
x0 TEXGPC PART 0: ABOUT TEXGPC 30*. About TEXGPC. TEXGPC is a Unix implementation of Donald E. Knuth's TEX82 in the version3.1415926 from March 2008. It is based on GNU Pascal. The accompaning README �le tells you how tobuild and run TEXGPC. To help you identify the di�erences of TEX82 and TEXGPC, the numbers of modi�edmodules carry an asterisk. Letters in the left margin indicate the reason for a change. They mean:E �xes an error in TEX82e �xes a small error in TEX82F adds a feature as suggested by KnuthP removes a violation of Pascal (Jensen, Wirth: Pascal User Manual and Report, 3rd edition, 1985)G a GNU Pascal extension (Version 20070904)U make Unix happyu make Unix user happyh make Helbig happyN a note that helped me to understand this program.B a bug I couldn't �x.Identi�ers that come with GNU Pascal are coded as WEB macros and pre�xed by `gpc '. That helps toresolve name clashes.TEXGPC is slightly slower than web2c based programs. To compile the device independend �le for thisdocument, the web2c version from TEX Life 2008 ran 1.1 seconds and TEXGPC 1.2 seconds.Going with Dijkstra, see http://www.cs.utexas.edu/users/EWD/videos/noorderlicht.mpg, I don'tbelieve in version numbers, since I don't believe in maintaining software|I consider TEXGPC �nished|andit must go without a number. This does not mean that I don't care any more about TEXGPC; comments orquestions are quite welcome. In fact, I tried to explain why I changed what and how in order to encourageyou to undertake further modi�cations or bug�xes yourself and I'll be glad to help.I wish to thank Frank Heckenbach and Emil Jerabek from the GNU Pascal mailing list for clarifying GPC'sI/O bu�ering strategies, and David Kastrup from the de.comp.text.tex news group for enlightening articleson some of TEX's more obscure features and for discussing the `empty last line error'.The 2008 edition of TEXGPC was tested on NetBSD 3.1 and GPC 20020510, which happens to be theversion of GNU Pascal o�ered in the NetBSD package collection. This edition was run on Mac OS X 10.6.2and GPC 20070904. Most people seem to run TEXGPC with the current GPC version, which caused troublein two cases: (1) The integer parameter to be passed to gpc install signal handler is now of type cintegerinstead of integer . (2) The function gpc install signal handler was mistreated as a procedure by TEXGPC,and the current version of GPC won't let you go away with that anymore. Luis Rivera and Martin Monperrusdetected this error, and Martin suggested to publish an edition that runs with the current version of GPCwhich is this one.Joachim Kuebart spotted another error in the 2008 edition. When the �rst line consists of blanks only,a loop is not terminated properly. Joachim found this by reading this document, not by running TEXGPC.This in turn motivated me to improve the comments resulting in a lot of changes.TEXGPC slightly di�ers from TEX: On input, trailing blanks are not removed, on input of the �rst line,leading blanks are not removed either. This lets you interactively enter `I \showbox0 ' to make TEXGPCshow box 0. This doesn't work if the trailing blank were removed.TEX writes an additional empty line whenever it prompts you on the terminal. TEXGPC doesn't. FinallyTEX emits an `Underfull \hbox' warning whenever the last line of a paragraph happens to include glueonly, because then TEX would erroneously remove the parfillskip. TEXGPC will keep it.November 2009Wolfgang Helbig, Programmierer http://wwwlehre.dhbw-stuttgart.de/~helbig/Waiblingen, Baden-W�urttemberg helbig.wolfgang@kabelbw.de

4 PART 1: INTRODUCTION TEXGPC x11. Introduction. This is TEX, a document compiler intended to produce typesetting of high quality.The Pascal program that follows is the de�nition of TEX82, a standard version of TEX that is designed tobe highly portable so that identical output will be obtainable on a great variety of computers.The main purpose of the following program is to explain the algorithms of TEX as clearly as possible. Asa result, the program will not necessarily be very e�cient when a particular Pascal compiler has translatedit into a particular machine language. However, the program has been written so that it can be tuned to rune�ciently in a wide variety of operating environments by making comparatively few changes. Such exibilityis possible because the documentation that follows is written in the WEB language, which is at a higher levelthan Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessaryre�nements. Semi-automatic translation to other languages is also feasible, because the program below doesnot make extensive use of features that are peculiar to Pascal.A large piece of software like TEX has inherent complexity that cannot be reduced below a certain level ofdi�culty, although each individual part is fairly simple by itself. The WEB language is intended to make thealgorithms as readable as possible, by reecting the way the individual program pieces �t together and byproviding the cross-references that connect di�erent parts. Detailed comments about what is going on, andabout why things were done in certain ways, have been liberally sprinkled throughout the program. Thesecomments explain features of the implementation, but they rarely attempt to explain the TEX languageitself, since the reader is supposed to be familiar with The TEXbook.2*. The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.Plass and Frank M. Liang designed and coded a prototype based on some speci�cations that the author hadmade in May of that year. This original protoTEX included macro de�nitions and elementary manipulationson boxes and glue, but it did not have line-breaking, page-breaking, mathematical formulas, alignmentroutines, error recovery, or the present semantic nest; furthermore, it used character lists instead of tokenlists, so that a control sequence like \halignwas represented by a list of seven characters. A complete versionof TEX was designed and coded by the author in late 1977 and early 1978; that program, like its prototype,was written in the SAIL language, for which an excellent debugging system was available. Preliminary plansto convert the SAIL code into a form somewhat like the present \web" were developed by Luis Trabb Pardoand the author at the beginning of 1979, and a complete implementation was created by Ignacio A. Zabalain 1979 and 1980. The TEX82 program, which was written by the author during the latter part of 1981and the early part of 1982, also incorporates ideas from the 1979 implementation of TEX in MESA thatwas written by Leonidas Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto ResearchCenter. Several hundred re�nements were introduced into TEX82 based on the experiences gained with theoriginal implementations, so that essentially every part of the system has been substantially improved. Afterthe appearance of \Version 0" in September 1982, this program bene�ted greatly from the comments ofmany other people, notably David R. Fuchs and Howard W. Trickey. A �nal revision in September 1989extended the input character set to eight-bit codes and introduced the ability to hyphenate words fromdi�erent languages, based on some ideas of Michael J. Ferguson.No doubt there still is plenty of room for improvement, but the author is �rmly committed to keepingTEX82 \frozen" from now on; stability and reliability are to be its main virtues.On the other hand, the WEB description can be extended without changing the core of TEX82 itself, andthe program has been designed so that such extensions are not extremely di�cult to make. The bannerstring de�ned here should be changed whenever TEX undergoes any modi�cations, so that it will be clearwhich version of TEX might be the guilty party when a problem arises.If this program is changed, the resulting system should not be called `TEX'; the o�cial name `TEX' byitself is reserved for software systems that are fully compatible with each other. A special test suite calledthe \TRIP test" is available for helping to determine whether a particular implementation deserves to beknown as `TEX' [cf. Stanford Computer Science report CS1027, November 1984].Since TEXGPC di�ers from TEX to make me happy, I have to change the banner line.h de�ne banner � �This is TeX-GPC�

x3 TEXGPC PART 1: INTRODUCTION 53. Di�erent Pascals have slightly di�erent conventions, and the present program expresses TEX in termsof the Pascal that was available to the author in 1982. Constructions that apply to this particular compiler,which we shall call Pascal-H, should help the reader see how to make an appropriate interface for othersystems if necessary. (Pascal-H is Charles Hedrick's modi�cation of a compiler for the DECsystem-10 thatwas originally developed at the University of Hamburg; cf. SOFTWARE|Practice & Experience 6 (1976),29{42. The TEX program below is intended to be adaptable, without extensive changes, to most otherversions of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious e�ort hasbeen made here to avoid using several idiosyncratic features of standard Pascal itself, so that most of the codecan be translated mechanically into other high-level languages. For example, the `with' and `new ' featuresare not used, nor are pointer types, set types, or enumerated scalar types; there are no `var' parameters,except in the case of �les; there are no tag �elds on variant records; there are no assignments real integer ;no procedures are declared local to other procedures.)The portions of this program that involve system-dependent code, where changes might be necessarybecause of di�erences between Pascal compilers and/or di�erences between operating systems, can beidenti�ed by looking at the sections whose numbers are listed under `system dependencies' in the index.Furthermore, the index entries for `dirty Pascal' list all places where the restrictions of Pascal have not beenfollowed perfectly, for one reason or another.Incidentally, Pascal's standard round function can be problematical, because it disagrees with the IEEEoating-point standard. Many implementors have therefore chosen to substitute their own home-grownrounding procedure.

6 PART 1: INTRODUCTION TEXGPC x44*. The program begins with a normal Pascal program heading, whose components will be �lled in later,using the conventions of WEB. For example, the portion of the program called `hGlobal variables 13 i' belowwill be replaced by a sequence of variable declarations that starts in x13 of this documentation. In this way,we are able to de�ne each individual global variable when we are prepared to understand what it means; wedo not have to de�ne all of the globals at once. Cross references in x13, where it says \See also sections 20,26, : : : ," also make it possible to look at the set of all global variables, if desired. Similar remarks apply tothe other portions of the program heading.Actually the heading shown here is not quite normal: The program line does not mention any output�le, because Pascal-H would ask the TEX user to specify a �le name if output were speci�ed here.Pascal wants the identi�ers of the standard text �les input and output in the parameterlist of the programP header.One of the WEB macros is named input as well. To make TANGLE write INPUT into the Pascal source �leN instead of the expansion of the macro, you code the name as a concatenation of one letter identi�ers sinceone letter identi�ers cannot be macro names. The same applies to type .To access declarations from GPC's runtime system you need to gpc import gpc gpc . gpc only avoidsG further name clashes.The procedure initialize passes set interrupt to gpc install signal handler . Since set interrupt is declaredN further down, you need a forward declaration.de�ne term in � i@&n@&p@&u@&tde�ne term out � o@&u@&t@&p@&u@&tde�ne mtype � t@&y@&p@&eformat mtype � typede�ne gpc import � i@&m@&p@&o@&r@&tformat gpc import � labelde�ne gpc only � o@&n@&l@&yformat gpc only � thende�ne gpc gpc � g@&p@&cformat mtype � type f `mtype' will be equivalent to `type' gformat type � true f but `type ' will not be treated as a reserved word ghCompiler directives 9* iprogram TEX (term in ; term out);gpc import gpc gpc gpc only (gpc execute ; gpc install signal handler ; gpc sig int);label hLabels in the outer block 6 iconst hConstants in the outer block 11* imtype hTypes in the outer block 18 ivar hGlobal variables 13 iprocedure set interrupt (signal : gpc integer); forward ;procedure initialize ; f this procedure gets things started properly gvar hLocal variables for initialization 19 ibegin h Initialize whatever TEX might access 8 iend;hBasic printing procedures 57 ihError handling procedures 78 i5. The overall TEX program begins with the heading just shown, after which comes a bunch of proceduredeclarations and function declarations. Finally we will get to the main program, which begins with thecomment `start here '. If you want to skip down to the main program now, you can look up `start here 'in the index. But the author suggests that the best way to understand this program is to follow prettymuch the order of TEX's components as they appear in the WEB description you are now reading, since thepresent ordering is intended to combine the advantages of the \bottom up" and \top down" approaches tothe problem of understanding a somewhat complicated system.

x6 TEXGPC PART 1: INTRODUCTION 76. Three labels must be declared in the main program, so we give them symbolic names.de�ne start of TEX = 1 f go here when TEX's variables are initialized gde�ne end of TEX = 9998 f go here to close �les and terminate gracefully gde�ne �nal end = 9999 f this label marks the ending of the program ghLabels in the outer block 6 i �start of TEX; end of TEX; �nal end ; f key control points gThis code is used in section 4*.7*. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimesoccurs when TEX is being installed or when system wizards are fooling around with TEX without quiteknowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords`debug : : :gubed', with apologies to people who wish to preserve the purity of English.Similarly, there is some conditional code delimited by `stat : : : tats' that is intended for use when statisticsare to be kept about TEX's memory usage. The stat : : : tats code also implements diagnostic informationfor \tracingparagraphs and \tracingpages.de�ne debug � f change this to `debug � @{' when not debugging gde�ne gubed � f change this to `gubed � @}' when not debugging gformat debug � beginformat gubed � endde�ne stat � f change this to `stat � @{' to turn o� statistics gde�ne tats � f change this to `tats � @}' to turn o� statistics gformat stat � beginformat tats � end8. This program has two important variations: (1) There is a long and slow version called INITEX, whichdoes the extra calculations needed to initialize TEX's internal tables; and (2) there is a shorter and fasterproduction version, which cuts the initialization to a bare minimum. Parts of the program that are neededin (1) but not in (2) are delimited by the codewords `init : : : tini'.de�ne init � f change this to `init � @{' in the production version gde�ne tini � f change this to `tini � @}' in the production version gformat init � beginformat tini � endh Initialize whatever TEX might access 8 i �h Set initial values of key variables 21 iinit h Initialize table entries (done by INITEX only) 164 i tiniSee also section 1382*.This code is used in section 4*.

8 PART 1: INTRODUCTION TEXGPC x99*. If the �rst character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of\compiler directives" that will a�ect the translation of this program into machine language. The directivesshown below specify full checking and inclusion of the Pascal debugger when TEX is being debugged, butthey cause range checking and other redundant code to be eliminated when the production system is beinggenerated. Arithmetic overow will be detected in all cases.If the �rst character of a Pascal comment is a dollar sign, GNU Pascal treats the comment as a \compilerG directive". GPC aborts when it detects an I/O error. To let TEXGPC handle an I/O error while opening aninput �le, you have to turn o� I/O checking altogether by the I- directive.In contrast to Pascal-H GNU Pascal o�ers no directive to check for arithmetic overow.b Knuth suggests to turn on range checking while debugging. GPC aborts when it spots range violation.e Those violations might happen when the debugger shows a memeroy cell assumed to contain a glue ratio .Even though turning of range checking doubles the speed of TEX I suggest to turn it on when not debugging,just to get another check from Knuth for discovering an error.hCompiler directives 9* i �@{@&$I�@} f no I/O checking gdebug @{@&$R�@} gubed f no range check while debugging gThis code is used in section 4*.10*. This TEX implementation conforms to the rules of the Pascal User Manual published by Jensen andWirth in 1975, except where system-dependent code is necessary to make a useful system program, andexcept in another respect where such conformity would unnecessarily obscure the meaning and clutter upthe code: We assume that case statements may include a default case that applies if no matching label isfound. Thus, we shall use constructions likecase x of1: h code for x = 1 i;3: h code for x = 3 i;othercases h code for x 6= 1 and x 6= 3 iendcasessince most Pascal compilers have plugged this hole in the language by incorporating some sort of defaultmechanism. For example, the Pascal-H compiler allows `others :' as a default label, and other Pascalsallow syntaxes like `else' or `otherwise' or `otherwise :', etc. The de�nitions of othercases and endcasesshould be changed to agree with local conventions. Note that no semicolon appears before endcases in thisprogram, so the de�nition of endcases should include a semicolon if the compiler wants one. (Of course,if no default mechanism is available, the case statements of TEX will have to be laboriously extended bylisting all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully butnot happily!)This is the only place I voluntarily use a GPC extension to Pascal. GPC o�ers otherwise and else .G I decided for else because I do not want to add another gpc-keyword. Furthermore, Wirth uses else inModula 2.de�ne othercases � else f default for cases not listed explicitly gde�ne endcases � end f follows the default case in an extended case statement gformat othercases � elseformat endcases � end

x11 TEXGPC PART 1: INTRODUCTION 911*. The following parameters can be changed at compile time to extend or reduce TEX's capacity. Theymay have di�erent values in INITEX and in production versions of TEX.I didn't change the constants, leaving it up to you to adopt them to your task. Just keep the Pascal sourceN for tex around. So you can change them without going all the way through modifying tex.ch and tangelingit. Note that for initex mem top and mem max must agree.One of the constants is the �lename of the string pool �le which needs an adoption to Unix.U hConstants in the outer block 11* i �mem max = 30000;f greatest index in TEX's internal mem array; must be strictly less than max halfword ; must beequal to mem top in INITEX, otherwise � mem top gmem min = 0; f smallest index in TEX's internal mem array; must be min halfword or more; must beequal to mem bot in INITEX, otherwise � mem bot gbuf size = 500; fmaximum number of characters simultaneously present in current lines of open �lesand in control sequences between \csname and \endcsname; must not exceed max halfword gerror line = 72; fwidth of context lines on terminal error messages ghalf error line = 42; fwidth of �rst lines of contexts in terminal error messages; should be between 30and error line � 15 gmax print line = 79; fwidth of longest text lines output; should be at least 60 gstack size = 200; fmaximum number of simultaneous input sources gmax in open = 6;fmaximum number of input �les and error insertions that can be going on simultaneously gfont max = 75; fmaximum internal font number; must not exceed max quarterword and must be atmost font base + 256 gfont mem size = 20000; f number of words of font info for all fonts gparam size = 60; fmaximum number of simultaneous macro parameters gnest size = 40; fmaximum number of semantic levels simultaneously active gmax strings = 3000; fmaximum number of strings; must not exceed max halfword gstring vacancies = 8000; f the minimum number of characters that should be available for the user'scontrol sequences and font names, after TEX's own error messages are stored gpool size = 32000; fmaximum number of characters in strings, including all error messages and helptexts, and the names of all fonts and control sequences; must exceed string vacancies by the totallength of TEX's own strings, which is currently about 23000 gsave size = 600; f space for saving values outside of current group; must be at most max halfword gtrie size = 8000; f space for hyphenation patterns; should be larger for INITEX than it is in productionversions of TEX gtrie op size = 500; f space for \opcodes" in the hyphenation patterns gdvi buf size = 800; f size of the output bu�er; must be a multiple of 8 g�le name size = 40; f �le names shouldn't be longer than this gpool name = �TeXformats/tex.pool �;f string of length �le name size ; tells where the string pool appears gThis code is used in section 4*.

