boris Piwinger.
Version 0.1 incorporated the main features for setting endmarks automagically by
using the .aux file. Version 0.2 included some bugfixes and was the first one ac-
cessible on the internet. Boris suggested to include fleqn and leqno which has
been done in version 0.3 (which was never made public). Since at this point,
thmmarks.sty was incompatible to the widely used theorem.sty written by Frank
Mittelbach, in Version 0.4, the features of theorem.sty have been integrated.
With version 0.5, the case of “empty” end symbols has been handled, \qed

has been added (also suggested by Boris), and the handling of theoremstyles by
\newtheoremstyle has been included.
For version 0.6, the handling of endmarks in displaymaths has been changed in
order to adjust them with the bottom of the displayed math.
Version 0.6 was the first one announced in comp.text.tex. For version 0.7, I added
the handling of amsmath features, suggested by my colleague Peter Neuhaus.
Versions 0.71 and 0.72 incorporated minor bugfixes.

8.2 Lists, Lists, Lists (Andreas Schedler)

I often saw questions on theoremlists in the german newsgroup de.comp.text.tex,
but I never spent any attention on those postings. This changed in summer 1996,
when I needed those lists for myself. Thus, I asked the holy question. But none of
the given answers satisfied my wish for a simple, easy to use and short solution.
I decided to take a look at Frank Mittelbachs theorem.sty. First I didn’t under-
stand much of the code, but Bernd Raichle helped me a lot by answering my boring
questions and I finally understood it.
I started the coding and within a few days, a first experimental version was born.
Not only that I had implemented the lists, I also inserted a separator and a flexible
numbering of the theorems.

65

After a long period of testing, I wanted to share the new features with other TEX-
Freaks and wrote an article for the “Die TEXnische Komödie” (Journal of german
tug, DANTE e.V.). As soon as I had sent the article to DANTE, I got first reactions
on the style. Gerd Neugebauer gave me many hints. I hided several cryptical
notations in easy definitions and improved the user interface.
In January 1997, I released “newthm” to the world and it was uploaded to the
CTAN-Archives. Few days later I sent my files to Frank Mittelbach in order to
show him my extensions. He told me, that already other extensions were made,
and that it would be good to combine alltogether.

8.3 Let’s come together

With version 0.8, in February 1997, the combination of thmmarks.sty with
newthm.sty to ntheorem.sty has been started. On April 21, 1997, version 0.94
beta has been made public as version 1.0.
In course of the development, the following changes were made:

You should create the list of changes by

makeindex -s gglo.ist -o ntheorem.gls ntheorem.glo

and running latex ntheorem.drv again.

8.4 Acknowledgements

This place is dedicated to all those, who helped us developing our separate styles
and this combined package. Thanks to (listed in alphabetical order):

Donald Arseneau, Giovanni Dore, Oliver Karch, Frank Mittelbach, Gerd
Neugebauer, Heiko Oberdiek, Boris Piwinger, Bernd Raichle, Rainer
Schöpf, Didier Verna.

66

