
The cmdtrack package

Michael Downes

Version 1.05, 1999/07/22

1 Introduction
The cmdtrack package aids in the task of checking whether a command defined
in a document preamble is actually used somewhere in the document. If you
add a statement

\usepackage{cmdtrack}

in the preamble of your document, all \newcommand and similar statements
between that point and \begin{document} will be marked for logging. At the
end of the document a report of the command usage will be printed in the TEX
log, for example:

"mdash" was used on line 25

"ndash" was never used

"gar " was used on line 26

"math character ?" was used on line 26

In this list, a command \foo is normally listed as "foo"; however if it was
defined with an optional argument, it will be listed as "\foo", and if defined
with \DeclareRobustCommand it will be listed as "foo " (with an extra space).
This has to do with the way LATEX deals with such definitions behind the scenes.
Twiddling the behavior to get more consistent treatment of the command names
looked hard, so I didn’t do it. If you can send actual code to remedy this
deficiency, it will be welcome. I do not plan on trying to fix it myself until after
I have dealt with all the other, more interesting or more pressing, problems in
my queue.

Certain kinds of commands are inherently untrackable due to the way they
are used (counters, lengths, and other variables that may appear on the right-
hand of an assignment statement; commands whose first use is in the argument
of \label, and so on.) Tracking for commands of this sort can be turned off
by moving their definitions earlier (before the load statement of the cmdtrack
package), or by listing them in the argument of an \untrack statement at the
end of your document preamble, for example:

\untrack{\foo,\bar,\blub,...}

1

2 THE CMDTRACK PACKAGE

2 Limitations
• Only commands defined with \newcommand, \newenvironment, \newtheorem,
\DeclareMathSymbol, \DeclareMathOperator, and their variants are
logged. Commands will not be logged if they are defined with \def instead
of \newcommand, \mathchardef instead of \DeclareMathSymbol, etc.

• “Commands” defined with \newlength, \newsavebox, \newcounter,
\newcount, \newtoks, etc., will not be logged because it cannot be done
without disrupting their normal use.

• Commands defined with \DeclareTextSymbol, \DeclareTextAccent,
\DeclareMathRadical, \DeclareMathAlphabet, and various other things
will not be logged because I was starting to doze off on the keyboard after
adding the support for \DeclareMathSymbol. Any volunteers?

• The definitions of the commands that are to be logged must fall between
\usepackage{cmdtrack} and \begin{document}. For problem com-
mands, try moving their definitions before the \usepackage{cmdtrack}

line, or use the \untrack command to cancel tracking for selected com-
mands at the end of the preamble.

• The cmdtrack package should be the last package loaded (or, the later-
loaded packages will have their commands tracked as well, if that is what
you want).

• A command definition starting with \multicolumn will cause trouble (un-
less it is never used).

• Large number of \newcommands (200+, say) might lead to an error message
“TEX capacity exceeded (hash size . . .)”. Depends on the capacity of your
TEX system.

3 Embedded documentation
The following material comes into play only when the ? package option is used.

%% Self-documenting section

\ifcat ?$\relax{\catcode37=7 \catcode127=9 \def\0{\@sanitize\catcode}\fi

%%? \endlinechar125\catcode127=13\def%%?{\typeout}\037=7

%%?{==

%%?{ With the cmdtrack package, all commands and environments defined

%%?{ between \usepackage{cmdtrack} and \begin{document} will be marked

%%?{ for logging. A report on the usage of the marked commands will be

%%?{ printed in the LaTeX log file. Standard LaTeX methods must be used

%%?{ for defining the commands (things defined with \def, for example,

%%?{ won’t be logged). Use \untrack{\cmd,\othercmd,...} just before

%%?{ \begin{document} to turn off tracking for selected commands.

%%?{

%%?{ Package options:

%%?{

%%?{ ? Causes this information to be shown on-screen.

%%?{

%%?{ morose Opposite of verbose: causes the brief message about the ?

4. IMPLEMENTATION 3

%%?{ option to be suppressed.

%%?{

%%?{ Support for the following is not [yet] provided:

%%?{ \DeclareTextSymbol, \DeclareMathRadical, \DeclareMathAlphabet, and

%%?{ some others.

%%?{

%%?{ More comprehensive documentation for cmdtrack.sty may be found in

%%?{ cmdtrack.dtx.