10 PART 1: INTRODUCTION TEXGPC x1212. Like the preceding parameters, the following quantities can be changed at compile time to extend orreduce TEX's capacity. But if they are changed, it is necessary to rerun the initialization program INITEXto generate new tables for the production TEX program. One can't simply make helter-skelter changes tothe following constants, since certain rather complex initialization numbers are computed from them. Theyare de�ned here using WEB macros, instead of being put into Pascal's const list, in order to emphasize thisdistinction.de�ne mem bot = 0f smallest index in the mem array dumped by INITEX; must not be less than mem min gde�ne mem top � 30000 f largest index in the mem array dumped by INITEX; must be substantiallylarger than mem bot and not greater than mem max gde�ne font base = 0 f smallest internal font number; must not be less than min quarterword gde�ne hash size = 2100 fmaximum number of control sequences; it should be at most about(mem max �mem min)=10 gde�ne hash prime = 1777 f a prime number equal to about 85% of hash size gde�ne hyph size = 307 f another prime; the number of \hyphenation exceptions g13. In case somebody has inadvertently made bad settings of the \constants," TEX checks them using aglobal variable called bad .This is the �rst of many sections of TEX where global variables are de�ned.hGlobal variables 13 i �bad : integer ; f is some \constant" wrong? gSee also sections 20, 26, 30, 39, 50, 54, 73, 76, 79*, 96*, 104, 115, 116, 117, 118, 124, 165, 173, 181, 213, 246, 253, 256, 271,286, 297, 301, 304, 305, 308, 309, 310, 333, 361, 382, 387, 388, 410, 438, 447, 480, 489, 493, 512, 513, 520, 527, 532*, 539,549, 550, 555, 592, 595, 605, 616, 646, 647, 661, 684, 719, 724, 764, 770, 814, 821, 823, 825, 828, 833, 839, 847, 872, 892,900, 905, 907, 921, 926, 943, 947, 950, 971, 980, 982, 989, 1032, 1074, 1266, 1281, 1299, 1305, 1331, 1342, and 1345.This code is used in section 4*.14. Later on we will say `if mem max � max halfword then bad 14', or something similar. (We can'tdo that until max halfword has been de�ned.)hCheck the \constant" values for consistency 14 i �bad 0;if (half error line < 30) _ (half error line > error line � 15) then bad 1;if max print line < 60 then bad 2;if dvi buf size mod 8 6= 0 then bad 3;if mem bot + 1100 > mem top then bad 4;if hash prime > hash size then bad 5;if max in open � 128 then bad 6;if mem top < 256 + 11 then bad 7; fwe will want null list > 255 gSee also sections 111, 290, 522, and 1249.This code is used in section 1332*.

x15 TEXGPC PART 1: INTRODUCTION 1115. Labels are given symbolic names by the following de�nitions, so that occasional goto statementswill be meaningful. We insert the label `exit ' just before the `end' of a procedure in which we have usedthe `return' statement de�ned below; the label `restart ' is occasionally used at the very beginning of aprocedure; and the label `reswitch ' is occasionally used just prior to a case statement in which some caseschange the conditions and we wish to branch to the newly applicable case. Loops that are set up with theloop construction de�ned below are commonly exited by going to `done ' or to `found ' or to `not found ', andthey are sometimes repeated by going to `continue '. If two or more parts of a subroutine start di�erentlybut end up the same, the shared code may be gathered together at `common ending '.Incidentally, this program never declares a label that isn't actually used, because some fussy Pascalcompilers will complain about redundant labels.de�ne exit = 10 f go here to leave a procedure gde�ne restart = 20 f go here to start a procedure again gde�ne reswitch = 21 f go here to start a case statement again gde�ne continue = 22 f go here to resume a loop gde�ne done = 30 f go here to exit a loop gde�ne done1 = 31 f like done , when there is more than one loop gde�ne done2 = 32 f for exiting the second loop in a long block gde�ne done3 = 33 f for exiting the third loop in a very long block gde�ne done4 = 34 f for exiting the fourth loop in an extremely long block gde�ne done5 = 35 f for exiting the �fth loop in an immense block gde�ne done6 = 36 f for exiting the sixth loop in a block gde�ne found = 40 f go here when you've found it gde�ne found1 = 41 f like found , when there's more than one per routine gde�ne found2 = 42 f like found , when there's more than two per routine gde�ne not found = 45 f go here when you've found nothing gde�ne common ending = 50 f go here when you want to merge with another branch g16. Here are some macros for common programming idioms.de�ne incr (#) � # #+ 1 f increase a variable by unity gde�ne decr (#) � # #� 1 f decrease a variable by unity gde�ne negate (#) � # �# f change the sign of a variable gde�ne loop � while true do f repeat over and over until a goto happens gformat loop � xclause f WEB's xclause acts like `while true do' gde�ne do nothing � f empty statement gde�ne return � goto exit f terminate a procedure call gformat return � nilde�ne empty = 0 f symbolic name for a null constant g

12 PART 2: THE CHARACTER SET TEXGPC x1717. The character set. In order to make TEX readily portable to a wide variety of computers, all of itsinput text is converted to an internal eight-bit code that includes standard ASCII, the \American StandardCode for Information Interchange." This conversion is done immediately when each character is read in.Conversely, characters are converted from ASCII to the user's external representation just before they areoutput to a text �le.Such an internal code is relevant to users of TEX primarily because it governs the positions of charactersin the fonts. For example, the character `A' has ASCII code 65 = �101 , and when TEX typesets this letterit speci�es character number 65 in the current font. If that font actually has `A' in a di�erent position,TEX doesn't know what the real position is; the program that does the actual printing from TEX's device-independent �les is responsible for converting from ASCII to a particular font encoding.TEX's internal code also de�nes the value of constants that begin with a reverse apostrophe; and it providesan index to the \catcode, \mathcode, \uccode, \lccode, and \delcode tables.18. Characters of text that have been converted to TEX's internal form are said to be of type ASCII code ,which is a subrange of the integers.hTypes in the outer block 18 i �ASCII code = 0 : : 255; f eight-bit numbers gSee also sections 25*, 38, 101, 109*, 113, 150, 212, 269, 300, 548, 594, 920, and 925.This code is used in section 4*.19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, soit did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital andsmall letters in a convenient way, especially in a program for typesetting; so the present speci�cation of TEXhas been written under the assumption that the Pascal compiler and run-time system permit the use of text�les with more than 64 distinguishable characters. More precisely, we assume that the character set containsat least the letters and symbols associated with ASCII codes �40 through �176 ; all of these characters arenow available on most computer terminals.Since we are dealing with more characters than were present in the �rst Pascal compilers, we have todecide what to call the associated data type. Some Pascals use the original name char for the characters intext �les, even though there now are more than 64 such characters, while other Pascals consider char to bea 64-element subrange of a larger data type that has some other name.In order to accommodate this di�erence, we shall use the name text char to stand for the data type ofthe characters that are converted to and from ASCII code when they are input and output. We shall alsoassume that text char consists of the elements chr (�rst text char) through chr (last text char), inclusive.The following de�nitions should be adjusted if necessary.de�ne text char � char f the data type of characters in text �les gde�ne �rst text char = 0 f ordinal number of the smallest element of text char gde�ne last text char = 255 f ordinal number of the largest element of text char ghLocal variables for initialization 19 i �i: integer ;See also sections 163 and 927.This code is used in section 4*.20. The TEX processor converts between ASCII code and the user's external character set by means ofarrays xord and xchr that are analogous to Pascal's ord and chr functions.hGlobal variables 13 i +�xord : array [text char] of ASCII code ; f speci�es conversion of input characters gxchr : array [ASCII code] of text char ; f speci�es conversion of output characters g

x21 TEXGPC PART 2: THE CHARACTER SET 1321. Since we are assuming that our Pascal system is able to read and write the visible characters ofstandard ASCII (although not necessarily using the ASCII codes to represent them), the following assignmentstatements initialize the standard part of the xchr array properly, without needing any system-dependentchanges. On the other hand, it is possible to implement TEX with less complete character sets, and in suchcases it will be necessary to change something here.h Set initial values of key variables 21 i �xchr [�40] � �; xchr [�41] �!�; xchr [�42] �"�; xchr [�43] �#�; xchr [�44] �$�;xchr [�45] �%�; xchr [�46] �&�; xchr [�47] ����;xchr [�50] �(�; xchr [�51] �)�; xchr [�52] �*�; xchr [�53] �+�; xchr [�54] �,�;xchr [�55] �-�; xchr [�56] �.�; xchr [�57] �/�;xchr [�60] �0�; xchr [�61] �1�; xchr [�62] �2�; xchr [�63] �3�; xchr [�64] �4�;xchr [�65] �5�; xchr [�66] �6�; xchr [�67] �7�;xchr [�70] �8�; xchr [�71] �9�; xchr [�72] �:�; xchr [�73] �;�; xchr [�74] �<�;xchr [�75] �=�; xchr [�76] �>�; xchr [�77] �?�;xchr [�100] �@�; xchr [�101] �A�; xchr [�102] �B�; xchr [�103] �C�; xchr [�104] �D�;xchr [�105] �E�; xchr [�106] �F�; xchr [�107] �G�;xchr [�110] �H�; xchr [�111] �I�; xchr [�112] �J�; xchr [�113] �K�; xchr [�114] �L�;xchr [�115] �M�; xchr [�116] �N�; xchr [�117] �O�;xchr [�120] �P�; xchr [�121] �Q�; xchr [�122] �R�; xchr [�123] �S�; xchr [�124] �T�;xchr [�125] �U�; xchr [�126] �V�; xchr [�127] �W�;xchr [�130] �X�; xchr [�131] �Y�; xchr [�132] �Z�; xchr [�133] �[�; xchr [�134] �\�;xchr [�135] �]�; xchr [�136] �^�; xchr [�137] �_�;xchr [�140] ���; xchr [�141] �a�; xchr [�142] �b�; xchr [�143] �c�; xchr [�144] �d�;xchr [�145] �e�; xchr [�146] �f�; xchr [�147] �g�;xchr [�150] �h�; xchr [�151] �i�; xchr [�152] �j�; xchr [�153] �k�; xchr [�154] �l�;xchr [�155] �m�; xchr [�156] �n�; xchr [�157] �o�;xchr [�160] �p�; xchr [�161] �q�; xchr [�162] �r�; xchr [�163] �s�; xchr [�164] �t�;xchr [�165] �u�; xchr [�166] �v�; xchr [�167] �w�;xchr [�170] �x�; xchr [�171] �y�; xchr [�172] �z�; xchr [�173] �{�; xchr [�174] �|�;xchr [�175] �}�; xchr [�176] �~�;See also sections 23, 24, 74, 77, 80*, 97, 166, 215, 254, 257, 272, 287, 383, 439, 481, 490, 521*, 551, 556, 593, 596, 606, 648, 662,685, 771, 928, 990, 1033, 1267, 1282, 1300, and 1343.This code is used in section 8.22. Some of the ASCII codes without visible characters have been given symbolic names in this programbecause they are used with a special meaning.de�ne null code = �0 fASCII code that might disappear gde�ne carriage return = �15 fASCII code used at end of line gde�ne invalid code = �177 fASCII code that many systems prohibit in text �les g

14 PART 2: THE CHARACTER SET TEXGPC x2323. The ASCII code is \standard" only to a certain extent, since many computer installations have found itadvantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives acomplete speci�cation of the intended correspondence between characters and TEX's internal representation.If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in theinput and output �les, it doesn't really matter what codes are speci�ed in xchr [0 : : �37], but the safestpolicy is to blank everything out by using the code shown below.However, other settings of xchr will make TEX more friendly on computers that have an extended characterset, so that users can type things like `�' instead of `\ne'. People with extended character sets can assigncodes arbitrarily, giving an xchr equivalent to whatever characters the users of TEX are allowed to havein their input �les. It is best to make the codes correspond to the intended interpretations as shown inAppendix C whenever possible; but this is not necessary. For example, in countries with an alphabet ofmore than 26 letters, it is usually best to map the additional letters into codes less than �40 . To get themost \permissive" character set, change � � on the right of these assignment statements to chr (i).h Set initial values of key variables 21 i +�for i 0 to �37 do xchr [i] � �;for i �177 to �377 do xchr [i] � �;24. The following system-independent code makes the xord array contain a suitable inverse to the infor-mation in xchr . Note that if xchr [i] = xchr [j] where i < j < �177 , the value of xord [xchr [i]] will turn outto be j or more; hence, standard ASCII code numbers will be used instead of codes below �40 in case thereis a coincidence.h Set initial values of key variables 21 i +�for i �rst text char to last text char do xord [chr (i)] invalid code ;for i �200 to �377 do xord [xchr [i]] i;for i 0 to �176 do xord [xchr [i]] i;

x25 TEXGPC PART 3: INPUT AND OUTPUT 1525*. Input and output. The bane of portability is the fact that di�erent operating systems treat inputand output quite di�erently, perhaps because computer scientists have not given su�cient attention to thisproblem. People have felt somehow that input and output are not part of \real" programming. Well, it istrue that some kinds of programming are more fun than others. With existing input/output conventionsbeing so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions whenone can �nd a way to make the program a little less bad than it might have been. We have two choices,either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect isvery attractive, so let's get it over with.The basic operations we need to do are (1) inputting and outputting of text, to or from a �le or the user'sterminal; (2) inputting and outputting of eight-bit bytes, to or from a �le; (3) instructing the operating systemto initiate (\open") or to terminate (\close") input or output from a speci�ed �le; (4) testing whether theend of an input �le has been reached.TEX needs to deal with two kinds of �les. We shall use the term alpha �le for a �le that contains textualdata, and the term byte �le for a �le that contains eight-bit binary information. These two types turn outto be the same on many computers, but sometimes there is a signi�cant distinction, so we shall be carefulto distinguish between them. Standard protocols for transferring such �les from computer to computer, viahigh-speed networks, are now becoming available to more and more communities of users.The program actually makes use also of a third kind of �le, called a word �le , when dumping and reloadingbase information for its own initialization. We shall de�ne a word �le later; but it will be possible for us tospecify simple operations on word �les before they are de�ned.GNU Pascal ignores packed for �le types. Integer subranges occupy 32 bits, so it writes 4 byte for everyG eight bits element. GNU Pascal o�ers two extensions to get at 8 bit bytes: Use the prede�ned type byte foreight bits or pack the subrange type. Since packing subrange types is rather strange extension to Pascal, Idecided for the byte.de�ne gpc byte � b@&y@&t@&ehTypes in the outer block 18 i +�eight bits = gpc byte ; f unsigned one-byte quantity galpha �le = t@&e@&x@&t; fPascal requires text gP byte �le = packed �le of eight bits ; f �les that contain binary data g26. Most of what we need to do with respect to input and output can be handled by the I/O facilitiesthat are standard in Pascal, i.e., the routines called get , put , eof , and so on. But standard Pascal does notallow �le variables to be associated with �le names that are determined at run time, so it cannot be usedto implement TEX; some sort of extension to Pascal's ordinary reset and rewrite is crucial for our purposes.We shall assume that name of �le is a variable of an appropriate type such that the Pascal run-time systembeing used to implement TEX can open a �le whose external name is speci�ed by name of �le .hGlobal variables 13 i +�name of �le : packed array [1 : : �le name size] of char ;f on some systems this may be a record variable gname length : 0 : : �le name size ;f this many characters are actually relevant in name of �le (the rest are blank) g

16 PART 3: INPUT AND OUTPUT TEXGPC x2727*. The Pascal-H compiler with which the present version of TEX was prepared has extended the rules ofPascal in a very convenient way. To open �le f , we can writereset (f;name ; �/O�) for input;rewrite (f;name ; �/O�) for output.The `name ' parameter, which is of type `packed array [hany i] of char ', stands for the name of the external�le that is being opened for input or output. Blank spaces that might appear in name are ignored.The `/O' parameter tells the operating system not to issue its own error messages if something goes wrong.If a �le of the speci�ed name cannot be found, or if such a �le cannot be opened for some other reason (e.g.,someone may already be trying to write the same �le), we will have erstat (f) 6= 0 after an unsuccessful resetor rewrite . This allows TEX to undertake appropriate corrective action.In Pascal, external �les must occur in the program heading and GNU Pascal asks the user whenever anG external �le is opened. But initex wants to reset tex.pool and rewrite plain.fmt without asking the userfor the �le name. We are lucky: GNU Pascal lets you open external �les by passing its name as a secondargument to reset resp. rewrite . The function gpc trim removes trailing spaces that would otherwise bepart of the �le name. The function gpc io result returns a nonzero value if any error occurred since the lastinvocation of gpc io result .Bu�ering output of the DVI �le accelerates TEXGPC dramatically. To get at output bu�ering, the �leG needs to be a gpc untyped �le ;de�ne gpc trim � t@&r@&i@&mde�ne gpc io result � i@&o@&r@&e@&s@&u@&l@&tde�ne reset OK (#) � gpc io result = 0de�ne rewrite OK (#) � gpc io result = 0de�ne clear io result � if gpc io result = 0 then do nothingfunction a open in (var f : alpha �le): boolean ; f open a text �le for input gbegin clear io result ; reset (f; gpc trim (name of �le)); a open in reset OK (f);end;function a open out (var f : alpha �le): boolean ; f open a text �le for output gbegin clear io result ; rewrite (f; gpc trim (name of �le)); a open out rewrite OK (f);end;function b open in (var f : byte �le): boolean ; f open a binary �le for input gbegin clear io result ; reset (f; gpc trim (name of �le)); b open in reset OK (f);end;function b open out (var f : gpc untyped �le): boolean ; f open a binary �le for output gbegin clear io result ; rewrite (f; gpc trim (name of �le); 1); b open out rewrite OK (f);end;function w open in (var f : word �le): boolean ; f open a word �le for input gbegin clear io result ; reset (f; gpc trim (name of �le)); w open in reset OK (f);end;function w open out (var f : word �le): boolean ; f open a word �le for output gbegin clear io result ; rewrite (f; gpc trim (name of �le)); w open out rewrite OK (f);end;

x28 TEXGPC PART 3: INPUT AND OUTPUT 1728*. Files can be closed with the Pascal-H routine `close (f)', which should be used when all input or outputwith respect to f has been completed. This makes f available to be opened again, if desired; and if f wasused for output, the close operation makes the corresponding external �le appear on the user's area, readyto be read.These procedures should not generate error messages if a �le is being closed before it has been successfullyopened.GNU Pascal has accidently a very similar procedure gpc close . But we need another routine to close aG gpc untyped �le , which is necessary for bu�ering the output.de�ne gpc close � c@&l@&o@&s@&eprocedure a close (var f : alpha �le); f close a text �le gbegin close (f);end;procedure b close (var f : byte �le); f close a binary �le gbegin close (f);end;procedure w close (var f : word �le); f close a word �le gbegin close (f);end;procedure u close (var f : gpc untyped �le); f close an untyped �le gbegin close (f);end;29. Binary input and output are done with Pascal's ordinary get and put procedures, so we don't have tomake any other special arrangements for binary I/O. Text output is also easy to do with standard Pascalroutines. The treatment of text input is more di�cult, however, because of the necessary translation toASCII code values. TEX's conventions should be e�cient, and they should blend nicely with the user'soperating environment.30. Input from text �les is read one line at a time, using a routine called input ln . This function is de�nedin terms of global variables called bu�er , �rst , and last that will be described in detail later; for now, itsu�ces for us to know that bu�er is an array of ASCII code values, and that �rst and last are indices intothis array representing the beginning and ending of a line of text.hGlobal variables 13 i +�bu�er : array [0 : : buf size] of ASCII code ; f lines of characters being read g�rst : 0 : : buf size ; f the �rst unused position in bu�er glast : 0 : : buf size ; f end of the line just input to bu�er gmax buf stack : 0 : : buf size ; f largest index used in bu�er g

