
The adjustbox Package

Martin Scharrer
martin@scharrer-online.de

http://www.ctan.org/pkg/adjustbox

Version v0.5a – 2011/08/21

Abstract

This package provides macros missing in graphics to trim, clip and generally
adjust boxed LATEX material as well as further box modification macros and op-
tion keys usable for \adjustbox and \includegraphics. The macros use the
collectbox package to allow for verbatim content. Equivalent environments
are also provided. The trim operation is now implemented in TEX and the clip
operation uses pdftex primitives if available. Otherwise the pgf package is used
for clipping, which supports both DVI/PS and PDF output.
This package is still a little new and its implementation might not be fully stable
yet.

1 Introduction

The standard LATEX package graphicx (the extended version of graphics) provides
the macro \includegraphics[〈options〉]{〈file name〉} which can be used to in-
clude graphic files. Several options can be used to scale, resize, rotate, trim and/or
clip the graphic. The macros \scalebox, \resizebox and \rotatebox are also
provided to apply the corresponding operation on (LA)TEX material, which is subse-
quently placed inside a \hbox. However no macros are provided to trim or clip (LA)TEX
material, most likely because this operations are not done by TEX but by the output
format, i.e. using PostScript (PS) or PDF operations.

This package provides the missing macros \clipbox and \trimbox as well as
the general \adjustbox macro. The trim operation is implemented as TEX code and
the clip operation either using a pdftex or a pgfpicture environment from the
pgf package which supports both PS and PDF output. All LATEX compilers should be
supported, but pdflatex is the main target of the author.

2 Package Option

Following v0.5 from 2011/08/13 this package accepts the following package options.
Some of them can also be used as optional keys for macros.

minimal Only define the minimal set of macros, i.e. \trimbox, \clipbox and \adjustbox
as with previous versions before v0.5.

export Export the now keys of \adjustbox also to \includegraphics so that they
can be used for images as well. This option is meaningless if minimal was used.

1

mailto:martin@scharrer-online.de
http://www.ctan.org/pkg/adjustbox

patch Patch the internal graphicx code to allow the usage of size macros. This
simply loads the small adjgrfx package which can also be used independently.
(Not fully implemented and tested yet!)

pgf Uses the pgf package for all clip operations. This overrides all automatically
detected drivers. At the moment only a pdftex driver is provided, all other
compilers and output formats use this option already.

PGF Uses the pgf package for clip operations and configures the macros to parse
lengths using pgfmath (compare with the pgf option below).

The following options define the way length values are processed by the provided
macros. They can be used either as package options and as keys for \adjustbox (but
not for \includegraphics even if the export option was used) to change the settings
locally. The only difference between these two usages is that they also load required
packages when used as package options. Therefore all keys used in the document
should be loaded as package options first or the required packages must be loaded
manually. (It is also possible to disable the advanced parsing of lengths using the
none option, but this is not recommended.)

etex Uses the ε-TEX primitive \glueexpr to parse length values. This allows for
additions, subtractions as well as multiplications and devision by a numeric
factor. See the official etex_man document for more details. This setting is
the default if ε-TEX is detected (which should be the case with all modern LATEX
distributions).

calc Uses the calc package to parse length values. It supports all operations men-
tioned for etex and also some other operation like \widthof{〈text〉}. See the
calc package manual for more details. This is the default setting if ε-TeX is not
detected.

pgfmath Uses the pgfmath package of the pgf bundle to parse length values. It sup-
ports all basic numeric operations and also advanced mathematical functions.
See the pgf manual for more details. Because the pgfmath package can’t be
loaded independently in the current version (v2.10) the whole pgf package will
be loaded.

One further option exists which can also be used as optional key for \adjustbox
(but not for \includegraphics):

defaultunit =〈unit〉This sets the default unit used for the values of \trimbox, \clipbox
and \marginbox including there starred versions as well as all related keys like
trim, viewport, margin, trim, viewport, Clip and Clip*. The standard
default unit is the same as for \includegraphics: ‘bp’ (big points, PostScript
points). However, for LATEX material TEX normal unit ‘pt’ (TEX points) are better
suited and will avoid rounding errors which otherwise get introduced by the
internal conversion. The default unit is only used if the particular value is only a
single number without unit, but not if any mathematical operations are used. If
the special value none is used no default unit is applied and the internal check
if the value is a single number is by-passed. This gives a small speed bonus
and can be used to avoid potential issues with complex values. At this moment
this setting will disable the default unit feature for the rest of the current group

2

(i.e. all further \adjustbox keys or globally if used as a package option) and
further usages of this option will have no affect. This might change in future
versions of this package.