%%?{==

%%?{}}\endinput\bgroup

%%

4 Implementation
Standard declaration of package name and date.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{cmdtrack}[1999/07/22 v1.05]

The cmdtrack package works by hooking into the internal LATEX function
\@yargdef. When processing something like \newcommand{\foo}{...}, there
is a point where LATEX runs, essentially,

\def\foo{...}

Just as LATEX is about to carry out that assignment, we jump in and substitute
a different control sequence in place of \foo! Our substituted control sequence
has the same name but with an extra double-quote character " added at the
beginning: i.e., \"foo instead of \foo. Thus \"foo gets the real definition, and
we are free to give \foo some other definition for logging purposes. Obviously
it should end by calling the real definition. And here is how we arrange that.

1. \foo expands to \logcmd \"foo \foo.

2. \logcmd redefines \foo to take on the meaning of \"foo.

3. \logcmd adds \"foo to a used-commands list, and records the current line
number with it.

Then when we reach the end of our document, we need to find some way
of looking through all of our marked commands and reporting which ones were
used. During the processing of the preamble, the marked commands were stored
in a list \commandlist. Furthermore, when \logcmd redefined \"foo, it put in
a special marker character along with the line number. Then when we reach
the end of our document, we can iterate over the command list with a function
that checks for that special character in the \meaning of each command.

Alternatively one could imagine adding the used commands to a separate
list. At one point I started doing that but it got a little messy so I abandoned
the idea. Besides, this way the report comes out with the commands in the same
order as they were defined in the preamble (except that newtheorem commands
gravitate toward the end of the list).

\let\commandlist\@empty

4 THE CMDTRACK PACKAGE

\AtEndDocument{\report@command@usage}

The LATEX kernel doesn’t provide this.

\edef\@quotechar{\string"}

The \untrack command could just redefine \logcmd and run through its
argument list, but if the user accidentally leaves in some command that is no
longer defined (or defined before the cmdtrack package is loaded) then some
kind of error is likely. So we check specifically for the string \logcmd at the
beginning of each command’s \meaning string.

\newcommand{\untrack}[1]{%

\begingroup

\def\logcmd##1##2{\global\let##1=##2%

\xdef##2{\@percentchar\the\inputlineno}%

}%

\untrack@a#1{,\@gobble}\endgroup

}

i

\def\untrack@a#1{%

\ifx,#1\@gobbletwo\expandafter\@gobble

\else \expandafter\untrack@b\meaning#1\@nil#1%

\fi

\untrack@a

}

\def\untrack@b#1->#2#3#4#5#6#7#8#9\@nil{%

\expandafter\ifx\csname #3#4#5@#6#7#8\endcsname\log@cmd

\else

\def\@tempa##1{%

\PackageWarningNoLine{cmdtrack}{%

Command \protect##1 does not have tracking turned on}%

}%

\expandafter\@tempa

\fi

}

One branch of providecommand processing uses \reserved@a in a way that
will fail unless we watch out for it.

\def\@isreserved@a#1\reserved@a#2#3@{#2}

\let\@hash@\relax

\def\log@cmd#1#2{%

\if\@isreserved@a#2T\reserved@a F@T%

\endgroup

\else

\toks@\expandafter{\commandlist#1}%

\xdef\commandlist{\the\toks@}%

\endgroup

\def#2{\logcmd#2#1}%

\fi

\let\@hash@##%

4. IMPLEMENTATION 5

\l@ngrel@x\expandafter\def\expandafter#1\reserved@a

}

\def\logcmd#1#2{%

\ifx\protect\@typeset@protect

\global\let#1#2%

\xdef#2{\@percentchar\the\inputlineno}%

\else

\expandafter\protect

\fi

#1%

}

\begingroup \catcode‘\"=12

\gdef\cmd@check#1->#2#3-#4\@nil#5{%

\if\@percentchar#2\typeout{\string#5" was used on line #3}%

\else\typeout{\string#5" was never used}%

\fi

}

\endgroup

\def\report@command@usage{%

\def\@tempa{\typeout{===}}%

\@tempa

\begingroup \escapechar\m@ne

\def\do##1{%

\ifx\advance##1\expandafter\@gobbletwo\fi

{\expandafter\cmd@check\meaning##1->@-\@nil##1}%

\do

}%

\expandafter\do\commandlist \advance\z@\z@

\endgroup

\@tempa

}

\def\testthm#1{%

\expandafter\testthm@a\csname#1\expandafter\endcsname

\csname\@quotechar#1\endcsname

}

In order to avoid figuring out how to read the optional arguments of
\newtheorem, we postpone the application of \log@cmd (actually, a slight vari-
ation thereof) until \begin{document}.