18 PART 3: INPUT AND OUTPUT TEXGPC x3131*. The input ln function brings the next line of input from the speci�ed �le into available positions ofthe bu�er array and returns the value true , unless the �le has already been entirely read, in which case itreturns false and sets last �rst . In general, the ASCII code numbers that represent the next line of the�le are input into bu�er [�rst], bu�er [�rst +1], : : : , bu�er [last � 1]; and the global variable last is set equalto �rst plus the length of the line. Trailing blanks are removed from the line; thus, either last = �rst (inwhich case the line was entirely blank) or bu�er [last � 1] 6= " ".An overow error is given, however, if the normal actions of input ln would make last � buf size ; this isdone so that other parts of TEX can safely look at the contents of bu�er [last + 1] without overstepping thebounds of the bu�er array. Upon entry to input ln , the condition �rst < buf size will always hold, so thatthere is always room for an \empty" line.The variable max buf stack , which is used to keep track of how large the buf size parameter must be toaccommodate the present job, is also kept up to date by input ln .If the bypass eoln parameter is true , input ln will do a get before looking at the �rst character of the line;this skips over an eoln that was in f". The procedure does not do a get when it reaches the end of the line;therefore it can be used to acquire input from the user's terminal as well as from ordinary text �les.Standard Pascal says that a �le should have eoln immediately before eof , but TEX needs only a weakerrestriction: If eof occurs in the middle of a line, the system function eoln should return a true result (eventhough f" will be unde�ned).Since the inner loop of input ln is part of TEX's \inner loop"|each character of input comes in at thisplace|it is wise to reduce system overhead by making use of special routines that read in an entire array ofcharacters at once, if such routines are available. The following code uses standard Pascal to illustrate whatneeds to be done, but �ner tuning is often possible at well-developed Pascal sites.Since TEXGPC does not remove trailing spaces, bu�er [last � 1] might hold a space.h Pascal-H lets you reset the terminal input �le with the �rst get `surpressed'. For several reasons, thisP feature is not exploited by TEXGPC. First, it is not provided by GPC. Second rightly so, since it violatesthe speci�cation of Pascal. Third, it makes the program quite ugly by destroying the beautiful equivalenceof terminal and disk �les. Fourth, since TEXGPC uses Pascal's standard text �le input , it should not resetthat �le at all. Fifth, surpressing the �rst get is o�ered by Pascal-H to address a problem, namely that theprogram stays in the reset function waiting for user input and this problem is solved much more beautifulby \lazy I/O", whereby the program only waits for user input if it is needed. This is suggested in thePascal User Manual, implemented by GNU Pascal and exploited by TEXGPC. This leads to a much cleanerimplementaion of input ln , which can always savely assume that f" holds the �rst character of the next line.This condition is established by Pascal's reset and maintained by input ln .Unlike TEX82 TEXGPC leaves trailing spaces in the input line.h Frank Heckenbach pointed out that GNU Pascal employes bu�ered I/O on input �les|no need to avoidG high system overhead here.function input ln (var f : alpha �le ; bypass eoln : boolean): boolean ;f inputs the next line or returns false gbegin f ignore bypass eoln . Assuming f being positioned at the �rst character glast �rst ; f cf. Matthew 19 : 30 gif eof (f) then input ln falseelse begin while :eoln (f) dobegin if last � max buf stack thenbegin max buf stack last + 1;if max buf stack = buf size thenbegin read ln (f); f complete the current line ghReport overow of the input bu�er, and abort 35 i;end;end;bu�er [last] xord [f"]; get (f); incr (last);end;get (f); fAdvance f to the �rst character of the next line g

x31 TEXGPC PART 3: INPUT AND OUTPUT 19input ln true ;end;end;32*. The user's terminal acts essentially like other �les of text, except that it is used both for input andfor output. When the terminal is considered an input �le, the �le variable is called term in , and when it isconsidered an output �le the �le variable is term out . Pascal's standard text �les are declared implicitly.P 33*. Here is how to open the terminal �les in Pascal-H. The `/I' switch suppresses the �rst get .In Pascal, the standard text �les are openend implicitly.P de�ne t open in � do nothing f open the terminal for text input gde�ne t open out � do nothing f open the terminal for text output g34*. Sometimes it is necessary to synchronize the input/output mixture that happens on the user's terminal,and three system-dependent procedures are used for this purpose. The �rst of these, update terminal , iscalled when we want to make sure that everything we have output to the terminal so far has actually left thecomputer's internal bu�ers and been sent. The second, clear terminal , is called when we wish to cancel anyinput that the user may have typed ahead (since we are about to issue an unexpected error message). Thethird, wake up terminal , is supposed to revive the terminal if the user has disabled it by some instructionto the operating system.Nothing needs to be done to update the terminal, since GNU Pascal does not employ bu�ered output onG typed �les. I do not know how to clear the type ahead bu�er, so TEXGPC does nothing here. Unix holdsterminal output, when it receives ^S and continues writing to the terminal, when it receives ^Q. These `owcontrol' characters only work when sent from the terminal but not when sent to the terminal. Here I giveB up, since I don't know how to restart the output from the writing side so TEXGPC does nothing. Mac OS Xdoes not stop terminal output when it receives ^S.de�ne update terminal � do nothing f empty the terminal output bu�er gde�ne clear terminal � do nothing f clear the terminal input bu�er gde�ne wake up terminal � do nothing f cancel the user's cancellation of output g

20 PART 3: INPUT AND OUTPUT TEXGPC x3535. We need a special routine to read the �rst line of TEX input from the user's terminal. This line isdi�erent because it is read before we have opened the transcript �le; there is sort of a \chicken and egg"problem here. If the user types `\input paper' on the �rst line, or if some macro invoked by that line doessuch an \input, the transcript �le will be named `paper.log'; but if no \input commands are performedduring the �rst line of terminal input, the transcript �le will acquire its default name `texput.log'. (Thetranscript �le will not contain error messages generated by the �rst line before the �rst \input command.)The �rst line is even more special if we are lucky enough to have an operating system that treats TEXdi�erently from a run-of-the-mill Pascal object program. It's nice to let the user start running a TEX job bytyping a command line like `tex paper'; in such a case, TEX will operate as if the �rst line of input were`paper', i.e., the �rst line will consist of the remainder of the command line, after the part that invoked TEX.The �rst line is special also because it may be read before TEX has input a format �le. In such cases,normal error messages cannot yet be given. The following code uses concepts that will be explained later.(If the Pascal compiler does not support non-local goto, the statement `goto �nal end ' should be replacedby something that quietly terminates the program.)hReport overow of the input bu�er, and abort 35 i �if format ident = 0 thenbegin write ln (term out ; �Buffer size exceeded!�); goto �nal end ;endelse begin cur input :loc �eld �rst ; cur input :limit �eld last � 1;overow ("buffer size"; buf size);endThis code is used in sections 31* and 36*.

x36 TEXGPC PART 3: INPUT AND OUTPUT 2136*. Di�erent systems have di�erent ways to get started. But regardless of what conventions are adopted,the routine that initializes the terminal should satisfy the following speci�cations:1) It should open �le term in for input from the terminal. (The �le term out will already be open foroutput to the terminal.)2) If the user has given a command line, this line should be considered the �rst line of terminal input.Otherwise the user should be prompted with `**', and the �rst line of input should be whatever istyped in response.3) The �rst line of input, which might or might not be a command line, should appear in locations �rstto last � 1 of the bu�er array.4) The global variable loc should be set so that the character to be read next by TEX is in bu�er [loc].This character should not be blank, and we should have loc < last .(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is `**'instead of the later `*' because the meaning is slightly di�erent: `\input' need not be typed immediatelyafter `**'.)This procedure puts the command line arguments separated by spaces into bu�er . Like input ln it updatesF last so that bu�er [�rst : : last) will contain the command line.GNU Pascal's function gpc param count gives the number of command line arguments. The func-G tion gpc param str (n) returns the n-th argument for 0 � n � gpc param count in a gpc string , whose lengthis returned by the function gpc length . A gpc string is like a packed array [1 : : gpc length] of char withvarying length.de�ne loc � cur input :loc �eld f location of �rst unread character in bu�er gde�ne gpc string � s@&t@&r@&i@&n@&g f a string with varying length gde�ne gpc length � l@&e@&n@&g@&t@&hde�ne gpc param count � p@&a@&r@&a@&m@&c@&o@&u@&n@&tde�ne gpc param str � p@&a@&r@&a@&m@&s@&t@&rfGPC function returning the length of a gpc string gprocedure input command ln ; f get the command line in bu�er gvar argc : integer ; f argument counter garg : gpc string ; f argument gcc : integer ; f character counter in argument gbegin last �rst ; argc 1;while argc � gpc param count dobegin cc 1; arg gpc param str (argc); incr (argc);while cc � gpc length (arg) dobegin if last + 1 � buf size then hReport overow of the input bu�er, and abort 35 i;bu�er [last] xord [arg [cc]]; incr (last); incr (cc);end;if (argc � gpc param count) thenbegin bu�er [last] " "; incr (last); f insert a space between arguments gend;end;end;

22 PART 3: INPUT AND OUTPUT TEXGPC x3737*. The following program treats a non empty command line as the �rst line.F The 2008 edition of TEXGPC erranously assumed bu�er [last � 1] 6= " " which does not hold if your �rstline is all blank as Joachim Kuebart noted.function init terminal : boolean ; f gets the terminal input started glabel exit ;begin t open in ; input command ln ;while �rst = last dobegin wake up terminal ; write (term out ; �**�); update terminal ;if :input ln (term in ; true) then f this shouldn't happen gbegin write ln (term out); write ln (term out ; �! End of file on the terminal... why?�);init terminal false ; return;end;if �rst = last then write ln (term out ; �Please type the name of your input file.�);end;loc �rst ; init terminal true ;exit : end;

x38 TEXGPC PART 4: STRING HANDLING 2338. String handling. Control sequence names and diagnostic messages are variable-length strings ofeight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its stringprocessing by homegrown methods.Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handledwith a simple data structure. The array str pool contains all of the (eight-bit) ASCII codes in all of the strings,and the array str start contains indices of the starting points of each string. Strings are referred to by integernumbers, so that string number s comprises the characters str pool [j] for str start [s] � j < str start [s+ 1].Additional integer variables pool ptr and str ptr indicate the number of entries used so far in str pool andstr start , respectively; locations str pool [pool ptr] and str start [str ptr] are ready for the next string to beallocated.String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is inaccordance with the conventions of WEB, which converts single-character strings into the ASCII code numberof the single character involved, while it converts other strings into integers and builds a string pool �le.Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greaterthan 255. String number 46 will presumably be the single character `.'; but some ASCII codes have nostandard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,so the �rst 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.Elements of the str pool array must be ASCII codes that can actually be printed; i.e., they must have anxchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to thosegenerated dynamically by the user.)Some Pascal compilers won't pack integers into a single byte unless the integers lie in the range�128 : : 127.To accommodate such systems we access the string pool only via macros that can easily be rede�ned.de�ne si (#) � # f convert from ASCII code to packed ASCII code gde�ne so(#) � # f convert from packed ASCII code to ASCII code ghTypes in the outer block 18 i +�pool pointer = 0 : : pool size ; f for variables that point into str pool gstr number = 0 : : max strings ; f for variables that point into str start gpacked ASCII code = 0 : : 255; f elements of str pool array g39. hGlobal variables 13 i +�str pool : packed array [pool pointer] of packed ASCII code ; f the characters gstr start : array [str number] of pool pointer ; f the starting pointers gpool ptr : pool pointer ; f �rst unused position in str pool gstr ptr : str number ; f number of the current string being created ginit pool ptr : pool pointer ; f the starting value of pool ptr ginit str ptr : str number ; f the starting value of str ptr g40. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-cedures, because many of the operations are done quite frequently and we want to avoid the overhead ofprocedure calls. For example, here is a simple macro that computes the length of a string.de�ne length (#) � (str start [#+ 1]� str start [#]) f the number of characters in string number # g41. The length of the current string is called cur length :de�ne cur length � (pool ptr � str start [str ptr])

24 PART 4: STRING HANDLING TEXGPC x4242. Strings are created by appending character codes to str pool . The append char macro, de�ned here,does not check to see if the value of pool ptr has gotten too high; this test is supposed to be made beforeappend char is used. There is also a ush char macro, which erases the last character appended.To test if there is room to append l more characters to str pool , we shall write str room (l), which abortsTEX and gives an apologetic error message if there isn't enough room.de�ne append char (#) � f put ASCII code # at the end of str pool gbegin str pool [pool ptr] si (#); incr (pool ptr);endde�ne ush char � decr (pool ptr) f forget the last character in the pool gde�ne str room (#) � fmake sure that the pool hasn't overowed gbegin if pool ptr + # > pool size then overow ("pool size"; pool size � init pool ptr);end43. Once a sequence of characters has been appended to str pool , it o�cially becomes a string when thefunction make string is called. This function returns the identi�cation number of the new string as its value.function make string : str number ; f current string enters the pool gbegin if str ptr = max strings then overow ("number of strings";max strings � init str ptr);incr (str ptr); str start [str ptr] pool ptr ; make string str ptr � 1;end;44. To destroy the most recently made string, we say ush string .de�ne ush string �begin decr (str ptr); pool ptr str start [str ptr];end45. The following subroutine compares string s with another string of the same length that appears inbu�er starting at position k; the result is true if and only if the strings are equal. Empirical tests indicatethat str eq buf is used in such a way that it tends to return true about 80 percent of the time.function str eq buf (s : str number ; k : integer): boolean ; f test equality of strings glabel not found ; f loop exit gvar j: pool pointer ; f running index gresult : boolean ; f result of comparison gbegin j str start [s];while j < str start [s+ 1] dobegin if so (str pool [j]) 6= bu�er [k] thenbegin result false ; goto not found ;end;incr (j); incr (k);end;result true ;not found : str eq buf result ;end;

x46 TEXGPC PART 4: STRING HANDLING 2546. Here is a similar routine, but it compares two strings in the string pool, and it does not assume thatthey have the same length.function str eq str (s; t : str number): boolean ; f test equality of strings glabel not found ; f loop exit gvar j; k: pool pointer ; f running indices gresult : boolean ; f result of comparison gbegin result false ;if length (s) 6= length (t) then goto not found ;j str start [s]; k str start [t];while j < str start [s+ 1] dobegin if str pool [j] 6= str pool [k] then goto not found ;incr (j); incr (k);end;result true ;not found : str eq str result ;end;47. The initial values of str pool , str start , pool ptr , and str ptr are computed by the INITEX program,based in part on the information that WEB has output while processing TEX.init function get strings started : boolean ;f initializes the string pool, but returns false if something goes wrong glabel done ; exit ;var k; l: 0 : : 255; f small indices or counters gm;n: text char ; f characters input from pool �le gg: str number ; f garbage ga: integer ; f accumulator for check sum gc: boolean ; f check sum has been checked gbegin pool ptr 0; str ptr 0; str start [0] 0; hMake the �rst 256 strings 48 i;hRead the other strings from the TEX.POOL �le and return true , or give an error message and returnfalse 51 i;exit : end;tini48. de�ne app lc hex (#) � l #;if l < 10 then append char (l + "0") else append char (l � 10 + "a")hMake the �rst 256 strings 48 i �for k 0 to 255 dobegin if (hCharacter k cannot be printed 49 i) thenbegin append char ("^"); append char ("^");if k < �100 then append char (k + �100)else if k < �200 then append char (k � �100)else begin app lc hex (k div 16); app lc hex (kmod 16);end;endelse append char (k);g make string ;endThis code is used in section 47.

26 PART 4: STRING HANDLING TEXGPC x4949. The �rst 128 strings will contain 95 standard ASCII characters, and the other 33 characters will beprinted in three-symbol form like `^^A' unless a system-dependent change is made here. Installations thathave an extended character set, where for example xchr [�32] = ���, would like string �32 to be the singlecharacter �32 instead of the three characters �136 , �136 , �132 (^^Z). On the other hand, even people withan extended character set will want to represent string �15 by ^^M, since �15 is carriage return ; the idea isto produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or characters that aretreated anomalously in text �les.Unprintable characters of codes 128{255 are, similarly, rendered ^^80{^^ff.The boolean expression de�ned here should be true unless TEX internal code number k corresponds to anon-troublesome visible symbol in the local character set. An appropriate formula for the extended characterset recommended in The TEXbook would, for example, be `k 2 [0; �10 : : �12 ; �14 ; �15 ; �33 ; �177 : : �377]'.If character k cannot be printed, and k < �200 , then character k + �100 or k � �100 must be printable;moreover, ASCII codes [�41 : : �46 ; �60 : : �71 ; �136 ; �141 : : �146 ; �160 : : �171] must be printable. Thus, atleast 81 printable characters are needed.hCharacter k cannot be printed 49 i �(k < " ") _ (k > "~")This code is used in section 48.50. When the WEB system program called TANGLE processes the TEX.WEB description that you are nowreading, it outputs the Pascal program TEX.PAS and also a string pool �le called TEX.POOL. The INITEXprogram reads the latter �le, where each string appears as a two-digit decimal length followed by the stringitself, and the information is recorded in TEX's string memory.hGlobal variables 13 i +�init pool �le : alpha �le ; f the string-pool �le output by TANGLEgtini51. de�ne bad pool (#) �begin wake up terminal ; write ln (term out ; #); a close (pool �le); get strings started false ;return;endhRead the other strings from the TEX.POOL �le and return true , or give an error message and returnfalse 51 i �name of �le pool name ; fwe needn't set name length gif a open in (pool �le) thenbegin c false ;repeat hRead one string, but return false if the string memory space is getting too tight forcomfort 52 i;until c;a close (pool �le); get strings started true ;endelse bad pool (�! I can��t read TEX.POOL.�)This code is used in section 47.

x52 TEXGPC PART 4: STRING HANDLING 2752. hRead one string, but return false if the string memory space is getting too tight for comfort 52 i �begin if eof (pool �le) then bad pool (�! TEX.POOL has no check sum.�);read (pool �le ;m; n); f read two digits of string length gif m = �*� then hCheck the pool check sum 53 ielse begin if (xord [m] < "0") _ (xord [m] > "9") _ (xord [n] < "0") _ (xord [n] > "9") thenbad pool (�! TEX.POOL line doesn��t begin with two digits.�);l xord [m] � 10 + xord [n]� "0" � 11; f compute the length gif pool ptr + l+ string vacancies > pool size then bad pool (�! You have to increase POOLSIZE.�);for k 1 to l dobegin if eoln (pool �le) then m � � else read (pool �le ;m);append char (xord [m]);end;read ln (pool �le); g make string ;end;endThis code is used in section 51.53. The WEB operation @$ denotes the value that should be at the end of this TEX.POOL �le; any othervalue means that the wrong pool �le has been loaded.hCheck the pool check sum 53 i �begin a 0; k 1;loop begin if (xord [n] < "0") _ (xord [n] > "9") thenbad pool (�! TEX.POOL check sum doesn��t have nine digits.�);a 10 � a+ xord [n]� "0";if k = 9 then goto done ;incr (k); read (pool �le ; n);end;done : if a 6= @$ then bad pool (�! TEX.POOL doesn��t match; TANGLE me again.�);c true ;endThis code is used in section 52.