3 Usage

This section describes the usage of the provided macros, which are outlined in sub-
section 3.1. Possible advanced values for the macro arguments are mentioned in
subsection 3.2. The existing verbatim support is explained in subsection 3.3. Fi-
nally subsection 3.4 compares the existing macros with the corresponding options
of \adjustbox. Further box modification macros and keys are described in subsec-
tion 3.5 and subsection 3.6, respectively.

It is recommended to also read the Graphics Guide (grfguide, i.e. the manual of
the graphics/x packages), to understand the existing options for \includegraphics.

3.1 Basic Box Modification Macros

This section lists the provided macros \clipbox and \trimbox missing in the graphicx
package as well as the general \adjustbox macro. If the package is loaded with the
minimal option no further macros or keys are defined.

Trim Box Content

\trimbox{〈all sites〉}{〈content〉}
\trimbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\trimbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}
\trimbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

The macro \trimbox trims the given amount from the lower left (ll) and the upper
right (ur) corner of the box. This means that the amount 〈llx〉 is trimmed from the
left side, 〈lly〉 from the bottom and 〈urx〉 and 〈ury〉 from the right and top of the box,
respectively. If only one value is given it will be used for all four sites. If only two
values are given the first one will be used for the left and right side (llx, urx) and the
second for the bottom and top side (lly, ury). Trimming means that the official size of
the box is reduced, but no material is actual removed. The material in the trimmed
areas simply swaps over the official border.

If the starred version is used the four coordinates are taken as the viewport
instead, i.e. the box is trimmed to the rectangle described by the coordinates. In this
case using all four values must be specified.

\begin{trimbox}{〈1, 2 or 4 trim values〉}
〈content〉

\end{trimbox}

3

\begin{trimbox*}{〈llx〉 〈lly〉 〈urx〉 〈ury〉}
〈content〉

\end{trimbox*}

The trimbox and trimbox* environments do the same as the corresponding macros.
Special care is taken so that the macros and the environments can have the same
name. Because of this the star can be either part of the name or an optional argument.
Also the plainTEX syntax for environments (\trimbox ... \endtrimbox) can not
be used because it will trigger \trimbox as a macro.

Clip Box Content

\clipbox{〈all sites〉}{〈content〉}
\clipbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\clipbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}
\clipbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

The \clipbox macro works like the \trimbox and trims the given amounts from the
〈text〉. However, in addition the trimmed material is also clipped, i.e. it is not shown
in the final document. Note that the material will still be part of the output file but is
simply not shown. It might be exported using special tools, so using \clipbox (or
\includegraphics[clip,trim=...]) to censor classified information would be a
bad idea. The starred version will again use the given coordinates as viewport.

\begin{clipbox}{〈1, 2 or 4 trim values〉}
〈content〉

\end{clipbox}

\begin{clipbox*}{〈llx〉 〈lly〉 〈urx〉 〈ury〉}
〈content〉

\end{clipbox*}

Die obigen Makros als Umgebungen. Es gelten die gleichen Regeln wie bei den
trimbox Umgebungen.

Adjust Box Content

\adjustbox{〈includegraphics options〉}{〈content〉}

The \adjustbox macro is the general form of all box modifying macros mentioned
in the introduction. It can be thought as an \includegraphics for (LA)TEX material.
It supports the same set of 〈options〉, however they are provided as a mandatory not
as an optional argument. An \adjustbox without options would not make sense
and can be replaced by a simple \mbox. There is no starred version of this macro. See
also Table 1 for a comparison of \adjustbox with the other macros.

4

\begin{adjustbox}{〈includegraphics options〉}
〈content〉

\end{adjustbox}

The environment version of \adjustbox.

Examples

The following examples show the application of the aforementioned macros on an
example text. The result is placed in a tight, colored frame box to show the resulting
dimensions.

