Funktion f definiert man das Residuum im Punkt a als $\operatorname{Res}_{z=a} f(z) = \operatorname{Res}_{a} f = \frac{1}{2\pi i} \int f(z) dz,$

Theorem 1 (Residuum). Für eine in einer punktierten Kreisscheibe $D\setminus\{a\}$ analytische

wobei
$$C \subset D \setminus \{a\}$$
 ein geschlossener Weg mit $n(C,a) = 1$ ist (z. B. ein entgegen dem Uhrzeigersinn durchlaufener Kreis).

ΑΛΔ
$$\nabla$$
BCD Σ EFΓGHIJ $KLMNO\Theta$ Ω PΦΠ Ξ QRST $UVWXY$ Υ Ψ Z ABCDabcd1234 aab β c ∂ d δ eee f ζ ξ g γ h η ii j k x l ℓ λ mnηθ ϑ οσ ζ φ ϕ ρρ q r s t τ π u μ v νυ w ω ϖ

$$A \Lambda \Delta V B C D \Sigma E F I G H J K L M NO \Theta L P \Phi H \Xi Q R S T U V W X Y I \Psi Z A B C D a b c d 1234$$

$$a \alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar i i j k x l \ell \lambda m n \eta \theta \vartheta o \sigma \zeta \phi \varphi \varphi p \rho \varrho q r s t \tau \pi u \mu v v v w \omega \varpi$$

$$x \chi y \psi z \infty \propto \emptyset y = f(x)$$

$$\sum \int \prod \prod \int \sum \sum_{a}^{b} \int_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \prod_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \prod_{a}^{b} \prod_{a}^{b} \sum_{a}^{b} \prod_{a}^{b} \prod_{a}^{b}$$