28 PART 5: ON-LINE AND OFF-LINE PRINTING TEXGPC x5454. On-line and o�-line printing. Messages that are sent to a user's terminal and to the transcript-log �le are produced by several `print ' procedures. These procedures will direct their output to a variety ofplaces, based on the setting of the global variable selector , which has the following possible values:term and log , the normal setting, prints on the terminal and on the transcript �le.log only , prints only on the transcript �le.term only , prints only on the terminal.no print , doesn't print at all. This is used only in rare cases before the transcript �le is open.pseudo , puts output into a cyclic bu�er that is used by the show context routine; when we get to that routinewe shall discuss the reasoning behind this curious mode.new string , appends the output to the current string in the string pool.0 to 15, prints on one of the sixteen �les for \write output.The symbolic names `term and log ', etc., have been assigned numeric codes that satisfy the convenientrelations no print + 1 = term only , no print + 2 = log only , term only + 2 = log only + 1 = term and log .Three additional global variables, tally and term o�set and �le o�set , record the number of charactersthat have been printed since they were most recently cleared to zero. We use tally to record the length of(possibly very long) stretches of printing; term o�set and �le o�set , on the other hand, keep track of howmany characters have appeared so far on the current line that has been output to the terminal or to thetranscript �le, respectively.de�ne no print = 16 f selector setting that makes data disappear gde�ne term only = 17 f printing is destined for the terminal only gde�ne log only = 18 f printing is destined for the transcript �le only gde�ne term and log = 19 f normal selector setting gde�ne pseudo = 20 f special selector setting for show context gde�ne new string = 21 f printing is deected to the string pool gde�ne max selector = 21 f highest selector setting ghGlobal variables 13 i +�log �le : alpha �le ; f transcript of TEX session gselector : 0 : : max selector ; fwhere to print a message gdig : array [0 : : 22] of 0 : : 15; f digits in a number being output gtally : integer ; f the number of characters recently printed gterm o�set : 0 : : max print line ; f the number of characters on the current terminal line g�le o�set : 0 : : max print line ; f the number of characters on the current �le line gtrick buf : array [0 : : error line] of ASCII code ; f circular bu�er for pseudoprinting gtrick count : integer ; f threshold for pseudoprinting, explained later g�rst count : integer ; f another variable for pseudoprinting g55. h Initialize the output routines 55 i �selector term only ; tally 0; term o�set 0; �le o�set 0;See also sections 61, 528, and 533.This code is used in section 1332*.56. Macro abbreviations for output to the terminal and to the log �le are de�ned here for convenience.Some systems need special conventions for terminal output, and it is possible to adhere to those conventionsby changing wterm , wterm ln , and wterm cr in this section.de�ne wterm (#) � write (term out ; #)de�ne wterm ln (#) � write ln (term out ; #)de�ne wterm cr � write ln (term out)de�ne wlog (#) � write (log �le ; #)de�ne wlog ln (#) � write ln (log �le ; #)de�ne wlog cr � write ln (log �le)

x57 TEXGPC PART 5: ON-LINE AND OFF-LINE PRINTING 2957. To end a line of text output, we call print ln .hBasic printing procedures 57 i �procedure print ln ; f prints an end-of-line gbegin case selector ofterm and log : begin wterm cr ; wlog cr ; term o�set 0; �le o�set 0;end;log only : begin wlog cr ; �le o�set 0;end;term only : begin wterm cr ; term o�set 0;end;no print ; pseudo ;new string : do nothing ;othercases write ln (write �le [selector])endcases;end; f tally is not a�ected gSee also sections 58, 59, 60, 62, 63, 64, 65, 262, 263, 518, 699, and 1355.This code is used in section 4*.58. The print char procedure sends one character to the desired destination, using the xchr array to mapit into an external character compatible with input ln . All printing comes through print ln or print char .hBasic printing procedures 57 i +�procedure print char (s : ASCII code); f prints a single character glabel exit ;begin if hCharacter s is the current new-line character 244 i thenif selector < pseudo thenbegin print ln ; return;end;case selector ofterm and log : begin wterm (xchr [s]); wlog (xchr [s]); incr (term o�set); incr (�le o�set);if term o�set = max print line thenbegin wterm cr ; term o�set 0;end;if �le o�set = max print line thenbegin wlog cr ; �le o�set 0;end;end;log only : begin wlog (xchr [s]); incr (�le o�set);if �le o�set = max print line then print ln ;end;term only : begin wterm (xchr [s]); incr (term o�set);if term o�set = max print line then print ln ;end;no print : do nothing ;pseudo : if tally < trick count then trick buf [tally mod error line] s;new string : begin if pool ptr < pool size then append char (s);end; fwe drop characters if the string space is full gothercases write (write �le [selector]; xchr [s])endcases;incr (tally);exit : end;

30 PART 5: ON-LINE AND OFF-LINE PRINTING TEXGPC x5959. An entire string is output by calling print . Note that if we are outputting the single standard ASCIIcharacter c, we could call print ("c"), since "c" = 99 is the number of a single-character string, as explainedabove. But print char ("c") is quicker, so TEX goes directly to the print char routine when it knows thatthis is safe. (The present implementation assumes that it is always safe to print a visible ASCII character.)hBasic printing procedures 57 i +�procedure print (s : integer); f prints string s glabel exit ;var j: pool pointer ; f current character code position gnl : integer ; f new-line character to restore gbegin if s � str ptr then s "???" f this can't happen gelse if s < 256 thenif s < 0 then s "???" f can't happen gelse begin if selector > pseudo thenbegin print char (s); return; f internal strings are not expanded gend;if (hCharacter s is the current new-line character 244 i) thenif selector < pseudo thenbegin print ln ; return;end;nl new line char ; new line char �1; f temporarily disable new-line character gj str start [s];while j < str start [s+ 1] dobegin print char (so (str pool [j])); incr (j);end;new line char nl ; return;end;j str start [s];while j < str start [s+ 1] dobegin print char (so (str pool [j])); incr (j);end;exit : end;60. Control sequence names, �le names, and strings constructed with \string might contain ASCII codevalues that can't be printed using print char . Therefore we use slow print for them:hBasic printing procedures 57 i +�procedure slow print (s : integer); f prints string s gvar j: pool pointer ; f current character code position gbegin if (s � str ptr) _ (s < 256) then print (s)else begin j str start [s];while j < str start [s+ 1] dobegin print (so (str pool [j])); incr (j);end;end;end;

x61 TEXGPC PART 5: ON-LINE AND OFF-LINE PRINTING 3161. Here is the very �rst thing that TEX prints: a headline that identi�es the version number and formatpackage. The term o�set variable is temporarily incorrect, but the discrepancy is not serious since we assumethat the banner and format identi�er together will occupy at most max print line character positions.h Initialize the output routines 55 i +�wterm (banner);if format ident = 0 then wterm ln (� (no format preloaded)�)else begin slow print (format ident); print ln ;end;update terminal ;62. The procedure print nl is like print , but it makes sure that the string appears at the beginning of anew line.hBasic printing procedures 57 i +�procedure print nl (s : str number); f prints string s at beginning of line gbegin if ((term o�set > 0) ^ (odd (selector))) _ ((�le o�set > 0) ^ (selector � log only)) then print ln ;print (s);end;63. The procedure print esc prints a string that is preceded by the user's escape character (which is usuallya backslash).hBasic printing procedures 57 i +�procedure print esc(s : str number); f prints escape character, then s gvar c: integer ; f the escape character code gbegin h Set variable c to the current escape character 243 i;if c � 0 thenif c < 256 then print (c);slow print (s);end;64. An array of digits in the range 0 : : 15 is printed by print the digs .hBasic printing procedures 57 i +�procedure print the digs (k : eight bits); f prints dig [k � 1] : : : dig [0] gbegin while k > 0 dobegin decr (k);if dig [k] < 10 then print char ("0"+ dig [k])else print char ("A"� 10 + dig [k]);end;end;

32 PART 5: ON-LINE AND OFF-LINE PRINTING TEXGPC x6565. The following procedure, which prints out the decimal representation of a given integer n, has beenwritten carefully so that it works properly if n = 0 or if (�n) would cause overow. It does not applymod ordiv to negative arguments, since such operations are not implemented consistently by all Pascal compilers.hBasic printing procedures 57 i +�procedure print int (n : integer); f prints an integer in decimal form gvar k: 0 : : 23; f index to current digit; we assume that n < 1023 gm: integer ; f used to negate n in possibly dangerous cases gbegin k 0;if n < 0 thenbegin print char ("-");if n > �100000000 then negate (n)else begin m �1� n; n m div 10; m (mmod 10) + 1; k 1;if m < 10 then dig [0] melse begin dig [0] 0; incr (n);end;end;end;repeat dig [k] nmod 10; n n div 10; incr (k);until n = 0;print the digs (k);end;66. Here is a trivial procedure to print two digits; it is usually called with a parameter in the range0 � n � 99.procedure print two(n : integer); f prints two least signi�cant digits gbegin n abs (n)mod 100; print char ("0"+ (n div 10)); print char ("0"+ (nmod 10));end;67. Hexadecimal printing of nonnegative integers is accomplished by print hex .procedure print hex (n : integer); f prints a positive integer in hexadecimal form gvar k: 0 : : 22; f index to current digit; we assume that 0 � n < 1622 gbegin k 0; print char ("""");repeat dig [k] nmod 16; n n div 16; incr (k);until n = 0;print the digs (k);end;68. Old versions of TEX needed a procedure called print ASCII whose function is now subsumed by print .We retain the old name here as a possible aid to future software arch�ologists.de�ne print ASCII � print

x69 TEXGPC PART 5: ON-LINE AND OFF-LINE PRINTING 3369. Roman numerals are produced by the print roman int routine. Readers who like puzzles might enjoytrying to �gure out how this tricky code works; therefore no explanation will be given. Notice that 1990yields mcmxc, not mxm.procedure print roman int (n : integer);label exit ;var j; k: pool pointer ; fmysterious indices into str pool gu; v: nonnegative integer ; fmysterious numbers gbegin j str start ["m2d5c2l5x2v5i"]; v 1000;loop begin while n � v dobegin print char (so (str pool [j])); n n� v;end;if n � 0 then return; f nonpositive input produces no output gk j + 2; u v div (so (str pool [k � 1])� "0");if str pool [k � 1] = si ("2") thenbegin k k + 2; u u div (so (str pool [k � 1])� "0");end;if n+ u � v thenbegin print char (so (str pool [k])); n n+ u;endelse begin j j + 2; v v div (so (str pool [j � 1])� "0");end;end;exit : end;70. The print subroutine will not print a string that is still being created. The following procedure will.procedure print current string ; f prints a yet-unmade string gvar j: pool pointer ; f points to current character code gbegin j str start [str ptr];while j < pool ptr dobegin print char (so (str pool [j])); incr (j);end;end;71. Here is a procedure that asks the user to type a line of input, assuming that the selector setting iseither term only or term and log . The input is placed into locations �rst through last � 1 of the bu�erarray, and echoed on the transcript �le if appropriate.This procedure is never called when interaction < scroll mode .de�ne prompt input (#) �begin wake up terminal ; print (#); term input ;end f prints a string and gets a line of input gprocedure term input ; f gets a line from the terminal gvar k: 0 : : buf size ; f index into bu�er gbegin update terminal ; f now the user sees the prompt for sure gif :input ln (term in ; true) then fatal error ("End of file on the terminal!");term o�set 0; f the user's line ended with hreturni gdecr (selector); f prepare to echo the input gif last 6= �rst thenfor k �rst to last � 1 do print (bu�er [k]);print ln ; incr (selector); f restore previous status gend;

34 PART 6: REPORTING ERRORS TEXGPC x7272. Reporting errors. When something anomalous is detected, TEX typically does something like this:print err ("Something anomalous has been detected");help3 ("This is the first line of my offer to help.")("This is the second line. I�m trying to")("explain the best way for you to proceed.");error ;A two-line help message would be given using help2 , etc.; these informal helps should use simple vocabularythat complements the words used in the o�cial error message that was printed. (Outside the U.S.A., thehelp messages should preferably be translated into the local vernacular. Each line of help is at most 60characters long, in the present implementation, so that max print line will not be exceeded.)The print err procedure supplies a `!' before the o�cial message, and makes sure that the terminal isawake if a stop is going to occur. The error procedure supplies a `.' after the o�cial message, then it showsthe location of the error; and if interaction = error stop mode , it also enters into a dialog with the user,during which time the help message may be printed.73. The global variable interaction has four settings, representing increasing amounts of user interaction:de�ne batch mode = 0 f omits all stops and omits terminal output gde�ne nonstop mode = 1 f omits all stops gde�ne scroll mode = 2 f omits error stops gde�ne error stop mode = 3 f stops at every opportunity to interact gde�ne print err (#) �begin if interaction = error stop mode then wake up terminal ;print nl ("! "); print (#);endhGlobal variables 13 i +�interaction : batch mode : : error stop mode ; f current level of interaction g74. h Set initial values of key variables 21 i +�interaction error stop mode ;75. TEX is careful not to call error when the print selector setting might be unusual. The only possiblevalues of selector at the time of error messages areno print (when interaction = batch mode and log �le not yet open);term only (when interaction > batch mode and log �le not yet open);log only (when interaction = batch mode and log �le is open);term and log (when interaction > batch mode and log �le is open).h Initialize the print selector based on interaction 75 i �if interaction = batch mode then selector no print else selector term onlyThis code is used in sections 1265 and 1337.

x76 TEXGPC PART 6: REPORTING ERRORS 3576. A global variable deletions allowed is set false if the get next routine is active when error is called; thisensures that get next and related routines like get token will never be called recursively. A similar interlockis provided by set box allowed .The global variable history records the worst level of error that has been detected. It has four possiblevalues: spotless , warning issued , error message issued , and fatal error stop .Another global variable, error count , is increased by one when an error occurs without an interactivedialog, and it is reset to zero at the end of every paragraph. If error count reaches 100, TEX decides thatthere is no point in continuing further.de�ne spotless = 0 f history value when nothing has been amiss yet gde�ne warning issued = 1 f history value when begin diagnostic has been called gde�ne error message issued = 2 f history value when error has been called gde�ne fatal error stop = 3 f history value when termination was premature ghGlobal variables 13 i +�deletions allowed : boolean ; f is it safe for error to call get token? gset box allowed : boolean ; f is it safe to do a \setbox assignment? ghistory : spotless : : fatal error stop ; f has the source input been clean so far? gerror count : �1 : : 100; f the number of scrolled errors since the last paragraph ended g77. The value of history is initially fatal error stop , but it will be changed to spotless if TEX survives theinitialization process.h Set initial values of key variables 21 i +�deletions allowed true ; set box allowed true ; error count 0; f history is initialized elsewhere g78. Since errors can be detected almost anywhere in TEX, we want to declare the error procedures nearthe beginning of the program. But the error procedures in turn use some other procedures, which need tobe declared forward before we get to error itself.It is possible for error to be called recursively if some error arises when get token is being used to deletea token, and/or if some fatal error occurs while TEX is trying to �x a non-fatal one. But such recursion isnever more than two levels deep.hError handling procedures 78 i �procedure normalize selector ; forward ;procedure get token ; forward ;procedure term input ; forward ;procedure show context ; forward ;procedure begin �le reading ; forward ;procedure open log �le ; forward ;procedure close �les and terminate ; forward ;procedure clear for error prompt ; forward ;procedure give err help ; forward ;debug procedure debug help ; forward ; gubedSee also sections 81, 82, 93, 94, 95, 1380*, and 1381*.This code is used in section 4*.

36 PART 6: REPORTING ERRORS TEXGPC x7979*. Individual lines of help are recorded in the array help line , which contains entries in positions 0 : :(help ptr � 1). They should be printed in reverse order, i.e., with help line [0] appearing last.TEXGPC lets the user jump into vi to edit the current input �le at the current line. After saveing lineF number and �le name TEXGPC jumps out and then launches vi passing the saved values.de�ne hlp1 (#) � help line [0] #; endde�ne hlp2 (#) � help line [1] #; hlp1de�ne hlp3 (#) � help line [2] #; hlp2de�ne hlp4 (#) � help line [3] #; hlp3de�ne hlp5 (#) � help line [4] #; hlp4de�ne hlp6 (#) � help line [5] #; hlp5de�ne help0 � help ptr 0 f sometimes there might be no help gde�ne help1 � begin help ptr 1; hlp1 f use this with one help line gde�ne help2 � begin help ptr 2; hlp2 f use this with two help lines gde�ne help3 � begin help ptr 3; hlp3 f use this with three help lines gde�ne help4 � begin help ptr 4; hlp4 f use this with four help lines gde�ne help5 � begin help ptr 5; hlp5 f use this with �ve help lines gde�ne help6 � begin help ptr 6; hlp6 f use this with six help lines ghGlobal variables 13 i +�help line : array [0 : : 5] of str number ; f helps for the next error ghelp ptr : 0 : : 6; f the number of help lines present guse err help : boolean ; f should the err help list be shown? gedit line : integer ; f line number to be passed to the system editor gedit �le name : str number ; f �le name to be passed to the system editor g80*. h Set initial values of key variables 21 i +�help ptr 0; use err help false ; edit line 0; edit �le name 0;81. The jump out procedure just cuts across all active procedure levels and goes to end of TEX . Thisis the only nontrivial goto statement in the whole program. It is used when there is no recovery from aparticular error.Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump outshould simply be `close �les and terminate ; ' followed by a call on some system procedure that quietlyterminates the program.hError handling procedures 78 i +�procedure jump out ;begin goto end of TEX ;end;

x82 TEXGPC PART 6: REPORTING ERRORS 3782. Here now is the general error routine.hError handling procedures 78 i +�procedure error ; f completes the job of error reporting glabel continue ; exit ;var c: ASCII code ; fwhat the user types gs1 ; s2 ; s3 ; s4 : integer ; f used to save global variables when deleting tokens gbegin if history < error message issued then history error message issued ;print char ("."); show context ;if interaction = error stop mode then hGet user's advice and return 83 i;incr (error count);if error count = 100 thenbegin print nl ("(That makes 100 errors; please try again.)"); history fatal error stop ;jump out ;end;hPut help message on the transcript �le 90 i;exit : end;83. hGet user's advice and return 83 i �loop begin continue : clear for error prompt ; prompt input ("? ");if last = �rst then return;c bu�er [�rst];if c � "a" then c c+ "A"� "a"; f convert to uppercase gh Interpret code c and return if done 84* i;endThis code is used in section 82.84*. It is desirable to provide an `E' option here that gives the user an easy way to return from TEX tothe system editor, with the o�ending line ready to be edited. But such an extension requires some systemwizardry, so the present implementation simply types out the name of the �le that should be edited and therelevant line number.There is a secret `D' option available when the debugging routines haven't been commented out.h Interpret code c and return if done 84* i �case c of"0"; "1"; "2"; "3"; "4"; "5"; "6"; "7"; "8"; "9": if deletions allowed thenhDelete c� "0" tokens and goto continue 88 i;debug "D": begin debug help ; goto continue ; end; gubed"E": if base ptr > 0 thenbegin f save values to be passed to the system editor gF edit �le name input stack [base ptr]:name �eld ; edit line line ; interaction scroll mode ;jump out ;end;"H": hPrint the help information and goto continue 89 i;"I": h Introduce new material from the terminal and return 87 i;"Q"; "R"; "S": hChange the interaction level and return 86 i;"X": begin interaction scroll mode ; jump out ;end;othercases do nothingendcases;hPrint the menu of available options 85 iThis code is used in section 83.