\example
A B
C D

\trimbox{10 5 10 5}{\example}
A B
C D

\clipbox{10 5 10 5}{\example}
A B
C D

\trimbox*{15 5 25 30}{\example} A B
C D

\clipbox*{15 5 25 30}{\example} A B
C D

\adjustbox{trim=10 5 10 5,angle=45}{\example} A

B

C

D

\adjustbox{scale=1.5}{\example}
A B
C D

\adjustbox{width=180pt,height=20pt}{\example} A B
C D

\adjustbox{width=180pt,height=20pt,keepaspectratio}{\example} A B
C D

5

3.2 Argument Values

All length values given in the arguments of all macros and keys provided by this pack- Parsing
age are parsed by and advanced version of \setlength(called \adjsetlength{)}
which uses either ε-TEX expressions (default), the calc package (default fall-back)
or the \pgfmathparse of the pgf package. This allows for arithmetic expressions in
these arguments. See the package options in section 2 to learn how to change the
used length parser. Note that early versions of this package used \pgfmathparse
by default. Older documents therefore might need now use the pgfmath option to
compile correctly.

Note that the four values for \trimbox and \clipbox as well as for the trim and Space=Separator
viewport option of \adjustbox are separated by spaces. If the expression of any
of this values holds a space or ends with a macro (eats trailing spaces!) it must be
wrapped into braces ‘{ }’.

\width \height \depth \totalheight

These LATEX lengths hold the original dimension of 〈text〉 and can be used as part of the
arguments to \adjustbox, \trimbox and \clipbox. The totalheight is the height
plus depth. With the patch option these lengths can also be used for \includegraphics.

If no unit is provided for of the bounding box coordinates (llx, lly, urx, ury) then Default unit
PostScript points (big points, bp, 72bp = 1inch) are used, as it is the default behaviour
of the trim and viewport options of graphicx’s \includegraphics. Note that
graphicx converts all values, independent if a unit is provided or not, internally to
bp, because graphics where traditionally stored in Encapsulated PostScript (EPS)
files. The more modern PDF files also use bp instead of pt. Because the adjustbox
package macros target (LA)TEX material and users will mostly use pt values this internal
conversion to bp got disabled for them to avoid unnecessary rounding errors. Since
v0.5 the default unit can be changed using the defaultunit=〈unit〉 key (which is
also usable as global package option).

3.3 Verbatim Support

The macros read the 〈text〉 as TEX \hbox and not as an macro argument in order to
support verbatim content. This functionality is now provided as dedicated package
collectbox which can also be used independently. This means that the braces
around the content can also be written as \bgroup and \egroup:

\trimbox{1 2 3 4}\bgroup 〈content〉\egroup
Special care is taken to allow the 〈text〉 to be a single macro (except \bgroup) without
any braces:

\clipbox{1 2 3 4}\somemacro

This is to support the questionable habit of some LATEX users to drop the braces for
single token arguments. All environments support verbatim content.

6

3.4 Alternatives for existing Macros

The flexible \adjustbox can also be used as an alternative to existing macros from
the graphics package as shown by Table 1. Because it is longer then the originals
this is only of benefit if combinations are to be replaced or verbatim text must be
supported.

Table 1: Alternatives for existing Macros

Original Macro (w/o content argument) Alternative \adjustbox keys

\rotatebox{〈angle〉} angle=〈angle〉
rotate=〈angle〉

\scalebox{〈factor〉} scale=〈factor〉
\scalebox{〈x-factor〉}[〈y-factor〉] width=〈x-factor〉\width,height=〈y-factor〉\height
\reflectbox reflect

width=-\width,height=\height
\resizebox{〈width〉}{〈height〉} width=〈width〉,height=〈height〉
\resizebox*{〈width〉}{〈totalheight〉} width=〈width〉,totalheight=〈totalheight〉
\trimbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉} trim=〈llx〉 〈lly〉 〈urx〉 〈ury〉

Trim=〈llx〉 〈lly〉 〈urx〉 〈ury〉
\trimbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉} viewport=〈llx〉 〈lly〉 〈urx〉 〈ury〉

Viewport=〈llx〉 〈lly〉 〈urx〉 〈ury〉
\clipbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉} trim=〈llx〉 〈lly〉 〈urx〉 〈ury〉,clip

Clip=〈llx〉 〈lly〉 〈urx〉 〈ury〉
\clipbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉} viewport=〈llx〉 〈lly〉 〈urx〉 〈ury〉,clip

Clip*=〈llx〉 〈lly〉 〈urx〉 〈ury〉

3.5 Further Box Modification Macros

This section lists further macros which are also defined unless the package is loaded
with the minimal option. Note that the authors other package realboxes provides
variants of existing box macros defined by the LATEX core or common packages like
graphicx. Like the box macros here this variants allow for verbatim content because
they read it as real box and not as macro arguments.

