moreenum

Seamus Bradley

July 15, 2011

1 Basic procedure

At the heart of each new enumeration is the following procedure:

```
\newcommand*{\macro}[1]{%
    \expandafter\@macro\csname c@#1\endcsname}
\newcommand*{\@macro}[1]{%
    \translate{#1}}
\AddEnumerateCounter{\macro}{\@macro}{distance}
```

From a user perspective, \macro takes a counter as its argument and outputs, say, a binary number or whatever you want. Actually, what it really does is turn a counter into a number and pass the number to \@macro which does the real work. It takes a number and translates it into the final representation.

Most of the cleverness is done by \backslash translate and these are mostly macros I've borrowed from other packages.

The distance is the widest entry in the enumeration. moreenum hasn't been tested much with this parameter: I've just guessed a bit at what's the widest enumerations are likely to get. Enumerations can theoretically get up to 2147483647 items long. Which would be rather a long number. ${ }^{1}$

The \greek macro is a little more involved because it involves first defining a macro that turns numbers into Greek letters.

```
\newcommand*{\single@greek}[1]{%
    \expandafter\@single@greek\csname c@#1\endcsname
}
\newcommand*{\@single@greek}[1]{%
    $\ifcase#1\or\alpha\or\beta\or\gamma\or\delta\or\varepsilon
        \or\zeta\or\eta\or0\or\iota\or\kappa\or\lambda
        \or\mu\or\nu\or\xi\or o\or\pi\or\varrho\or\sigma
        \or\tau\or\upsilon\or\phi\or\chi\or\psi\or\omega
```

${ }^{1}$ fmcount doesn't seem to work with numbers that big, actually. But even 131071 is 11111111111111111

```
    \else\@ctrerr\fi$
}
```

Then you need to define what to do when you run out of letters. You start again at $\alpha \alpha$. The clever work there is done by the alphalph package.

```
\newalphalph{\@greek}[alph]{\@single@greek}{24}
\newcommand*{\ greek}[1]{%
    \expandafter\@greek\csname c@#1\endcsname
}
\AddEnumerateCounter{\greek}{\@greek}{$\omega$}
```

Some sophistication is required to get the \translate-style macros to play nice with $\backslash l a b e l$ and $\backslash r e f$ facilities. This can be seen in the following example.

```
\newcommand*{\enumHex}[1]{%
    \expandafter\@enumHex\csname c@#1\endcsname}
\newcommand*{\@enumHex}[1]{%
    \protect\Hexadecimalnum{\number#1}}
\AddEnumerateCounter{\enumHex}{\@enumHex}{AAAA}
```

The \protect makes sure the \backslash Hexadecimalnum get written to the .aux file, rather than expanded first. The \backslash number makes sure the number is written to the .aux file. ${ }^{2}$

2 Limitations

The biggest number TeX can handle is 2147483647. I can't imagine this ever being a serious limitation to your enumerating.

There are, however, some further limitations. Certain fmtcount macros seem to break before they hit this fundamental limit. In brackets are the moreenum-defined enumerations affected.

- \binary and friends break at 131072 [\enumbinary]
- \hexadecimal and friends break at 1048576 [$\backslash e n u m h e x$ and \enumHex]
- \numberstring and friends break at 100000 [\backslash nwords and \backslash nthwords]

None of these is a serious limitation. If you desperately need bigger enumerations, they are fairly straightforward to define yourself using binhex for the numbers and numname for the words: these packages don't have these limitations. ${ }^{3}$

[^0]
3 Examples of the enumerations

Here are examples of all the kinds of enumeration that the package defines:

\greek

α Liberty
β Equality
γ Fraternity
$\alpha \sigma$ Meaning of life

\enumHex

1 Liberty
2 Equality
3 Fraternity
2A Meaning of life
\enumbinary
1 Liberty
10 Equality
11 Fraternity
101010 Meaning of life
\raisenth
$1^{\text {st }}$ Liberty
$2^{\text {nd }}$ Equality
$3^{\text {rd }}$ Fraternity
$42^{\text {nd }}$ Meaning of life
\Nthwords
One Liberty
Two Equality
Three Fraternity
Forty-Two Meaning of life
\backslash Greek
A Liberty
B Equality
Γ Fraternity
$A \Sigma$ Meaning of life
\enumhex
1 Liberty
2 Equality
3 Fraternity
2a Meaning of life
\enumoctal
1 Liberty
2 Equality
3 Fraternity
52 Meaning of life
\levelnth
1st Liberty
2nd Equality
3rd Fraternity
42nd Meaning of life

\Nwords
First Liberty
Second Equality
Third Fraternity
Forty-Second Meaning of life

\backslash NTHWORDS	FIRST Liberty
ONE Liberty	SECOND Equality
TWO Equality	THIRD Fraternity
THREE Fraternity	FORTY-SECOND Meaning of life
FORTY-TWO Meaning of life	
\nthwords	\nwords
one Liberty	first Liberty
two Equality	second Equality
three Fraternity	third Fraternity
forty-two Meaning of life	forty-second Meaning of life

[^0]: ${ }^{2}$ I'm actually guessing here. I have no idea. I got the clue from egreg here: http://tex. stackexchange.com/q/22234/215
 ${ }^{3}$ Why don't I just use those packages instead? Because having fmt count do most of the work means only loading one package instead of 3 (numname, binhex and nth or engord).

