1 An Example for Gaussian Elimination

Consider the real matrix

$$
A(t):=\left(\begin{array}{ccc}
1 & 1 & 1 \\
t & 2 t & 2 \\
t+1 & 0 & 2 t
\end{array}\right)
$$

which depends on a real valued parameter t. We want to find all solutions of the homogenous linear system defined by A depending on the parameter t.

Therefore, we use the Algorithm Gauss:

$$
\begin{aligned}
& \left.A(t)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
t & 2 t & 2 \\
t+1 & 0 & 2 t
\end{array}\right) \stackrel{\left.\bigsqcup_{+}^{-t}\right]_{+}^{-(t+1)}}{ } \rightsquigarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & t & 2-t \\
0 & -t-1 & t-1
\end{array}\right) \bigsqcup_{+} \right\rvert\, \cdot(-1) \\
& \left.\rightsquigarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & t & 2-t \\
0 & 1 & -1
\end{array}\right) \longleftarrow \bigsqcup_{+}^{-t} \right\rvert\,: 2 \\
& \rightsquigarrow\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Conclusion

We have learned that the matrix A defined above is regular for all real valued t, and we hopefully also have learned how to use the gauss package.