\marginbox{〈all sites〉}{〈content〉}
\marginbox{〈left/right〉 〈top/bottom〉}{〈content〉}
\marginbox{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

This macro can be used to add a margin (white space) around the content. It can
be seen as the opposite of \trim. The original baseline of the content is preserved
because 〈lly〉 is added to the depth. It is also available as marginbox environment
and also usable as margin option (see below).

7

Example:

Before \fbox {\ marginbox {1ex 2ex 3ex 4ex}{ Text }} After

Before Text After

\marginbox*{〈all sites〉}{〈content〉}
\marginbox*{〈left/right〉 〈top/bottom〉}{〈content〉}
\marginbox*{〈llx〉 〈lly〉 〈urx〉 〈ury〉}{〈content〉}

This starred version is almost identical to the normal \marginbox, but also raises
the content by the 〈lly〉 amount, so that the original depth instead of the original
baseline is preserved. Note that while \marginbox is basically the opposite of \trim,
\marginbox* is not the opposite of \trim*. Instead it also takes the same values as
the normal value and not view port values like \trim*.

Example:

Before \fbox {\ marginbox *{1 ex 2ex 3ex 4ex}{ Text }} After

Before
Text

After

\minsizebox{〈width〉}{〈height〉}{〈content〉}
\minsizebox*{〈width〉}{〈totalheight〉}{〈content〉}

This macro is like \resizebox of the graphics/x package, but only resizes the
content if its natural size is smaller than the given 〈width〉 or 〈height〉. If only one
value should be set the other one can be replaced by ‘!’. If required the content is
scaled up so that the width and height is equal or larger than the given values, but
does not change the aspect ratio. The star variant uses the total height instead of
only the height. This macro is used internally for the min width, min height, min
totalheight and min totalsize options.

Examples:

\ minsizebox {3cm }{2 ex}{ Some Text} which will be enlarged

Some Text which will be enlarged

\ minsizebox {!}{4 ex }{\ fbox{Some Text }} which will be ↙
enlarged

Some Text which will be enlarged

8

\ minsizebox *{!}{4 ex }{\ fbox{Some Text }} which will be ↙
enlarged

Some Text which will be enlarged

\ minsizebox {3cm }{!}{ Some Text} which will be enlarged

Some Text which will be enlarged

\ minsizebox {1cm }{1 ex}{ Some Text}, already large enough

Some Text, already large enough

\maxsizebox{〈width〉}{〈height〉}{〈content〉}
\maxsizebox*{〈width〉}{〈totalheight〉}{〈content〉}

This macro is like \resizebox of the graphics/x package, but only resizes the
content if its natural size is larger than the given 〈width〉 or 〈height〉. If only one
value should be set the other one can be replaced by ‘!’. If required the content is
scaled down so that the width and height is equal or smaller than the given values,
but does not change the aspect ratio. The star variant uses the total height instead of
only the height. This macro is used internally for the max width, max height, max
totalheight and max totalsize options.

Examples:

\ maxsizebox {1cm }{1 ex}{ Some Text} which will be reduced

Some Text which will be reduced

\ maxsizebox {!}{1 ex }{\ fbox{Some Text }} which will be reduced

Some Text which will be reduced

\ maxsizebox *{!}{1 ex }{\ fbox{Some Text }} which will be ↙
reduced

Some Text which will be reduced

\ maxsizebox {1cm }{!}{ Some Text} which will be reduced

Some Text which will be reduced

\ maxsizebox {3cm }{1 cm}{ Some Text}, already small enough

Some Text, already small enough

9

\lapbox[〈width〉]{〈lap amount〉}{〈content〉}

This macro is a generalisation of the LATEX core macros \rlap{〈content〉} and \llap{〈content〉}
which lap the text to the right or left without taking any official space. The \lapbox
macro can be used to only partially lap the content to the right (positive amount)
or left (negative amount). As with all macros of this package the original width can
be references using \width. The resulting official width of the box is normally the
original width minus the absolute lap amount. However, it can also be set explicitly
using the option argument. It is also possible to use lap amount which absolute
values are larger than the original width. In this case the resulting official width will
be zero by default and the content will padded with the required white space. Note
that the lap amount always states the distance between the right side of the official
box and the right side of the actual content for positive amounts or the distance
between the left side of the official box and the left side of the actual content for
negative values.