38 PART 6: REPORTING ERRORS TEXGPC x8585. hPrint the menu of available options 85 i �begin print ("Type <return> to proceed, S to scroll future error messages,");print nl ("R to run without stopping, Q to run quietly,");print nl ("I to insert something, ");if base ptr > 0 then print ("E to edit your file,");if deletions allowed thenprint nl ("1 or ... or 9 to ignore the next 1 to 9 tokens of input,");print nl ("H for help, X to quit.");endThis code is used in section 84*.86. Here the author of TEX apologizes for making use of the numerical relation between "Q", "R", "S",and the desired interaction settings batch mode , nonstop mode , scroll mode .hChange the interaction level and return 86 i �begin error count 0; interaction batch mode + c� "Q"; print ("OK, entering ");case c of"Q": begin print esc("batchmode"); decr (selector);end;"R": print esc("nonstopmode");"S": print esc("scrollmode");end; f there are no other cases gprint ("..."); print ln ; update terminal ; return;endThis code is used in section 84*.87. When the following code is executed, bu�er [(�rst +1) : : (last � 1)] may contain the material insertedby the user; otherwise another prompt will be given. In order to understand this part of the program fully,you need to be familiar with TEX's input stacks.h Introduce new material from the terminal and return 87 i �begin begin �le reading ; f enter a new syntactic level for terminal input gf now state = mid line , so an initial blank space will count as a blank gif last > �rst + 1 thenbegin loc �rst + 1; bu�er [�rst] " ";endelse begin prompt input ("insert>"); loc �rst ;end;�rst last ; cur input :limit �eld last � 1; f no end line char ends this line greturn;endThis code is used in section 84*.

x88 TEXGPC PART 6: REPORTING ERRORS 3988. We allow deletion of up to 99 tokens at a time.hDelete c� "0" tokens and goto continue 88 i �begin s1 cur tok ; s2 cur cmd ; s3 cur chr ; s4 align state ; align state 1000000;OK to interrupt false ;if (last > �rst + 1) ^ (bu�er [�rst + 1] � "0") ^ (bu�er [�rst + 1] � "9") thenc c � 10 + bu�er [�rst + 1]� "0" � 11else c c� "0";while c > 0 dobegin get token ; f one-level recursive call of error is possible gdecr (c);end;cur tok s1 ; cur cmd s2 ; cur chr s3 ; align state s4 ; OK to interrupt true ;help2 ("I have just deleted some text, as you asked.")("You can now delete more, or insert, or whatever."); show context ; goto continue ;endThis code is used in section 84*.89. hPrint the help information and goto continue 89 i �begin if use err help thenbegin give err help ; use err help false ;endelse begin if help ptr = 0 then help2 ("Sorry, I don�t know how to help in this situation.")("Maybe you should try asking a human?");repeat decr (help ptr); print (help line [help ptr]); print ln ;until help ptr = 0;end;help4 ("Sorry, I already gave what help I could...")("Maybe you should try asking a human?")("An error might have occurred before I noticed any problems.")("��If all else fails, read the instructions.��");goto continue ;endThis code is used in section 84*.90. hPut help message on the transcript �le 90 i �if interaction > batch mode then decr (selector); f avoid terminal output gif use err help thenbegin print ln ; give err help ;endelse while help ptr > 0 dobegin decr (help ptr); print nl (help line [help ptr]);end;print ln ;if interaction > batch mode then incr (selector); f re-enable terminal output gprint lnThis code is used in section 82.

40 PART 6: REPORTING ERRORS TEXGPC x9191. A dozen or so error messages end with a parenthesized integer, so we save a teeny bit of program spaceby declaring the following procedure:procedure int error (n : integer);begin print (" ("); print int (n); print char (")"); error ;end;92. In anomalous cases, the print selector might be in an unknown state; the following subroutine is calledto �x things just enough to keep running a bit longer.procedure normalize selector ;begin if log opened then selector term and logelse selector term only ;if job name = 0 then open log �le ;if interaction = batch mode then decr (selector);end;93. The following procedure prints TEX's last words before dying.de�ne succumb �begin if interaction = error stop mode then interaction scroll mode ;f no more interaction gif log opened then error ;debug if interaction > batch mode then debug help ;gubedhistory fatal error stop ; jump out ; f irrecoverable error gendhError handling procedures 78 i +�procedure fatal error (s : str number); f prints s, and that's it gbegin normalize selector ;print err ("Emergency stop"); help1 (s); succumb ;end;94. Here is the most dreaded error message.hError handling procedures 78 i +�procedure overow (s : str number ; n : integer); f stop due to �niteness gbegin normalize selector ; print err ("TeX capacity exceeded, sorry ["); print (s); print char ("=");print int (n); print char ("]"); help2 ("If you really absolutely need more capacity,")("you can ask a wizard to enlarge me."); succumb ;end;

x95 TEXGPC PART 6: REPORTING ERRORS 4195. The program might sometime run completely amok, at which point there is no choice but to stop. Ifno previous error has been detected, that's bad news; a message is printed that is really intended for theTEX maintenance person instead of the user (unless the user has been particularly diabolical). The indexentries for `this can't happen' may help to pinpoint the problem.hError handling procedures 78 i +�procedure confusion (s : str number); f consistency check violated; s tells where gbegin normalize selector ;if history < error message issued thenbegin print err ("This can�t happen ("); print (s); print char (")");help1 ("I�m broken. Please show this to someone who can fix can fix");endelse begin print err ("I can�t go on meeting you like this");help2 ("One of your faux pas seems to have wounded me deeply...")("in fact, I�m barely conscious. Please fix it and try again.");end;succumb ;end;96*. Users occasionally want to interrupt TEX while it's running. If the Pascal runtime system allows this,one can implement a routine that sets the global variable interrupt to some nonzero value when such aninterrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using the Pascaldebugger.GNU Pascal reserves the identi�er interrupt , which seems a bug. WEB provides a simple workaround.G de�ne interrupt � tex interruptformat interrupt � truede�ne check interrupt �begin if interrupt 6= 0 then pause for instructions ;endhGlobal variables 13 i +�interrupt : integer ; f should TEX pause for instructions? gOK to interrupt : boolean ; f should interrupts be observed? g97. h Set initial values of key variables 21 i +�interrupt 0; OK to interrupt true ;98. When an interrupt has been detected, the program goes into its highest interaction level and lets theuser have nearly the full exibility of the error routine. TEX checks for interrupts only at times when it issafe to do this.procedure pause for instructions ;begin if OK to interrupt thenbegin interaction error stop mode ;if (selector = log only) _ (selector = no print) then incr (selector);print err ("Interruption"); help3 ("You rang?")("Try to insert some instructions for me (e.g.,�I\showlists�),")("unless you just want to quit by typing �X�."); deletions allowed false ; error ;deletions allowed true ; interrupt 0;end;end;

42 PART 7: ARITHMETIC WITH SCALED DIMENSIONS TEXGPC x9999. Arithmetic with scaled dimensions. The principal computations performed by TEX are doneentirely in terms of integers less than 231 in magnitude; and divisions are done only when both dividendand divisor are nonnegative. Thus, the arithmetic speci�ed in this program can be carried out in exactlythe same way on a wide variety of computers, including some small ones. Why? Because the arithmeticcalculations need to be spelled out precisely in order to guarantee that TEX will produce identical outputon di�erent machines. If some quantities were rounded di�erently in di�erent implementations, we would�nd that line breaks and even page breaks might occur in di�erent places. Hence the arithmetic of TEX hasbeen designed with care, and systems that claim to be implementations of TEX82 should follow precisely thecalculations as they appear in the present program.(Actually there are three places where TEX uses div with a possibly negative numerator. These areharmless; see div in the index. Also if the user sets the \time or the \year to a negative value, somediagnostic information will involve negative-numerator division. The same remarks apply for mod as wellas for div.)100. Here is a routine that calculates half of an integer, using an unambiguous convention with respect tosigned odd numbers.function half (x : integer): integer ;begin if odd (x) then half (x+ 1) div 2else half x div 2;end;101. Fixed-point arithmetic is done on scaled integers that are multiples of 2�16. In other words, a binarypoint is assumed to be sixteen bit positions from the right end of a binary computer word.de�ne unity � �200000 f 216, represents 1.00000 gde�ne two � �400000 f 217, represents 2.00000 ghTypes in the outer block 18 i +�scaled = integer ; f this type is used for scaled integers gnonnegative integer = 0 : : �17777777777 ; f 0 � x < 231 gsmall number = 0 : : 63; f this type is self-explanatory g102. The following function is used to create a scaled integer from a given decimal fraction (:d0d1 : : : dk�1),where 0 � k � 17. The digit di is given in dig [i], and the calculation produces a correctly rounded result.function round decimals (k : small number): scaled ; f converts a decimal fraction gvar a: integer ; f the accumulator gbegin a 0;while k > 0 dobegin decr (k); a (a+ dig [k] � two) div 10;end;round decimals (a+ 1) div 2;end;

x103 TEXGPC PART 7: ARITHMETIC WITH SCALED DIMENSIONS 43103. Conversely, here is a procedure analogous to print int . If the output of this procedure is subsequentlyread by TEX and converted by the round decimals routine above, it turns out that the original value willbe reproduced exactly; the \simplest" such decimal number is output, but there is always at least one digitfollowing the decimal point.The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yieldthe original number if and only if they form a fraction f in the range s� � � 10 � 216f < s. We can stop ifand only if f = 0 satis�es this condition; the loop will terminate before s can possibly become zero.procedure print scaled (s : scaled); f prints scaled real, rounded to �ve digits gvar delta : scaled ; f amount of allowable inaccuracy gbegin if s < 0 thenbegin print char ("-"); negate (s); f print the sign, if negative gend;print int (s div unity); f print the integer part gprint char ("."); s 10 � (smod unity) + 5; delta 10;repeat if delta > unity then s s+ �100000 � 50000; f round the last digit gprint char ("0"+ (s div unity)); s 10 � (smod unity); delta delta � 10;until s � delta ;end;104. Physical sizes that a TEX user speci�es for portions of documents are represented internally as scaledpoints. Thus, if we de�ne an `sp' (scaled point) as a unit equal to 2�16 printer's points, every dimensioninside of TEX is an integer number of sp. There are exactly 4,736,286.72 sp per inch. Users are not allowedto specify dimensions larger than 230 � 1 sp, which is a distance of about 18.892 feet (5.7583 meters); twosuch quantities can be added without overow on a 32-bit computer.The present implementation of TEX does not check for overow when dimensions are added or subtracted.This could be done by inserting a few dozen tests of the form `if x � �10000000000 then report overow ',but the chance of overow is so remote that such tests do not seem worthwhile.TEX needs to do only a few arithmetic operations on scaled quantities, other than addition and subtraction,and the following subroutines do most of the work. A single computation might use several subroutine calls,and it is desirable to avoid producing multiple error messages in case of arithmetic overow; so the routinesset the global variable arith error to true instead of reporting errors directly to the user. Another globalvariable, remainder , holds the remainder after a division.hGlobal variables 13 i +�arith error : boolean ; f has arithmetic overow occurred recently? gremainder : scaled ; f amount subtracted to get an exact division g105. The �rst arithmetical subroutine we need computes nx + y, where x and y are scaled and n is aninteger. We will also use it to multiply integers.de�ne nx plus y (#) � mult and add (#; �7777777777)de�ne mult integers (#) � mult and add (#; 0; �17777777777)function mult and add (n : integer ; x; y;max answer : scaled): scaled ;begin if n < 0 thenbegin negate (x); negate (n);end;if n = 0 then mult and add yelse if ((x � (max answer � y) div n)^ (�x � (max answer + y)div n)) then mult and add n � x+ yelse begin arith error true ; mult and add 0;end;end;

44 PART 7: ARITHMETIC WITH SCALED DIMENSIONS TEXGPC x106106. We also need to divide scaled dimensions by integers.function x over n (x : scaled ; n : integer): scaled ;var negative : boolean ; f should remainder be negated? gbegin negative false ;if n = 0 thenbegin arith error true ; x over n 0; remainder x;endelse begin if n < 0 thenbegin negate (x); negate (n); negative true ;end;if x � 0 thenbegin x over n x div n; remainder xmod n;endelse begin x over n �((�x) div n); remainder �((�x)mod n);end;end;if negative then negate (remainder);end;107. Then comes the multiplication of a scaled number by a fraction n=d, where n and d are nonnegativeintegers � 216 and d is positive. It would be too dangerous to multiply by n and then divide by d, in separateoperations, since overow might well occur; and it would be too inaccurate to divide by d and then multiplyby n. Hence this subroutine simulates 1.5-precision arithmetic.function xn over d (x : scaled ; n; d : integer): scaled ;var positive : boolean ; fwas x � 0? gt; u; v: nonnegative integer ; f intermediate quantities gbegin if x � 0 then positive trueelse begin negate (x); positive false ;end;t (xmod �100000) � n; u (x div �100000) � n+ (t div �100000);v (umod d) � �100000 + (tmod �100000);if u div d � �100000 then arith error trueelse u �100000 � (u div d) + (v div d);if positive thenbegin xn over d u; remainder vmod d;endelse begin xn over d �u; remainder �(vmod d);end;end;

x108 TEXGPC PART 7: ARITHMETIC WITH SCALED DIMENSIONS 45108. The next subroutine is used to compute the \badness" of glue, when a total t is supposed to be madefrom amounts that sum to s. According to The TEXbook, the badness of this situation is 100(t=s)3; however,badness is simply a heuristic, so we need not squeeze out the last drop of accuracy when computing it. Allwe really want is an approximation that has similar properties.The actual method used to compute the badness is easier to read from the program than to describein words. It produces an integer value that is a reasonably close approximation to 100(t=s)3, and allimplementations of TEX should use precisely this method. Any badness of 213 or more is treated as in�nitelybad, and represented by 10000.It is not di�cult to prove thatbadness (t+ 1; s) � badness (t; s) � badness (t; s+ 1):The badness function de�ned here is capable of computing at most 1095 distinct values, but that is plenty.de�ne inf bad = 10000 f in�nitely bad value gfunction badness (t; s : scaled): halfword ; f compute badness, given t � 0 gvar r: integer ; f approximation to �t=s, where �3 � 100 � 218 gbegin if t = 0 then badness 0else if s � 0 then badness inf badelse begin if t � 7230584 then r (t � 297) div s f 2973 = 99:94� 218 gelse if s � 1663497 then r t div (s div 297)else r t;if r > 1290 then badness inf bad f 12903 < 231 < 12913 gelse badness (r � r � r + �400000) div �1000000 ;end; f that was r3=218, rounded to the nearest integer gend;109*. When TEX \packages" a list into a box, it needs to calculate the proportionality ratio by which theglue inside the box should stretch or shrink. This calculation does not a�ect TEX's decision making, so theprecise details of rounding, etc., in the glue calculation are not of critical importance for the consistency ofresults on di�erent computers.We shall use the type glue ratio for such proportionality ratios. A glue ratio should take the same amountof memory as an integer (usually 32 bits) if it is to blend smoothly with TEX's other data structures. Thusglue ratio should be equivalent to short real in some implementations of Pascal. Alternatively, it is possibleto deal with glue ratios using nothing but �xed-point arithmetic; see TUGboat 3,1 (March 1982), 10{27.(But the routines cited there must be modi�ed to allow negative glue ratios.)In GNU Pascal a gpc short real has the desired size.G de�ne gpc short real � s@&h@&o@&r@&t@&r@&e@&a@&lde�ne set glue ratio zero (#) � # 0:0 f store the representation of zero ratio gde�ne set glue ratio one (#) � # 1:0 f store the representation of unit ratio gde�ne oat (#) � # f convert from glue ratio to type real gde�ne unoat (#) � # f convert from real to type glue ratio gde�ne oat constant (#) � #:0 f convert integer constant to real ghTypes in the outer block 18 i +�glue ratio = gpc short real ; f one-word representation of a glue expansion factor in GNU Pascal g

46 PART 8: PACKED DATA TEXGPC x110110. Packed data. In order to make e�cient use of storage space, TEX bases its major data structureson a memory word , which contains either a (signed) integer, possibly scaled, or a (signed) glue ratio , or asmall number of �elds that are one half or one quarter of the size used for storing integers.If x is a variable of type memory word , it contains up to four �elds that can be referred to as follows:x.int (an integer)x.sc (a scaled integer)x.gr (a glue ratio)x.hh .lh , x.hh .rh (two halfword �elds)x.hh .b0 , x.hh .b1 , x.hh .rh (two quarterword �elds, one halfword �eld)x.qqqq .b0 , x.qqqq .b1 , x.qqqq .b2 , x.qqqq .b3 (four quarterword �elds)This is somewhat cumbersome to write, and not very readable either, but macros will be used to make thenotation shorter and more transparent. The Pascal code below gives a formal de�nition of memory word andits subsidiary types, using packed variant records. TEX makes no assumptions about the relative positionsof the �elds within a word.Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword mustcontain at least 8 bits. But it doesn't hurt to have more bits; for example, with enough 36-bit words youmight be able to have mem max as large as 262142, which is eight times as much memory as anybody hadduring the �rst four years of TEX's existence.N.B.: Valuable memory space will be dreadfully wasted unless TEX is compiled by a Pascal that packsall of the memory word variants into the space of a single integer. This means, for example, that glue ratiowords should be short real instead of real on some computers. Some Pascal compilers will pack an integerwhose subrange is `0 : : 255' into an eight-bit �eld, but others insist on allocating space for an additional signbit; on such systems you can get 256 values into a quarterword only if the subrange is `�128 : : 127'.The present implementation tries to accommodate as many variations as possible, so it makes few as-sumptions. If integers having the subrange `min quarterword : : max quarterword ' can be packed into aquarterword, and if integers having the subrange `min halfword : : max halfword ' can be packed into ahalfword, everything should work satisfactorily.It is usually most e�cient to have min quarterword = min halfword = 0, so one should try to achieve thisunless it causes a severe problem. The values de�ned here are recommended for most 32-bit computers.de�ne min quarterword = 0 f smallest allowable value in a quarterword gde�ne max quarterword = 255 f largest allowable value in a quarterword gde�ne min halfword � 0 f smallest allowable value in a halfword gde�ne max halfword � 65535 f largest allowable value in a halfword g111. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, theinequalities that they mustn't satisfy):hCheck the \constant" values for consistency 14 i +�init if (mem min 6= mem bot) _ (mem max 6= mem top) then bad 10;tiniif (mem min > mem bot) _ (mem max < mem top) then bad 10;if (min quarterword > 0) _ (max quarterword < 127) then bad 11;if (min halfword > 0) _ (max halfword < 32767) then bad 12;if (min quarterword < min halfword) _ (max quarterword > max halfword) then bad 13;if (mem min < min halfword) _ (mem max � max halfword) _(mem bot �mem min > max halfword + 1) then bad 14;if (font base < min quarterword) _ (font max > max quarterword) then bad 15;if font max > font base + 256 then bad 16;if (save size > max halfword) _ (max strings > max halfword) then bad 17;if buf size > max halfword then bad 18;if max quarterword �min quarterword < 255 then bad 19;

x112 TEXGPC PART 8: PACKED DATA 47112*. The operation of adding or subtracting min quarterword occurs quite frequently in TEX, so it isconvenient to abbreviate this operation by using the macros qi and qo for input and output to and fromquarterword format.The inner loop of TEX will run faster with respect to compilers that don't optimize expressions like `x+0'and `x � 0', if these macros are simpli�ed in the obvious way when min quarterword = 0. And this can beG done here!de�ne qi (#) � # f to put an eight bits item into a quarterword gde�ne qo (#) � # f to take an eight bits item out of a quarterword gde�ne hi (#) � # f to put a sixteen-bit item into a halfword gde�ne ho (#) � # f to take a sixteen-bit item from a halfword g113. The reader should study the following de�nitions closely:de�ne sc � int f scaled data is equivalent to integer ghTypes in the outer block 18 i +�quarterword = min quarterword : : max quarterword ; f 1/4 of a word ghalfword = min halfword : : max halfword ; f 1/2 of a word gtwo choices = 1 : : 2; f used when there are two variants in a record gfour choices = 1 : : 4; f used when there are four variants in a record gtwo halves = packed record rh : halfword ;case two choices of1: (lh : halfword);2: (b0 : quarterword ; b1 : quarterword);end;four quarters = packed record b0 : quarterword ;b1 : quarterword ;b2 : quarterword ;b3 : quarterword ;end;memory word = recordcase four choices of1: (int : integer);2: (gr : glue ratio);3: (hh : two halves);4: (qqqq : four quarters);end;word �le = �le of memory word ;114. When debugging, we may want to print a memory word without knowing what type it is; so we printit in all modes.debug procedure print word (w : memory word); f prints w in all ways gbegin print int (w:int); print char (" ");print scaled (w:sc); print char (" ");print scaled (round (unity � oat (w:gr))); print ln ;print int (w:hh :lh); print char ("="); print int (w:hh :b0); print char (":"); print int (w:hh :b1);print char (";"); print int (w:hh :rh); print char (" ");print int (w:qqqq :b0); print char (":"); print int (w:qqqq :b1); print char (":"); print int (w:qqqq :b2);print char (":"); print int (w:qqqq :b3);end;gubed