\let\old@newtheorem\newtheorem

\def\newtheorem#1{%

\AtBeginDocument{\testthm{#1}}%

\old@newtheorem{#1}%

}

\def\testthm@a#1#2{%

\begingroup

\toks@\expandafter{\commandlist#2}%

\xdef\commandlist{\the\toks@}%

6 THE CMDTRACK PACKAGE

\endgroup

\let#2#1%

\def#1{\logcmd#1#2}%

}

It would be unusual for a character to be defined as a math symbol in a
document preamble. But what hey, why not support it?

\def\set@mathchar#1#2#3#4{%

\expandafter\set@mathchar@a

\csname\@quotechar math character \string#2\expandafter\endcsname

\expandafter{\number‘#2}{#1}{#3}{#4}%

}%

\def\set@mathchar@a#1#2#3#4#5{%

\global\mathcode#2=\@quotechar 8000

\global\mathchardef#1\@quotechar\mathchar@type#4\hexnumber@#3#5\relax

\toks@\expandafter{\commandlist#1}%

\xdef\commandlist{\the\toks@}%

\begingroup \lccode‘\.=#2\lccode‘\~=#2\lowercase{\endgroup

\gdef~{\global\mathcode#2=#1\logcmd#1#1}}%

}

\def\set@mathsymbol#1#2#3#4{%

\begingroup \escapechar=‘\"\relax

\global\expandafter\mathchardef

\csname\string#2\endcsname

\@quotechar\mathchar@type#3\hexnumber@#1#4\relax

\expandafter\log@cmd@a\csname\string#2\endcsname#2%

}

\def\set@mathaccent#1#2#3#4{%

\xdef#2{\mathaccent\@quotechar\mathchar@type#3\hexnumber@#1#4\relax}%

\begingroup \escapechar‘\"\relax

\expandafter\log@cmd@a\csname\string#2\endcsname#2%

}

Note the use of \gdef.

\def\log@cmd@a#1#2{%

\toks@\expandafter{\commandlist#1}%

\xdef\commandlist{\the\toks@}%

\endgroup

\gdef#2{\logcmd#2#1}%

}

\DeclareOption{?}{\AtEndOfPackage{\ShowPackageInfo{cmdtrack}}}

\DeclareOption{morose}{}

\DeclareOption{simple}{%

\def\logcmd#1#2{%

\ifx\protect\@typeset@protect

\global\let#1#2%

\begingroup \escapechar\m@ne

\typeout{\string#2\string" was used on line \the\inputlineno}%

4. IMPLEMENTATION 7

\endgroup

\else

\expandafter\protect

\fi

#1%

}%

\AtBeginDocument{\global\let\commandlist\@empty}%

\global\let\report@command@usage\relax

}

\ProcessOptions\relax

\begingroup

\catcode‘\%=9 \catcode‘\&=14 \catcode‘\"=12

\@ifpackagewith{cmdtrack}{morose}{\catcode‘\%=14 }{}

\@ifpackagewith{cmdtrack}{?}{\catcode‘\%=14 }{}

%%\typeout{&

%%Try "\string\usepackage[\string ?]{cmdtrack}"

%%to see information on using this package^^J&

%%[including how to turn off this "helpful" message].&

%%}

\endgroup

\newcommand{\ShowPackageInfo}[1]{%

\begingroup \catcode‘\?=3

\input{#1.\@pkgextension}%

\endgroup

}

\let\@@yargdef\@yargdef

Restore yargdef to normal at beginning of document, so that uses of
\newcommand in \maketitle (e.g.) are ignored.

\AtBeginDocument{\let\@yargdef\@@yargdef}

\let\@hash@\relax

\def\@yargdef #1#2#3{%

\@tempcnta#3\relax \advance\@tempcnta\@ne \let\@hash@\relax

\edef\reserved@a{\ifx#2\tw@ [\@hash@ 1]\fi}%

\@tempcntb#2%

\@whilenum\@tempcntb<\@tempcnta\do{%

\edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%

\advance\@tempcntb\@ne

}%

\begingroup \escapechar=‘\"\relax

\expandafter\log@cmd\csname\string#1\endcsname#1%

}

The usual \endinput to ensure that random garbage at the end of the file
doesn’t get copied by docstrip.

\endinput