Examples:

General lapping:

\ lapbox {1cm}{ Some Text} Some Text

\ lapbox {-1cm}{ Some Text} Some Text

\ lapbox [4cm]{1 cm}{ Some Text} Some Text

\ lapbox [3cm]{2 cm}{ Some Text} Some Text

Like \rlap:

\ lapbox [0pt]{\ width }{ Some Text} Some Text

Like \llap:

\ lapbox [0pt]{-\ width }{ Some Text} Some Text

A centering \clap macro can be achieved using:

\ lapbox [0pt]{ -.5\ width }{ Some Text} Some Text

\ lapbox [0pt]{.5\ width }{ Some Text} Some Text

\phantombox{〈width〉}{〈height〉}{〈depth〉}

This macro produces an empty box with the given width, height and depth. It is
equivalent to \phantom{\rule[-〈depth〉]{〈width〉}{〈height〉+〈depth〉}} but more
efficient and more user friendly.

Example:

Before \fbox {\ phantombox {1cm }{2 ex }{1 ex}} After

Before After

10

3.6 New keys for \adjustbox and \includegraphics

This section lists provided keys usable as \adjustbox options and, if the export
package option was used, also as \includegraphics options. If the package is
loaded with the minimal option this code is skipped.

3.6.1 Trimming and Clipping

Trim=〈all sites〉
Trim=〈left/right〉 〈top/bottom〉
Trim=〈llx〉 〈lly〉 〈urx〉 〈ury〉
Viewport=〈llx〉 〈lly〉 〈urx〉 〈ury〉

The normal trim and viewport keys as described earlier are applied on the original
content before any resizing or other effects. This is because for \includegraphics
the trimming is done by the internal graphic driver, while the effects can be applied
later (but can also be driver dependent). If the trim and viewport keys are used
multiple times the last values will be used for the trimming, i.e. the content is only
trimmed once. The upper case variants trim and viewport will wrap the content
internally in a \trimbox or \trimbox* macro which can be applied multiple times,
e.g. before and after the content is rotated. These two keys awaits the same format as
the original keys. However, the clip key has no effect on them.

Clip=〈all sites〉
Clip=〈left/right〉 〈top/bottom〉
Clip=〈llx〉 〈lly〉 〈urx〉 〈ury〉
Clip*=〈llx〉 〈lly〉 〈urx〉 〈ury〉

As stated above the clip boolean key which will make the default trim and viewport
keys clip the trimmed content, has no effect on the trim and viewport keys. Instead
Clip and Clip* are provided which wrap the content internally in a \clipbox or
\clipbox* macro. They can be used several times.

3.6.2 Frame and Margin

frame
frame=〈width〉
frame=〈width〉 〈sep〉

This key will draw a black frame around the content. By default the frame lines
will have a thickness of \fboxrule (i.e. the same thickness like \fbox) and will be
placed tightly around the content with zero separation. The line width and also the
separation can be defined as the optional value.

11

margin=〈all sites〉
margin=〈left/right〉 〈top/bottom〉
margin=〈llx〉 〈lly〉 〈urx〉 〈ury〉

This key can be used to add a margin (white space) around the content (using
\marginbox). It can be seen as the opposite of trim(and in fact is implemented
almost identical to it with negated signs). The four values are added to
the left, bottom, right and top side of the content, respectively. The original baseline
of the content is preserved by adding 〈lly〉 to the depth. If negative values are given
the content is actually trimmed, but this will lead to wrong results if the absolute
values are bigger than the available amount. This is particularly a problem with the
depth. The trim and trim code will handle this case correctly, however.

margin*=〈all sites〉
margin*=〈left/right〉 〈top/bottom〉
margin*=〈llx〉 〈lly〉 〈urx〉 〈ury〉

Like margin but also raises the content by 〈lly〉 and therefore preserves the original
depth and not the original baseline.