48 PART 9: DYNAMIC MEMORY ALLOCATION TEXGPC x115115. Dynamic memory allocation. The TEX system does nearly all of its own memory allocation, sothat it can readily be transported into environments that do not have automatic facilities for strings, garbagecollection, etc., and so that it can be in control of what error messages the user receives. The dynamic storagerequirements of TEX are handled by providing a large array mem in which consecutive blocks of words areused as nodes by the TEX routines.Pointer variables are indices into this array, or into another array called eqtb that will be explained later.A pointer variable might also be a special ag that lies outside the bounds of mem , so we allow pointers toassume any halfword value. The minimum halfword value represents a null pointer. TEX does not assumethat mem [null] exists.de�ne pointer � halfword f a ag or a location in mem or eqtb gde�ne null � min halfword f the null pointer ghGlobal variables 13 i +�temp ptr : pointer ; f a pointer variable for occasional emergency use g116. The mem array is divided into two regions that are allocated separately, but the dividing line betweenthese two regions is not �xed; they grow together until �nding their \natural" size in a particular job.Locations less than or equal to lo mem max are used for storing variable-length records consisting of twoor more words each. This region is maintained using an algorithm similar to the one described in exercise2.5{19 of The Art of Computer Programming. However, no size �eld appears in the allocated nodes; theprogram is responsible for knowing the relevant size when a node is freed. Locations greater than or equalto hi mem min are used for storing one-word records; a conventional AVAIL stack is used for allocation inthis region.Locations of mem between mem bot and mem top may be dumped as part of preloaded format �les, bythe INITEX preprocessor. Production versions of TEX may extend the memory at both ends in order toprovide more space; locations between mem min and mem bot are always used for variable-size nodes, andlocations between mem top and mem max are always used for single-word nodes.The key pointers that govern mem allocation have a prescribed order:null �mem min �mem bot < lo mem max < hi mem min <mem top �mem end �mem max .Empirical tests show that the present implementation of TEX tends to spend about 9% of its running timeallocating nodes, and about 6% deallocating them after their use.hGlobal variables 13 i +�mem : array [mem min : : mem max] of memory word ; f the big dynamic storage area glo mem max : pointer ; f the largest location of variable-size memory in use ghi mem min : pointer ; f the smallest location of one-word memory in use g117. In order to study the memory requirements of particular applications, it is possible to prepare aversion of TEX that keeps track of current and maximum memory usage. When code between the delimitersstat : : : tats is not \commented out," TEX will run a bit slower but it will report these statistics whentracing stats is su�ciently large.hGlobal variables 13 i +�var used ; dyn used : integer ; f how much memory is in use g

x118 TEXGPC PART 9: DYNAMIC MEMORY ALLOCATION 49118. Let's consider the one-word memory region �rst, since it's the simplest. The pointer variablemem endholds the highest-numbered location of mem that has ever been used. The free locations of mem that occurbetween hi mem min and mem end , inclusive, are of type two halves , and we write info (p) and link (p) forthe lh and rh �elds of mem [p] when it is of this type. The single-word free locations form a linked listavail ; link (avail); link (link (avail)); : : :terminated by null .de�ne link (#) � mem [#]:hh :rh f the link �eld of a memory word gde�ne info (#) � mem [#]:hh :lh f the info �eld of a memory word ghGlobal variables 13 i +�avail : pointer ; f head of the list of available one-word nodes gmem end : pointer ; f the last one-word node used in mem g119. If memory is exhausted, it might mean that the user has forgotten a right brace. We will de�ne someprocedures later that try to help pinpoint the trouble.hDeclare the procedure called show token list 292 ihDeclare the procedure called runaway 306 i120. The function get avail returns a pointer to a new one-word node whose link �eld is null. However,TEX will halt if there is no more room left.If the available-space list is empty, i.e., if avail = null , we try �rst to increase mem end . If that cannotbe done, i.e., if mem end = mem max , we try to decrease hi mem min . If that cannot be done, i.e., ifhi mem min = lo mem max + 1, we have to quit.function get avail : pointer ; f single-word node allocation gvar p: pointer ; f the new node being got gbegin p avail ; f get top location in the avail stack gif p 6= null then avail link (avail) f and pop it o� gelse if mem end < mem max then f or go into virgin territory gbegin incr (mem end); p mem end ;endelse begin decr (hi mem min); p hi mem min ;if hi mem min � lo mem max thenbegin runaway ; f if memory is exhausted, display possible runaway text goverow ("main memory size";mem max +1�mem min); f quit; all one-word nodes are busy gend;end;link (p) null ; f provide an oft-desired initialization of the new node gstat incr (dyn used); tats fmaintain statistics gget avail p;end;121. Conversely, a one-word node is recycled by calling free avail . This routine is part of TEX's \innerloop," so we want it to be fast.de�ne free avail (#) � f single-word node liberation gbegin link (#) avail ; avail #;stat decr (dyn used); tatsend

50 PART 9: DYNAMIC MEMORY ALLOCATION TEXGPC x122122. There's also a fast get avail routine, which saves the procedure-call overhead at the expense of extraprogramming. This routine is used in the places that would otherwise account for the most calls of get avail .de�ne fast get avail (#) �begin # avail ; f avoid get avail if possible, to save time gif # = null then # get availelse begin avail link (#); link (#) null ;stat incr (dyn used); tatsend;end123. The procedure ush list (p) frees an entire linked list of one-word nodes that starts at position p.procedure ush list (p : pointer); fmakes list of single-word nodes available gvar q; r: pointer ; f list traversers gbegin if p 6= null thenbegin r p;repeat q r; r link (r);stat decr (dyn used); tatsuntil r = null ; f now q is the last node on the list glink (q) avail ; avail p;end;end;124. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doubly-linked circular list of empty nodes, pointed to by the roving pointer rover .Each empty node has size 2 or more; the �rst word contains the special value max halfword in its link�eld and the size in its info �eld; the second word contains the two pointers for double linking.Each nonempty node also has size 2 or more. Its �rst word is of type two halves, and its link �eld is neverequal to max halfword . Otherwise there is complete exibility with respect to the contents of its other �eldsand its other words.(We require mem max < max halfword because terrible things can happen when max halfword appearsin the link �eld of a nonempty node.)de�ne empty ag � max halfword f the link of an empty variable-size node gde�ne is empty (#) � (link (#) = empty ag) f tests for empty node gde�ne node size � info f the size �eld in empty variable-size nodes gde�ne llink (#) � info (#+ 1) f left link in doubly-linked list of empty nodes gde�ne rlink (#) � link (#+ 1) f right link in doubly-linked list of empty nodes ghGlobal variables 13 i +�rover : pointer ; f points to some node in the list of empties g

x125 TEXGPC PART 9: DYNAMIC MEMORY ALLOCATION 51125. A call to get node with argument s returns a pointer to a new node of size s, which must be 2 ormore. The link �eld of the �rst word of this new node is set to null. An overow stop occurs if no suitablespace exists.If get node is called with s = 230, it simply merges adjacent free areas and returns the value max halfword .function get node (s : integer): pointer ; f variable-size node allocation glabel found ; exit ; restart ;var p: pointer ; f the node currently under inspection gq: pointer ; f the node physically after node p gr: integer ; f the newly allocated node, or a candidate for this honor gt: integer ; f temporary register gbegin restart : p rover ; f start at some free node in the ring grepeat hTry to allocate within node p and its physical successors, and goto found if allocation waspossible 127 i;p rlink (p); fmove to the next node in the ring guntil p = rover ; f repeat until the whole list has been traversed gif s = �10000000000 thenbegin get node max halfword ; return;end;if lo mem max + 2 < hi mem min thenif lo mem max + 2 � mem bot +max halfword thenhGrow more variable-size memory and goto restart 126 i;overow ("main memory size";mem max + 1�mem min); f sorry, nothing satisfactory is left gfound : link (r) null ; f this node is now nonempty gstat var used var used + s; fmaintain usage statistics gtatsget node r;exit : end;126. The lower part of mem grows by 1000 words at a time, unless we are very close to going under. Whenit grows, we simply link a new node into the available-space list. This method of controlled growth helps tokeep the mem usage consecutive when TEX is implemented on \virtual memory" systems.hGrow more variable-size memory and goto restart 126 i �begin if hi mem min � lo mem max � 1998 then t lo mem max + 1000else t lo mem max +1+ (hi mem min � lo mem max) div 2; f lo mem max +2 � t < hi mem min gp llink (rover); q lo mem max ; rlink (p) q; llink (rover) q;if t > mem bot +max halfword then t mem bot +max halfword ;rlink (q) rover ; llink (q) p; link (q) empty ag ; node size (q) t� lo mem max ;lo mem max t; link (lo mem max) null ; info (lo mem max) null ; rover q; goto restart ;endThis code is used in section 125.

52 PART 9: DYNAMIC MEMORY ALLOCATION TEXGPC x127127. Empirical tests show that the routine in this section performs a node-merging operation about 0.75times per allocation, on the average, after which it �nds that r > p+ 1 about 95% of the time.hTry to allocate within node p and its physical successors, and goto found if allocation was possible 127 i �q p+ node size (p); f �nd the physical successor gwhile is empty (q) do fmerge node p with node q gbegin t rlink (q);if q = rover then rover t;llink (t) llink (q); rlink (llink (q)) t;q q + node size (q);end;r q � s;if r > p+ 1 then hAllocate from the top of node p and goto found 128 i;if r = p thenif rlink (p) 6= p then hAllocate entire node p and goto found 129 i;node size (p) q � p f reset the size in case it grew gThis code is used in section 125.128. hAllocate from the top of node p and goto found 128 i �begin node size (p) r � p; f store the remaining size grover p; f start searching here next time ggoto found ;endThis code is used in section 127.129. Here we delete node p from the ring, and let rover rove around.hAllocate entire node p and goto found 129 i �begin rover rlink (p); t llink (p); llink (rover) t; rlink (t) rover ; goto found ;endThis code is used in section 127.130. Conversely, when some variable-size node p of size s is no longer needed, the operation free node (p; s)will make its words available, by inserting p as a new empty node just before where rover now points.procedure free node (p : pointer ; s : halfword); f variable-size node liberation gvar q: pointer ; f llink (rover) gbegin node size (p) s; link (p) empty ag ; q llink (rover); llink (p) q; rlink (p) rover ;f set both links gllink (rover) p; rlink (q) p; f insert p into the ring gstat var used var used � s; tats fmaintain statistics gend;

x131 TEXGPC PART 9: DYNAMIC MEMORY ALLOCATION 53131. Just before INITEX writes out the memory, it sorts the doubly linked available space list. The list isprobably very short at such times, so a simple insertion sort is used. The smallest available location will bepointed to by rover , the next-smallest by rlink (rover), etc.init procedure sort avail ; f sorts the available variable-size nodes by location gvar p; q; r: pointer ; f indices into mem gold rover : pointer ; f initial rover setting gbegin p get node (�10000000000); fmerge adjacent free areas gp rlink (rover); rlink (rover) max halfword ; old rover rover ;while p 6= old rover do h Sort p into the list starting at rover and advance p to rlink (p) 132 i;p rover ;while rlink (p) 6= max halfword dobegin llink (rlink (p)) p; p rlink (p);end;rlink (p) rover ; llink (rover) p;end;tini132. The following while loop is guaranteed to terminate, since the list that starts at rover ends withmax halfword during the sorting procedure.h Sort p into the list starting at rover and advance p to rlink (p) 132 i �if p < rover thenbegin q p; p rlink (q); rlink (q) rover ; rover q;endelse begin q rover ;while rlink (q) < p do q rlink (q);r rlink (p); rlink (p) rlink (q); rlink (q) p; p r;endThis code is used in section 131.

54 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXGPC x133133. Data structures for boxes and their friends. From the computer's standpoint, TEX's chiefmission is to create horizontal and vertical lists. We shall now investigate how the elements of these lists arerepresented internally as nodes in the dynamic memory.A horizontal or vertical list is linked together by link �elds in the �rst word of each node. Individualnodes represent boxes, glue, penalties, or special things like discretionary hyphens; because of this variety,some nodes are longer than others, and we must distinguish di�erent kinds of nodes. We do this by puttinga `type ' �eld in the �rst word, together with the link and an optional `subtype '.de�ne type (#) � mem [#]:hh :b0 f identi�es what kind of node this is gde�ne subtype (#) � mem [#]:hh :b1 f secondary identi�cation in some cases g134. A char node , which represents a single character, is the most important kind of node because itaccounts for the vast majority of all boxes. Special precautions are therefore taken to ensure that a char nodedoes not take up much memory space. Every such node is one word long, and in fact it is identi�able by thisproperty, since other kinds of nodes have at least two words, and they appear in mem locations less thanhi mem min . This makes it possible to omit the type �eld in a char node , leaving us room for two bytesthat identify a font and a character within that font.Note that the format of a char node allows for up to 256 di�erent fonts and up to 256 characters per font;but most implementations will probably limit the total number of fonts to fewer than 75 per job, and mostfonts will stick to characters whose codes are less than 128 (since higher codes are more di�cult to accesson most keyboards).Extensions of TEX intended for oriental languages will need even more than 256� 256 possible characters,when we consider di�erent sizes and styles of type. It is suggested that Chinese and Japanese fonts be handledby representing such characters in two consecutive char node entries: The �rst of these has font = font base ,and its link points to the second; the second identi�es the font and the character dimensions. The savingfeature about oriental characters is that most of them have the same box dimensions. The character �eld ofthe �rst char node is a \charext" that distinguishes between graphic symbols whose dimensions are identicalfor typesetting purposes. (See the METAFONT manual.) Such an extension of TEX would not be di�cult;further details are left to the reader.In order to make sure that the character code �ts in a quarterword, TEX adds the quantitymin quarterwordto the actual code.Character nodes appear only in horizontal lists, never in vertical lists.de�ne is char node (#) � (# � hi mem min) f does the argument point to a char node? gde�ne font � type f the font code in a char node gde�ne character � subtype f the character code in a char node g

x135 TEXGPC PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 55135. An hlist node stands for a box that was made from a horizontal list. Each hlist node is seven wordslong, and contains the following �elds (in addition to the mandatory type and link , which we shall notmention explicitly when discussing the other node types): The height and width and depth are scaledintegers denoting the dimensions of the box. There is also a shift amount �eld, a scaled integer indicatinghow much this box should be lowered (if it appears in a horizontal list), or how much it should be moved tothe right (if it appears in a vertical list). There is a list ptr �eld, which points to the beginning of the listfrom which this box was fabricated; if list ptr is null , the box is empty. Finally, there are three �elds thatrepresent the setting of the glue: glue set (p) is a word of type glue ratio that represents the proportionalityconstant for glue setting; glue sign (p) is stretching or shrinking or normal depending on whether or not theglue should stretch or shrink or remain rigid; and glue order (p) speci�es the order of in�nity to which gluesetting applies (normal , �l , �ll , or �lll). The subtype �eld is not used.de�ne hlist node = 0 f type of hlist nodes gde�ne box node size = 7 f number of words to allocate for a box node gde�ne width o�set = 1 f position of width �eld in a box node gde�ne depth o�set = 2 f position of depth �eld in a box node gde�ne height o�set = 3 f position of height �eld in a box node gde�ne width (#) � mem [#+ width o�set]:sc fwidth of the box, in sp gde�ne depth (#) � mem [#+ depth o�set]:sc f depth of the box, in sp gde�ne height (#) � mem [#+ height o�set]:sc f height of the box, in sp gde�ne shift amount (#) � mem [#+ 4]:sc f repositioning distance, in sp gde�ne list o�set = 5 f position of list ptr �eld in a box node gde�ne list ptr (#) � link (#+ list o�set) f beginning of the list inside the box gde�ne glue order (#) � subtype (#+ list o�set) f applicable order of in�nity gde�ne glue sign (#) � type (#+ list o�set) f stretching or shrinking gde�ne normal = 0 f the most common case when several cases are named gde�ne stretching = 1 f glue setting applies to the stretch components gde�ne shrinking = 2 f glue setting applies to the shrink components gde�ne glue o�set = 6 f position of glue set in a box node gde�ne glue set (#) � mem [#+ glue o�set]:gr f a word of type glue ratio for glue setting g136. The new null box function returns a pointer to an hlist node in which all sub�elds have the valuescorresponding to `\hbox{}'. The subtype �eld is set to min quarterword , since that's the desired span countvalue if this hlist node is changed to an unset node .function new null box : pointer ; f creates a new box node gvar p: pointer ; f the new node gbegin p get node (box node size); type (p) hlist node ; subtype (p) min quarterword ;width (p) 0; depth (p) 0; height (p) 0; shift amount (p) 0; list ptr (p) null ;glue sign (p) normal ; glue order (p) normal ; set glue ratio zero (glue set (p)); new null box p;end;137. A vlist node is like an hlist node in all respects except that it contains a vertical list.de�ne vlist node = 1 f type of vlist nodes g138. A rule node stands for a solid black rectangle; it has width , depth , and height �elds just as in anhlist node . However, if any of these dimensions is �230, the actual value will be determined by running therule up to the boundary of the innermost enclosing box. This is called a \running dimension." The width isnever running in an hlist; the height and depth are never running in a vlist.de�ne rule node = 2 f type of rule nodes gde�ne rule node size = 4 f number of words to allocate for a rule node gde�ne null ag � ��10000000000 f�230, signi�es a missing item gde�ne is running (#) � (# = null ag) f tests for a running dimension g