3.6.3 Size/Scaling

min width=〈width〉
max width=〈width〉
min height=〈height〉
max height=〈height〉
min totalheight=〈total height〉
max totalheight=〈total height〉

These keys allow to set the minimum and maximum width, height or totalheight of
the content. The current size of the content is measured and the content is resized
if the constraint is not already met, otherwise the content is unchanged. Multiple
usages of these keys are checked one after each other, and therefore it is possible
that a later one is undoing the size changes of an earlier one. A good example is max
width=\textwidth which will limit large content to the text width but will not affect
smaller content.

min size={〈width〉}{〈height〉}
max size={〈width〉}{〈height〉}
min totalsize={〈width〉}{〈total height〉}
max totalsize={〈width〉}{〈total height〉}

These keys allow to specify the minimum or maximum width and (total)height of the
content together, which is more efficient than using the width and (total)height keys
described earlier.

12

scale=〈factor〉
scale={〈h-factor〉}{〈v-factor〉}

The normal scale key of graphicx only allows for one scale factor which is used for
both the horizontal and vertical scaling. With adjustbox it is also possible to provide
the horizontal and vertical scale factors separately.

reflect

This reflects the content by using \reflectbox internally, which is identical to
\scalebox{-1}[1], i.e. this key is identical to scale={-1}{1}.

Examples:

\ adjustbox { reflect }{\ sffamily OTTO} OTTO

\ adjustbox { reflect }{\ sffamily ANNA} ANNA

\ adjustbox { reflect }{ Some text !} Sometext!

3.6.4 Positioning and Alignment

raise=〈amount〉
raise={〈amount〉}{〈height〉}
raise={〈amount〉}{〈height〉}{〈depth〉}

This key uses \raisebox{〈amount〉}{...} to raise the content upwards for the given
〈amount〉 (length). A negative length moves the content down. The two optional
arguments of \raisebox{〈amount〉}[〈height〉][〈depth〉]{...} are also available
as optional brace arguments. They can be used to set the official height and depth of
the content. This is also possible using the set height and set depth keys.

Examples:

Is \ adjustbox { raise =1ex}{ higher }
than the normal text Is higher than the normal text

Is \ adjustbox { raise ={1 ex }{\ height }}{ higher }
than the normal text but sill has
its original official height

Is higher than the normal text but sill has its original official height

Is \ adjustbox { raise ={1 ex }{1 ex }{0 pt }}{ higher and
\ rotatebox { -90}{ depth }} but with limited official
height and no depth.

Is higher and d
ep

th

but with limited official height and no depth.

13

valign=〈letter〉

This key allows to vertically align the content to the top, middle and bottom. The up-
percase letters T, M and B align to the content top (i.e. all depth, no height), the geomet-
ric, vertical center (equal height and depth) and to the bottom (all height, no depth),
respectively. This allows the alignment of content of different size, but will not result
in good alignment with text. The lowercase letters t, m and b are aligning the content
again to the top, center and bottom but take the current text size in account. The t
letter leaves a certain height given by the macro1 \adjboxvtop (by default set to the
height of \strut , i.e. \ht\strutbox, which is .7\baselineskip), while b sets a cer-
tain depth given (as negative length) by the macro \adjboxvbottom (by default equal
to the (negated) \strut depth, i.e. -\dp\strutbox, which is .3\baselineskip).
The m letter will center towards the vertical center of the text line which is determined
by the macro \adjboxvcenter (by default 1ex).

The following table shows the different alignments for three different sized blocks:

T M B Text

Mxy
Mxy
Mxy

t m b Text

Mxy
Mxy
Mxy

set height=〈height〉

This sets the official height of the content without actual changing it. This can be
seen as a form of trimming. It uses the same internal code as
\raisebox{0pt}[〈height〉]{〈content〉}.

Examples:

\ adjustbox {set height =.5\ height }
{\ shortstack {some stacked \\ content }}

some stacked
content

set depth=〈depth〉

This sets the official depth of the content without actual changing it. This can be seen
as a form of trimming. It uses the same internal code as
\raisebox{0pt}[\height][〈depth〉]{〈content〉}.

1A macro and not a length is used to allow for font size relative values like 1ex.

14

Examples:

\ adjustbox {set depth =0pt}
{\ shortstack {some stacked \\ content
with \ raisebox {-1ex}{ depth }}}

some stacked
content with depth

lap=〈lap amount〉
lap={〈length〉}{〈lap amount〉}

This wraps the content into a \lapbox{〈lap amount〉}{...} and \lapbox[〈length〉]{〈lap
amount〉}{...}, respectively. Positive 〈amounts〉 lap the content to the right and
negative to the left. The optional 〈length〉 argument allows to set the final width.

Examples:

\ adjustbox {lap =.5\ width }{ Some content } Some content

\ adjustbox {lap = -.5\ width }{ Some content } Some content

\ adjustbox {lap =\ width }{ Some content } Some content

\ adjustbox {lap =-\ width }{ Some content } Some content

\ adjustbox {lap ={\ width }{\ width }}{ Some content }

Some content

\ adjustbox {lap ={\ width }{-\ width }}{ Some content }

Some content

center
center=〈width〉

This key places the content in a horizontal box which is by default \linewidth wide
(i.e. as wide as a normal text paragraph) and centers it in it. The effect is very similar
to \centerline. The original content is unchanged, but simply identical white
space is added as a left and right margin. This is useful if the content is a figure or
table and can be used as a replacement for \centering. One important difference is
that the content will then have the given width which might influence (sub-)caption
placement. If the content is wider than the available width it will stick out on both
sides equally without causing an overfull hbox warning. Note that when \adjustbox
paragraph is used at the beginning of a paragraph the normal paragraph indention is
added, which will push the while box to the right and might cause an overfull line. In
such cases a \noindent must be added beforehand. The adjustbox environment
already uses this macro.

Examples:

\ adjustbox { center }{ Some content }

Some content

15

\ adjustbox { center =5cm}{ Some content }

Some content

right
right=〈width〉

Like center this key places the content in a box with the given width (by default
\linewidth) but right aligns it. If the content is wider than the available width it will
stick out into the left side without causing an overfull hbox warning.

Examples:

\ adjustbox { right }{ Some content }

Some content

\ adjustbox { right =5cm}{ Some content }

Some content

left
left=〈width〉

Like center this key places the content in a box with the given width (by default
\linewidth) but left aligns it. If the content is wider than the available width it will
stick out into the right side without causing an overfull hbox warning.

Examples:

\ adjustbox {left }{ Some content }

Some content

\ adjustbox {left =5cm}{ Some content }

Some content

inner
inner=〈width〉

Like center, left and right this key places the content in a box with the given
width (by default \linewidth) but aligns it towards the inner margin. If the content
is wider than the available width it will stick into the outer margin without causing
an overfull hbox warning. In twoside mode this key is equal to left for odd pages
and equal to right for even pages. For oneside mode it is always equal to center,
because there is no inner or outer margin. Note that the page-is-odd test might not
always lead to correct results for some material close to a page boundary, because
TEX might not have decided on which page it will be placed. This can be improved

16

by loading the changepage package with the strict option, which uses a reference to
determine the correct page number (and requires the usual additional compiler run).

outer
outer=〈width〉

Identical to inner but aligns the content towards the outer margin. If the content is
wider than the available width it will stick into the outer inner without causing an
overfull hbox warning.

3.6.5 Pixel size

dpi=〈number (dots per inch)〉

The dpi key provides a simple interface to set the pixel size to the given DPI (dots
per inch) value. For pdflatex the length unit px can be used to specify pixels.
However, the equivalent dimension (length) of one pixel must be set using the
\pdfpxdimen length register. To set a specific DPI value this length must be set
using \setlength\pdfpxdimen{1in/〈dots〉}, which is done by the dpi=〈dots〉 key.

Example:

\ adjustbox {dpi =72, trim =10px ,frame}
{\ textcolor {green }{\ rule {50 px }{50 px }}}

pxdim=〈length〉

Alternatively to the dpi key the \pdfpxdimen length can be set directly to the given
value. Afterwards 1px will stand for the given 〈length〉.

Example:

\ adjustbox { pxdim =2pt ,trim =2px ,frame }
{\ textcolor {green }{\ rule {10 px }{10 px }}}

3.7 Minipage or other inner Environment

The following keys set the way the content is processed before it is stored it in a box.
These keys will overwrite each other and only the latest used key will take effect.
Because they affect the inner content directly their order relative to other, normal
keys is not meaningful. Also they are only defined for adjustbox but do not apply
for \includegraphics. Because they are therefore only used inside a mandatory
argument and never in an optional these keys allow for optional bracket arguments.