56 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXGPC x139139. A new rule node is delivered by the new rule function. It makes all the dimensions \running," so youhave to change the ones that are not allowed to run.function new rule : pointer ;var p: pointer ; f the new node gbegin p get node (rule node size); type (p) rule node ; subtype (p) 0; f the subtype is not used gwidth (p) null ag ; depth (p) null ag ; height (p) null ag ; new rule p;end;140. Insertions are represented by ins node records, where the subtype indicates the corresponding boxnumber. For example, `\insert 250' leads to an ins node whose subtype is 250 + min quarterword . Theheight �eld of an ins node is slightly misnamed; it actually holds the natural height plus depth of the verticallist being inserted. The depth �eld holds the split max depth to be used in case this insertion is split, andthe split top ptr points to the corresponding split top skip . The oat cost �eld holds the oating penaltythat will be used if this insertion oats to a subsequent page after a split insertion of the same class. Thereis one more �eld, the ins ptr , which points to the beginning of the vlist for the insertion.de�ne ins node = 3 f type of insertion nodes gde�ne ins node size = 5 f number of words to allocate for an insertion gde�ne oat cost (#) � mem [#+ 1]:int f the oating penalty to be used gde�ne ins ptr (#) � info (#+ 4) f the vertical list to be inserted gde�ne split top ptr (#) � link (#+ 4) f the split top skip to be used g141. A mark node has a mark ptr �eld that points to the reference count of a token list that contains theuser's \mark text. This �eld occupies a full word instead of a halfword, because there's nothing to put inthe other halfword; it is easier in Pascal to use the full word than to risk leaving garbage in the unused half.de�ne mark node = 4 f type of a mark node gde�ne small node size = 2 f number of words to allocate for most node types gde�ne mark ptr (#) � mem [#+ 1]:int f head of the token list for a mark g142. An adjust node , which occurs only in horizontal lists, speci�es material that will be moved out intothe surrounding vertical list; i.e., it is used to implement TEX's `\vadjust' operation. The adjust ptr �eldpoints to the vlist containing this material.de�ne adjust node = 5 f type of an adjust node gde�ne adjust ptr � mark ptr f vertical list to be moved out of horizontal list g143. A ligature node , which occurs only in horizontal lists, speci�es a character that was fabricated fromthe interaction of two or more actual characters. The second word of the node, which is called the lig charword, contains font and character �elds just as in a char node . The characters that generated the ligaturehave not been forgotten, since they are needed for diagnostic messages and for hyphenation; the lig ptr �eldpoints to a linked list of character nodes for all original characters that have been deleted. (This list mightbe empty if the characters that generated the ligature were retained in other nodes.)The subtype �eld is 0, plus 2 and/or 1 if the original source of the ligature included implicit left and/orright boundaries.de�ne ligature node = 6 f type of a ligature node gde�ne lig char (#) � #+ 1 f the word where the ligature is to be found gde�ne lig ptr (#) � link (lig char (#)) f the list of characters g

x144 TEXGPC PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 57144. The new ligature function creates a ligature node having given contents of the font , character , andlig ptr �elds. We also have a new lig item function, which returns a two-word node having a given character�eld. Such nodes are used for temporary processing as ligatures are being created.function new ligature (f; c : quarterword ; q : pointer): pointer ;var p: pointer ; f the new node gbegin p get node (small node size); type (p) ligature node ; font (lig char (p)) f ;character (lig char (p)) c; lig ptr (p) q; subtype (p) 0; new ligature p;end;function new lig item (c : quarterword): pointer ;var p: pointer ; f the new node gbegin p get node (small node size); character (p) c; lig ptr (p) null ; new lig item p;end;145. A disc node , which occurs only in horizontal lists, speci�es a \discretionary" line break. If such abreak occurs at node p, the text that starts at pre break (p) will precede the break, the text that starts atpost break (p) will follow the break, and text that appears in the next replace count (p) nodes will be ignored.For example, an ordinary discretionary hyphen, indicated by `\-', yields a disc node with pre break pointingto a char node containing a hyphen, post break = null , and replace count = 0. All three of the discretionarytexts must be lists that consist entirely of character, kern, box, rule, and ligature nodes.If pre break (p) = null , the ex hyphen penalty will be charged for this break. Otherwise the hyphen penaltywill be charged. The texts will actually be substituted into the list by the line-breaking algorithm if it decidesto make the break, and the discretionary node will disappear at that time; thus, the output routine sees onlydiscretionaries that were not chosen.de�ne disc node = 7 f type of a discretionary node gde�ne replace count � subtype f how many subsequent nodes to replace gde�ne pre break � llink f text that precedes a discretionary break gde�ne post break � rlink f text that follows a discretionary break gfunction new disc : pointer ; f creates an empty disc node gvar p: pointer ; f the new node gbegin p get node (small node size); type (p) disc node ; replace count (p) 0; pre break (p) null ;post break (p) null ; new disc p;end;146. A whatsit node is a wild card reserved for extensions to TEX. The subtype �eld in its �rst word sayswhat `whatsit ' it is, and implicitly determines the node size (which must be 2 or more) and the format of theremaining words. When a whatsit node is encountered in a list, special actions are invoked; knowledgeablepeople who are careful not to mess up the rest of TEX are able to make TEX do new things by adding codeat the end of the program. For example, there might be a `TEXnicolor' extension to specify di�erent colorsof ink, and the whatsit node might contain the desired parameters.The present implementation of TEX treats the features associated with `\write' and `\special' as if theywere extensions, in order to illustrate how such routines might be coded. We shall defer further discussionof extensions until the end of this program.de�ne whatsit node = 8 f type of special extension nodes g

58 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXGPC x147147. A math node , which occurs only in horizontal lists, appears before and after mathematical formulas.The subtype �eld is before before the formula and after after it. There is a width �eld, which represents theamount of surrounding space inserted by \mathsurround.de�ne math node = 9 f type of a math node gde�ne before = 0 f subtype for math node that introduces a formula gde�ne after = 1 f subtype for math node that winds up a formula gfunction new math (w : scaled ; s : small number): pointer ;var p: pointer ; f the new node gbegin p get node (small node size); type (p) math node ; subtype (p) s; width (p) w;new math p;end;148. TEX makes use of the fact that hlist node , vlist node , rule node , ins node , mark node , adjust node ,ligature node , disc node , whatsit node , and math node are at the low end of the type codes, by permittinga break at glue in a list if and only if the type of the previous node is less than math node . Furthermore, anode is discarded after a break if its type is math node or more.de�ne precedes break (#) � (type (#) < math node)de�ne non discardable (#) � (type (#) < math node)149. A glue node represents glue in a list. However, it is really only a pointer to a separate gluespeci�cation, since TEX makes use of the fact that many essentially identical nodes of glue are usuallypresent. If p points to a glue node , glue ptr (p) points to another packet of words that specify the stretchand shrink components, etc.Glue nodes also serve to represent leaders; the subtype is used to distinguish between ordinary glue (whichis called normal) and the three kinds of leaders (which are called a leaders , c leaders , and x leaders). Theleader ptr �eld points to a rule node or to a box node containing the leaders; it is set to null in ordinaryglue nodes.Many kinds of glue are computed from TEX's \skip" parameters, and it is helpful to know which parameterhas led to a particular glue node. Therefore the subtype is set to indicate the source of glue, whenever itoriginated as a parameter. We will be de�ning symbolic names for the parameter numbers later (e.g.,line skip code = 0, baseline skip code = 1, etc.); it su�ces for now to say that the subtype of parametric gluewill be the same as the parameter number, plus one.In math formulas there are two more possibilities for the subtype in a glue node: mu glue denotes an\mskip (where the units are scaled mu instead of scaled pt); and cond math glue denotes the `\nonscript'feature that cancels the glue node immediately following if it appears in a subscript.de�ne glue node = 10 f type of node that points to a glue speci�cation gde�ne cond math glue = 98 f special subtype to suppress glue in the next node gde�ne mu glue = 99 f subtype for math glue gde�ne a leaders = 100 f subtype for aligned leaders gde�ne c leaders = 101 f subtype for centered leaders gde�ne x leaders = 102 f subtype for expanded leaders gde�ne glue ptr � llink f pointer to a glue speci�cation gde�ne leader ptr � rlink f pointer to box or rule node for leaders g

x150 TEXGPC PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 59150. A glue speci�cation has a halfword reference count in its �rst word, representing null plus the numberof glue nodes that point to it (less one). Note that the reference count appears in the same position as thelink �eld in list nodes; this is the �eld that is initialized to null when a node is allocated, and it is also the�eld that is agged by empty ag in empty nodes.Glue speci�cations also contain three scaled �elds, for the width , stretch , and shrink dimensions. Finally,there are two one-byte �elds called stretch order and shrink order ; these contain the orders of in�nity(normal , �l , �ll , or �lll) corresponding to the stretch and shrink values.de�ne glue spec size = 4 f number of words to allocate for a glue speci�cation gde�ne glue ref count (#) � link (#) f reference count of a glue speci�cation gde�ne stretch (#) � mem [#+ 2]:sc f the stretchability of this glob of glue gde�ne shrink (#) � mem [#+ 3]:sc f the shrinkability of this glob of glue gde�ne stretch order � type f order of in�nity for stretching gde�ne shrink order � subtype f order of in�nity for shrinking gde�ne �l = 1 f �rst-order in�nity gde�ne �ll = 2 f second-order in�nity gde�ne �lll = 3 f third-order in�nity ghTypes in the outer block 18 i +�glue ord = normal : : �lll ; f in�nity to the 0, 1, 2, or 3 power g151. Here is a function that returns a pointer to a copy of a glue spec. The reference count in the copy isnull , because there is assumed to be exactly one reference to the new speci�cation.function new spec(p : pointer): pointer ; f duplicates a glue speci�cation gvar q: pointer ; f the new spec gbegin q get node (glue spec size);mem [q] mem [p]; glue ref count (q) null ;width (q) width (p); stretch (q) stretch (p); shrink (q) shrink (p); new spec q;end;152. And here's a function that creates a glue node for a given parameter identi�ed by its code number;for example, new param glue (line skip code) returns a pointer to a glue node for the current \lineskip.function new param glue (n : small number): pointer ;var p: pointer ; f the new node gq: pointer ; f the glue speci�cation gbegin p get node (small node size); type (p) glue node ; subtype (p) n+ 1; leader ptr (p) null ;q hCurrent mem equivalent of glue parameter number n 224 i; glue ptr (p) q;incr (glue ref count (q)); new param glue p;end;153. Glue nodes that are more or less anonymous are created by new glue , whose argument points to aglue speci�cation.function new glue (q : pointer): pointer ;var p: pointer ; f the new node gbegin p get node (small node size); type (p) glue node ; subtype (p) normal ;leader ptr (p) null ; glue ptr (p) q; incr (glue ref count (q)); new glue p;end;

60 PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS TEXGPC x154154. Still another subroutine is needed: This one is sort of a combination of new param glue and new glue .It creates a glue node for one of the current glue parameters, but it makes a fresh copy of the glue speci�cation,since that speci�cation will probably be subject to change, while the parameter will stay put. The globalvariable temp ptr is set to the address of the new spec.function new skip param (n : small number): pointer ;var p: pointer ; f the new node gbegin temp ptr new spec(hCurrent mem equivalent of glue parameter number n 224 i);p new glue (temp ptr); glue ref count (temp ptr) null ; subtype (p) n+ 1; new skip param p;end;155. A kern node has a width �eld to specify a (normally negative) amount of spacing. This spacingcorrection appears in horizontal lists between letters like A and V when the font designer said that it looksbetter to move them closer together or further apart. A kern node can also appear in a vertical list, whenits `width ' denotes additional spacing in the vertical direction. The subtype is either normal (for kernsinserted from font information or math mode calculations) or explicit (for kerns inserted from \kern and\/ commands) or acc kern (for kerns inserted from non-math accents) or mu glue (for kerns inserted from\mkern speci�cations in math formulas).de�ne kern node = 11 f type of a kern node gde�ne explicit = 1 f subtype of kern nodes from \kern and \/ gde�ne acc kern = 2 f subtype of kern nodes from accents g156. The new kern function creates a kern node having a given width.function new kern (w : scaled): pointer ;var p: pointer ; f the new node gbegin p get node (small node size); type (p) kern node ; subtype (p) normal ; width (p) w;new kern p;end;157. A penalty node speci�es the penalty associated with line or page breaking, in its penalty �eld. This�eld is a fullword integer, but the full range of integer values is not used: Any penalty � 10000 is treatedas in�nity, and no break will be allowed for such high values. Similarly, any penalty � �10000 is treated asnegative in�nity, and a break will be forced.de�ne penalty node = 12 f type of a penalty node gde�ne inf penalty = inf bad f \in�nite" penalty value gde�ne eject penalty = �inf penalty f \negatively in�nite" penalty value gde�ne penalty (#) � mem [#+ 1]:int f the added cost of breaking a list here g158. Anyone who has been reading the last few sections of the program will be able to guess what comesnext.function new penalty (m : integer): pointer ;var p: pointer ; f the new node gbegin p get node (small node size); type (p) penalty node ; subtype (p) 0;f the subtype is not used gpenalty (p) m; new penalty p;end;

x159 TEXGPC PART 10: DATA STRUCTURES FOR BOXES AND THEIR FRIENDS 61159. You might think that we have introduced enough node types by now. Well, almost, but there isone more: An unset node has nearly the same format as an hlist node or vlist node ; it is used for entriesin \halign or \valign that are not yet in their �nal form, since the box dimensions are their \natural"sizes before any glue adjustment has been made. The glue set word is not present; instead, we have aglue stretch �eld, which contains the total stretch of order glue order that is present in the hlist or vlistbeing boxed. Similarly, the shift amount �eld is replaced by a glue shrink �eld, containing the total shrinkof order glue sign that is present. The subtype �eld is called span count ; an unset box typically containsthe data for qo (span count) + 1 columns. Unset nodes will be changed to box nodes when alignment iscompleted.de�ne unset node = 13 f type for an unset node gde�ne glue stretch (#) � mem [#+ glue o�set]:sc f total stretch in an unset node gde�ne glue shrink � shift amount f total shrink in an unset node gde�ne span count � subtype f indicates the number of spanned columns g160. In fact, there are still more types coming. When we get to math formula processing we will see thata style node has type = 14; and a number of larger type codes will also be de�ned, for use in math modeonly.161. Warning: If any changes are made to these data structure layouts, such as changing any of the nodesizes or even reordering the words of nodes, the copy node list procedure and the memory initialization codebelow may have to be changed. Such potentially dangerous parts of the program are listed in the indexunder `data structure assumptions'. However, other references to the nodes are made symbolically in termsof the WEB macro de�nitions above, so that format changes will leave TEX's other algorithms intact.

62 PART 11: MEMORY LAYOUT TEXGPC x162162. Memory layout. Some areas of mem are dedicated to �xed usage, since static allocation ismore e�cient than dynamic allocation when we can get away with it. For example, locations mem botto mem bot + 3 are always used to store the speci�cation for glue that is `0pt plus 0pt minus 0pt'. Thefollowing macro de�nitions accomplish the static allocation by giving symbolic names to the �xed positions.Static variable-size nodes appear in locations mem bot through lo mem stat max , and static single-wordnodes appear in locations hi mem stat min through mem top , inclusive. It is harmless to let lig trick andgarbage share the same location of mem .de�ne zero glue � mem bot f speci�cation for 0pt plus 0pt minus 0pt gde�ne �l glue � zero glue + glue spec size f 0pt plus 1fil minus 0pt gde�ne �ll glue � �l glue + glue spec size f 0pt plus 1fill minus 0ptgde�ne ss glue � �ll glue + glue spec size f 0pt plus 1fil minus 1filgde�ne �l neg glue � ss glue + glue spec size f 0pt plus -1fil minus 0ptgde�ne lo mem stat max � �l neg glue + glue spec size � 1f largest statically allocated word in the variable-size mem gde�ne page ins head � mem top f list of insertion data for current page gde�ne contrib head � mem top � 1 f vlist of items not yet on current page gde�ne page head � mem top � 2 f vlist for current page gde�ne temp head � mem top � 3 f head of a temporary list of some kind gde�ne hold head � mem top � 4 f head of a temporary list of another kind gde�ne adjust head � mem top � 5 f head of adjustment list returned by hpack gde�ne active � mem top � 7 f head of active list in line break , needs two words gde�ne align head � mem top � 8 f head of preamble list for alignments gde�ne end span � mem top � 9 f tail of spanned-width lists gde�ne omit template � mem top � 10 f a constant token list gde�ne null list � mem top � 11 f permanently empty list gde�ne lig trick � mem top � 12 f a ligature masquerading as a char node gde�ne garbage � mem top � 12 f used for scrap information gde�ne backup head � mem top � 13 f head of token list built by scan keyword gde�ne hi mem stat min � mem top � 13 f smallest statically allocated word in the one-word mem gde�ne hi mem stat usage = 14 f the number of one-word nodes always present g163. The following code gets mem o� to a good start, when TEX is initializing itself the slow way.hLocal variables for initialization 19 i +�k: integer ; f index into mem , eqtb , etc. g

x164 TEXGPC PART 11: MEMORY LAYOUT 63164. h Initialize table entries (done by INITEX only) 164 i �for k mem bot + 1 to lo mem stat max do mem [k]:sc 0; f all glue dimensions are zeroed gk mem bot ; while k � lo mem stat max do f set �rst words of glue speci�cations gbegin glue ref count (k) null + 1; stretch order (k) normal ; shrink order (k) normal ;k k + glue spec size ;end;stretch (�l glue) unity ; stretch order (�l glue) �l ;stretch (�ll glue) unity ; stretch order (�ll glue) �ll ;stretch (ss glue) unity ; stretch order (ss glue) �l ;shrink (ss glue) unity ; shrink order (ss glue) �l ;stretch (�l neg glue) �unity ; stretch order (�l neg glue) �l ;rover lo mem stat max + 1; link (rover) empty ag ; f now initialize the dynamic memory gnode size (rover) 1000; fwhich is a 1000-word available node gllink (rover) rover ; rlink (rover) rover ;lo mem max rover + 1000; link (lo mem max) null ; info (lo mem max) null ;for k hi mem stat min to mem top do mem [k] mem [lo mem max]; f clear list heads gh Initialize the special list heads and constant nodes 790 i;avail null ; mem end mem top ; hi mem min hi mem stat min ;f initialize the one-word memory gvar used lo mem stat max + 1�mem bot ; dyn used hi mem stat usage ; f initialize statistics gSee also sections 222, 228, 232, 240, 250, 258, 552, 946, 951, 1216, 1301, and 1369.This code is used in section 8.165. If TEX is extended improperly, the mem array might get screwed up. For example, some pointersmight be wrong, or some \dead" nodes might not have been freed when the last reference to them disappeared.Procedures check mem and search mem are available to help diagnose such problems. These proceduresmake use of two arrays called free and was free that are present only if TEX's debugging routines have beenincluded. (You may want to decrease the size of mem while you are debugging.)hGlobal variables 13 i +�debug free : packed array [mem min : : mem max] of boolean ; f free cells gwas free : packed array [mem min : : mem max] of boolean ; f previously free cells gwas mem end ;was lo max ;was hi min : pointer ; f previous mem end , lo mem max , and hi mem min gpanicking : boolean ; f do we want to check memory constantly? ggubed166. h Set initial values of key variables 21 i +�debug was mem end mem min ; f indicate that everything was previously free gwas lo max mem min ; was hi min mem max ; panicking false ;gubed