17

minipage=〈width〉
minipage=[〈position〉][〈height〉][〈inner position〉]{〈width〉}

This key wraps the inner content in a minipage with the given 〈width〉 before it is
stored as horizontal box. Its order relative to other keys is not meaningful (except
that future keys of this sub-section will overwrite it). This allows for line breaks and
footnotes in the adjustbox. All optional arguments of minipage are supported. I
only the width is given it does not have to be enclosed in braces. The 〈position〉
argument must be ‘t’ for top baseline, ‘b’ for bottom baseline and ‘c’ for center
alignment relative to other text, i.e. defines the resulting baseline. If a 〈height〉 is
defined the 〈inner position〉 defaults to 〈position〉 but can also be ‘s’ to stretch the
content over the whole height. This requires the content to include some vertical
stretchable material.

Examples:

\ adjustbox { minipage =5cm ,angle = -10}{%
Some example code which will
be automatically broken or can include \\
line breaks \ footnote {AND footnotes !!}\\
or verbatim \verb+@%^&}_+!%

}

Some example code which will be
automatically broken or can in-

clude
line breaksa

or verbatim @%^&}_!aAND footnotes!!

Before \begin { adjustbox }{ minipage =[b][3 cm][s]{5 cm}}
Some example code

\vfill
with line breaks \ footnote {AND footnotes !!}

\vfill
or verbatim \verb+@%^&}_+!%

\end{ adjustbox } After

Before

Some example code

with line breaksa

or verbatim @%^&}_!

aAND footnotes!! After

18

tabular=[〈position〉]{〈column specification〉}
tabular*=[〈position〉]{〈width〉}{〈column specification〉}
array=[〈position〉]{〈column specification〉}

Places the content in a tabular, tabular* or array environment, respectively.
These keys require different implementations for macro (\adjustbox) and environ-
ment mode (adjustbox environment) in order to insert the end code correctly. Note
that the environment mode is more efficient and fully stable, while the macro mode
requires the last row to end with an explicit \\ (which can be followed by \hline or
any other macro which uses \noalign internally). In macro mode the \\ is internally
redefined to check for the closing brace. While this was successful tested for normal
usages it might still cause issues with unusual or complicated cases.

Examples:

\ adjustbox { tabular =lll }{%
\hline

A & B & C \\\ hline
a & b & c \\\ hline

}

A B C
a b c

\begin { adjustbox }{ tabular =lll}
A & B & C \\
a & b & c

\end{ adjustbox }

A B C
a b c

innerenv=〈environment name〉
innerenv={〈environment name〉}〈environment options〉

Wraps the inner content in the given 〈environment〉 before it is stored as horizontal
box. It should be kept in mind that there is some internal code between the begin of
the environment and the content. For this reason a tabular, innerenv or similar
environment will not work here, because that code will be taken as part of the first
cell.

Example:

\ newenvironment {myenv }[2][]{ Before [#1](#2) }{ After}
\ adjustbox { innerenv ={ myenv }[ex]{ amble }}{ Content }

Before [ex](amble)ContentAfter

innercode={〈begin code〉}{〈end code〉}

Places the given code before and after the inner content before it is stored as horizon-
tal box.

Example:

\ adjustbox { innercode ={\ color{green }}{!}}{ Content } Content!

19

3.8 Adding own Code or Environments

env=〈environment name〉
env={〈environment name〉}〈environment options〉

Adds an 〈environment〉 around the content and the already existing code around
it which was added by other keys beforehand. Potential 〈environment options〉 (or
any other code) can follow the environment name if it was set inside braces. At this
stage the content is already boxed and format macros won’t have any effect on any
included text. For this the innerenv key needs to be used instead.

addcode={〈code before〉}{〈code afters〉}

Adds some 〈code before〉 and some 〈code after〉 the content and the already existing
code around it which was added by other keys beforehand. At this stage the content
is already boxed and format macros won’t have any effect on any included text.

appcode=〈code afterwards〉

Appends come 〈code after〉 the content and the already existing code around it which
was added by other keys beforehand. More complex code should be enclosed in
braces.

precode=〈code before〉

Prepends come 〈code afterwards〉 the content and the already existing code around it
which was added by other keys beforehand. More complex code should be enclosed
in braces.

20

	Introduction
	Package Option
	Usage
	Basic Box Modification Macros
	Argument Values
	Verbatim Support
	Alternatives for existing Macros
	Further Box Modification Macros
	New keys for adjustbox and includegraphics
	Trimming and Clipping
	Frame and Margin
	Size/Scaling
	Positioning and Alignment
	Pixel size

	Minipage or other inner Environment
	Adding own Code or Environments