64 PART 11: MEMORY LAYOUT TEXGPC x167167. Procedure check mem makes sure that the available space lists of mem are well formed, and itoptionally prints out all locations that are reserved now but were free the last time this procedure wascalled.debug procedure check mem (print locs : boolean);label done1 ; done2 ; f loop exits gvar p; q: pointer ; f current locations of interest in mem gclobbered : boolean ; f is something amiss? gbegin for p mem min to lo mem max do free [p] false ; f you can probably do this faster gfor p hi mem min to mem end do free [p] false ; f ditto ghCheck single-word avail list 168 i;hCheck variable-size avail list 169 i;hCheck ags of unavailable nodes 170 i;if print locs then hPrint newly busy locations 171 i;for p mem min to lo mem max do was free [p] free [p];for p hi mem min to mem end do was free [p] free [p]; fwas free free might be faster gwas mem end mem end ; was lo max lo mem max ; was hi min hi mem min ;end;gubed168. hCheck single-word avail list 168 i �p avail ; q null ; clobbered false ;while p 6= null dobegin if (p > mem end) _ (p < hi mem min) then clobbered trueelse if free [p] then clobbered true ;if clobbered thenbegin print nl ("AVAIL list clobbered at "); print int (q); goto done1 ;end;free [p] true ; q p; p link (q);end;done1 :This code is used in section 167.169. hCheck variable-size avail list 169 i �p rover ; q null ; clobbered false ;repeat if (p � lo mem max) _ (p < mem min) then clobbered trueelse if (rlink (p) � lo mem max) _ (rlink (p) < mem min) then clobbered trueelse if :(is empty (p)) _ (node size (p) < 2) _ (p+ node size (p) > lo mem max) _(llink (rlink (p)) 6= p) then clobbered true ;if clobbered thenbegin print nl ("Double-AVAIL list clobbered at "); print int (q); goto done2 ;end;for q p to p+ node size (p)� 1 do fmark all locations free gbegin if free [q] thenbegin print nl ("Doubly free location at "); print int (q); goto done2 ;end;free [q] true ;end;q p; p rlink (p);until p = rover ;done2 :This code is used in section 167.

x170 TEXGPC PART 11: MEMORY LAYOUT 65170. hCheck ags of unavailable nodes 170 i �p mem min ;while p � lo mem max do f node p should not be empty gbegin if is empty (p) thenbegin print nl ("Bad flag at "); print int (p);end;while (p � lo mem max) ^ :free [p] do incr (p);while (p � lo mem max) ^ free [p] do incr (p);endThis code is used in section 167.171. hPrint newly busy locations 171 i �begin print nl ("New busy locs:");for p mem min to lo mem max doif :free [p] ^ ((p > was lo max) _ was free [p]) thenbegin print char (" "); print int (p);end;for p hi mem min to mem end doif :free [p] ^ ((p < was hi min) _ (p > was mem end) _ was free [p]) thenbegin print char (" "); print int (p);end;endThis code is used in section 167.172. The search mem procedure attempts to answer the question \Who points to node p?" In doing so, itfetches link and info �elds of mem that might not be of type two halves . Strictly speaking, this is unde�nedin Pascal, and it can lead to \false drops" (words that seem to point to p purely by coincidence). But fordebugging purposes, we want to rule out the places that do not point to p, so a few false drops are tolerable.debug procedure search mem (p : pointer); f look for pointers to p gvar q: integer ; f current position being searched gbegin for q mem min to lo mem max dobegin if link (q) = p thenbegin print nl ("LINK("); print int (q); print char (")");end;if info (q) = p thenbegin print nl ("INFO("); print int (q); print char (")");end;end;for q hi mem min to mem end dobegin if link (q) = p thenbegin print nl ("LINK("); print int (q); print char (")");end;if info (q) = p thenbegin print nl ("INFO("); print int (q); print char (")");end;end;h Search eqtb for equivalents equal to p 255 i;h Search save stack for equivalents that point to p 285 i;h Search hyph list for pointers to p 933 i;end;gubed

66 PART 12: DISPLAYING BOXES TEXGPC x173173. Displaying boxes. We can reinforce our knowledge of the data structures just introduced byconsidering two procedures that display a list in symbolic form. The �rst of these, called short display , isused in \overfull box" messages to give the top-level description of a list. The other one, called show node list ,prints a detailed description of exactly what is in the data structure.The philosophy of short display is to ignore the �ne points about exactly what is inside boxes, except thatligatures and discretionary breaks are expanded. As a result, short display is a recursive procedure, but therecursion is never more than one level deep.A global variable font in short display keeps track of the font code that is assumed to be present whenshort display begins; deviations from this font will be printed.hGlobal variables 13 i +�font in short display : integer ; f an internal font number g174. Boxes, rules, inserts, whatsits, marks, and things in general that are sort of \complicated" areindicated only by printing `[]'.procedure short display (p : integer); f prints highlights of list p gvar n: integer ; f for replacement counts gbegin while p > mem min dobegin if is char node (p) thenbegin if p � mem end thenbegin if font (p) 6= font in short display thenbegin if (font (p) < font base) _ (font (p) > font max) then print char ("*")else hPrint the font identi�er for font (p) 267 i;print char (" "); font in short display font (p);end;print ASCII (qo (character (p)));end;endelse hPrint a short indication of the contents of node p 175 i;p link (p);end;end;175. hPrint a short indication of the contents of node p 175 i �case type (p) ofhlist node ; vlist node ; ins node ;whatsit node ;mark node ; adjust node ; unset node : print ("[]");rule node : print char ("|");glue node : if glue ptr (p) 6= zero glue then print char (" ");math node : print char ("$");ligature node : short display (lig ptr (p));disc node : begin short display (pre break (p)); short display (post break (p));n replace count (p);while n > 0 dobegin if link (p) 6= null then p link (p);decr (n);end;end;othercases do nothingendcasesThis code is used in section 174.

x176 TEXGPC PART 12: DISPLAYING BOXES 67176. The show node list routine requires some auxiliary subroutines: one to print a font-and-charactercombination, one to print a token list without its reference count, and one to print a rule dimension.procedure print font and char (p : integer); f prints char node data gbegin if p > mem end then print esc("CLOBBERED.")else begin if (font (p) < font base) _ (font (p) > font max) then print char ("*")else hPrint the font identi�er for font (p) 267 i;print char (" "); print ASCII (qo (character (p)));end;end;procedure print mark (p : integer); f prints token list data in braces gbegin print char ("{");if (p < hi mem min) _ (p > mem end) then print esc("CLOBBERED.")else show token list (link (p);null ;max print line � 10);print char ("}");end;procedure print rule dimen (d : scaled); f prints dimension in rule node gbegin if is running (d) then print char ("*")else print scaled (d);end;177. Then there is a subroutine that prints glue stretch and shrink, possibly followed by the name of �niteunits:procedure print glue (d : scaled ; order : integer ; s : str number); f prints a glue component gbegin print scaled (d);if (order < normal) _ (order > �lll) then print ("foul")else if order > normal thenbegin print ("fil");while order > �l dobegin print char ("l"); decr (order);end;endelse if s 6= 0 then print (s);end;178. The next subroutine prints a whole glue speci�cation.procedure print spec(p : integer ; s : str number); f prints a glue speci�cation gbegin if (p < mem min) _ (p � lo mem max) then print char ("*")else begin print scaled (width (p));if s 6= 0 then print (s);if stretch (p) 6= 0 thenbegin print (" plus "); print glue (stretch (p); stretch order (p); s);end;if shrink (p) 6= 0 thenbegin print (" minus "); print glue (shrink (p); shrink order (p); s);end;end;end;179. We also need to declare some procedures that appear later in this documentation.hDeclare procedures needed for displaying the elements of mlists 691 ihDeclare the procedure called print skip param 225 i

68 PART 12: DISPLAYING BOXES TEXGPC x180180. Since boxes can be inside of boxes, show node list is inherently recursive, up to a given maximumnumber of levels. The history of nesting is indicated by the current string, which will be printed at thebeginning of each line; the length of this string, namely cur length , is the depth of nesting.Recursive calls on show node list therefore use the following pattern:de�ne node list display (#) �begin append char ("."); show node list (#); ush char ;end f str room need not be checked; see show box below g181. A global variable called depth threshold is used to record the maximum depth of nesting for whichshow node list will show information. If we have depth threshold = 0, for example, only the top levelinformation will be given and no sublists will be traversed. Another global variable, called breadth max , tellsthe maximum number of items to show at each level; breadth max had better be positive, or you won't seeanything.hGlobal variables 13 i +�depth threshold : integer ; fmaximum nesting depth in box displays gbreadth max : integer ; fmaximum number of items shown at the same list level g182. Now we are ready for show node list itself. This procedure has been written to be \extra robust" inthe sense that it should not crash or get into a loop even if the data structures have been messed up by bugsin the rest of the program. You can safely call its parent routine show box (p) for arbitrary values of p whenyou are debugging TEX. However, in the presence of bad data, the procedure may fetch a memory wordwhose variant is di�erent from the way it was stored; for example, it might try to read mem [p]:hh whenmem [p] contains a scaled integer, if p is a pointer that has been clobbered or chosen at random.procedure show node list (p : integer); f prints a node list symbolically glabel exit ;var n: integer ; f the number of items already printed at this level gg: real ; f a glue ratio, as a oating point number gbegin if cur length > depth threshold thenbegin if p > null then print (" []"); f indicate that there's been some truncation greturn;end;n 0;while p > mem min dobegin print ln ; print current string ; f display the nesting history gif p > mem end then f pointer out of range gbegin print ("Bad link, display aborted."); return;end;incr (n);if n > breadth max then f time to stop gbegin print ("etc."); return;end;hDisplay node p 183 i;p link (p);end;exit : end;

x183 TEXGPC PART 12: DISPLAYING BOXES 69183. hDisplay node p 183 i �if is char node (p) then print font and char (p)else case type (p) ofhlist node ; vlist node ; unset node : hDisplay box p 184 i;rule node : hDisplay rule p 187 i;ins node : hDisplay insertion p 188 i;whatsit node : hDisplay the whatsit node p 1356 i;glue node : hDisplay glue p 189 i;kern node : hDisplay kern p 191 i;math node : hDisplay math node p 192 i;ligature node : hDisplay ligature p 193 i;penalty node : hDisplay penalty p 194 i;disc node : hDisplay discretionary p 195 i;mark node : hDisplay mark p 196 i;adjust node : hDisplay adjustment p 197 i;hCases of show node list that arise in mlists only 690 iothercases print ("Unknown node type!")endcasesThis code is used in section 182.184. hDisplay box p 184 i �begin if type (p) = hlist node then print esc("h")else if type (p) = vlist node then print esc("v")else print esc ("unset");print ("box("); print scaled (height (p)); print char ("+"); print scaled (depth (p)); print (")x");print scaled (width (p));if type (p) = unset node then hDisplay special �elds of the unset node p 185 ielse begin hDisplay the value of glue set (p) 186 i;if shift amount (p) 6= 0 thenbegin print (", shifted "); print scaled (shift amount (p));end;end;node list display (list ptr (p)); f recursive call gendThis code is used in section 183.185. hDisplay special �elds of the unset node p 185 i �begin if span count (p) 6= min quarterword thenbegin print (" ("); print int (qo (span count (p)) + 1); print (" columns)");end;if glue stretch (p) 6= 0 thenbegin print (", stretch "); print glue (glue stretch (p); glue order (p); 0);end;if glue shrink (p) 6= 0 thenbegin print (", shrink "); print glue (glue shrink (p); glue sign (p); 0);end;endThis code is used in section 184.

70 PART 12: DISPLAYING BOXES TEXGPC x186186. The code will have to change in this place if glue ratio is a structured type instead of an ordinary real .Note that this routine should avoid arithmetic errors even if the glue set �eld holds an arbitrary randomvalue. The following code assumes that a properly formed nonzero real number has absolute value 220 ormore when it is regarded as an integer; this precaution was adequate to prevent oating point underow onthe author's computer.hDisplay the value of glue set (p) 186 i �g oat (glue set (p));if (g 6= oat constant (0)) ^ (glue sign (p) 6= normal) thenbegin print (", glue set ");if glue sign (p) = shrinking then print ("- ");if abs (mem [p+ glue o�set]:int) < �4000000 then print ("?.?")else if abs (g) > oat constant (20000) thenbegin if g > oat constant (0) then print char (">")else print ("< -");print glue (20000 � unity ; glue order (p); 0);endelse print glue (round (unity � g); glue order (p); 0);endThis code is used in section 184.187. hDisplay rule p 187 i �begin print esc ("rule("); print rule dimen (height (p)); print char ("+"); print rule dimen (depth (p));print (")x"); print rule dimen (width (p));endThis code is used in section 183.188. hDisplay insertion p 188 i �begin print esc ("insert"); print int (qo (subtype (p))); print (", natural size ");print scaled (height (p)); print ("; split("); print spec(split top ptr (p); 0); print char (",");print scaled (depth (p)); print ("); float cost "); print int (oat cost (p)); node list display (ins ptr (p));f recursive call gendThis code is used in section 183.189. hDisplay glue p 189 i �if subtype (p) � a leaders then hDisplay leaders p 190 ielse begin print esc("glue");if subtype (p) 6= normal thenbegin print char ("(");if subtype (p) < cond math glue then print skip param (subtype (p)� 1)else if subtype (p) = cond math glue then print esc("nonscript")else print esc ("mskip");print char (")");end;if subtype (p) 6= cond math glue thenbegin print char (" ");if subtype (p) < cond math glue then print spec(glue ptr (p); 0)else print spec(glue ptr (p); "mu");end;endThis code is used in section 183.

x190 TEXGPC PART 12: DISPLAYING BOXES 71190. hDisplay leaders p 190 i �begin print esc ("");if subtype (p) = c leaders then print char ("c")else if subtype (p) = x leaders then print char ("x");print ("leaders "); print spec(glue ptr (p); 0); node list display (leader ptr (p)); f recursive call gendThis code is used in section 189.191. An \explicit" kern value is indicated implicitly by an explicit space.hDisplay kern p 191 i �if subtype (p) 6= mu glue thenbegin print esc ("kern");if subtype (p) 6= normal then print char (" ");print scaled (width (p));if subtype (p) = acc kern then print (" (for accent)");endelse begin print esc("mkern"); print scaled (width (p)); print ("mu");endThis code is used in section 183.192. hDisplay math node p 192 i �begin print esc ("math");if subtype (p) = before then print ("on")else print ("off");if width (p) 6= 0 thenbegin print (", surrounded "); print scaled (width (p));end;endThis code is used in section 183.193. hDisplay ligature p 193 i �begin print font and char (lig char (p)); print (" (ligature ");if subtype (p) > 1 then print char ("|");font in short display font (lig char (p)); short display (lig ptr (p));if odd (subtype (p)) then print char ("|");print char (")");endThis code is used in section 183.194. hDisplay penalty p 194 i �begin print esc ("penalty "); print int (penalty (p));endThis code is used in section 183.

72 PART 12: DISPLAYING BOXES TEXGPC x195195. The post break list of a discretionary node is indicated by a pre�xed `|' instead of the `.' before thepre break list.hDisplay discretionary p 195 i �begin print esc ("discretionary");if replace count (p) > 0 thenbegin print (" replacing "); print int (replace count (p));end;node list display (pre break (p)); f recursive call gappend char ("|"); show node list (post break (p)); ush char ; f recursive call gendThis code is used in section 183.196. hDisplay mark p 196 i �begin print esc ("mark"); print mark (mark ptr (p));endThis code is used in section 183.197. hDisplay adjustment p 197 i �begin print esc ("vadjust"); node list display (adjust ptr (p)); f recursive call gendThis code is used in section 183.198. The recursive machinery is started by calling show box .procedure show box (p : pointer);begin hAssign the values depth threshold show box depth and breadth max show box breadth 236 i;if breadth max � 0 then breadth max 5;if pool ptr + depth threshold � pool size then depth threshold pool size � pool ptr � 1;f now there's enough room for pre�x string gshow node list (p); f the show starts at p gprint ln ;end;

x199 TEXGPC PART 13: DESTROYING BOXES 73199. Destroying boxes. When we are done with a node list, we are obliged to return it to free storage,including all of its sublists. The recursive procedure ush node list does this for us.200. First, however, we shall consider two non-recursive procedures that do simpler tasks. The �rst ofthese, delete token ref , is called when a pointer to a token list's reference count is being removed. Thismeans that the token list should disappear if the reference count was null , otherwise the count should bedecreased by one.de�ne token ref count (#) � info (#) f reference count preceding a token list gprocedure delete token ref (p : pointer);f p points to the reference count of a token list that is losing one reference gbegin if token ref count (p) = null then ush list (p)else decr (token ref count (p));end;201. Similarly, delete glue ref is called when a pointer to a glue speci�cation is being withdrawn.de�ne fast delete glue ref (#) �begin if glue ref count (#) = null then free node (#; glue spec size)else decr (glue ref count (#));endprocedure delete glue ref (p : pointer); f p points to a glue speci�cation gfast delete glue ref (p);

74 PART 13: DESTROYING BOXES TEXGPC x202202. Now we are ready to delete any node list, recursively. In practice, the nodes deleted are usuallycharnodes (about 2/3 of the time), and they are glue nodes in about half of the remaining cases.procedure ush node list (p : pointer); f erase list of nodes starting at p glabel done ; f go here when node p has been freed gvar q: pointer ; f successor to node p gbegin while p 6= null dobegin q link (p);if is char node (p) then free avail (p)else begin case type (p) ofhlist node ; vlist node ; unset node : begin ush node list (list ptr (p)); free node (p; box node size);goto done ;end;rule node : begin free node (p; rule node size); goto done ;end;ins node : begin ush node list (ins ptr (p)); delete glue ref (split top ptr (p));free node (p; ins node size); goto done ;end;whatsit node : hWipe out the whatsit node p and goto done 1358 i;glue node : begin fast delete glue ref (glue ptr (p));if leader ptr (p) 6= null then ush node list (leader ptr (p));end;kern node ;math node ; penalty node : do nothing ;ligature node : ush node list (lig ptr (p));mark node : delete token ref (mark ptr (p));disc node : begin ush node list (pre break (p)); ush node list (post break (p));end;adjust node : ush node list (adjust ptr (p));hCases of ush node list that arise in mlists only 698 iothercases confusion ("flushing")endcases;free node (p; small node size);done : end;p q;end;end;

x203 TEXGPC PART 14: COPYING BOXES 75203. Copying boxes. Another recursive operation that acts on boxes is sometimes needed: The proce-dure copy node list returns a pointer to another node list that has the same structure and meaning as theoriginal. Note that since glue speci�cations and token lists have reference counts, we need not make copiesof them. Reference counts can never get too large to �t in a halfword, since each pointer to a node is in adi�erent memory address, and the total number of memory addresses �ts in a halfword.(Well, there actually are also references from outside mem ; if the save stack is made arbitrarily large, itwould theoretically be possible to break TEX by overowing a reference count. But who would want to dothat?)de�ne add token ref (#) � incr (token ref count (#)) f new reference to a token list gde�ne add glue ref (#) � incr (glue ref count (#)) f new reference to a glue spec g204. The copying procedure copies words en masse without bothering to look at their individual �elds. Ifthe node format changes|for example, if the size is altered, or if some link �eld is moved to another relativeposition|then this code may need to be changed too.function copy node list (p : pointer): pointer ;fmakes a duplicate of the node list that starts at p and returns a pointer to the new list gvar h: pointer ; f temporary head of copied list gq: pointer ; f previous position in new list gr: pointer ; f current node being fabricated for new list gwords : 0 : : 5; f number of words remaining to be copied gbegin h get avail ; q h;while p 6= null dobegin hMake a copy of node p in node r 205 i;link (q) r; q r; p link (p);end;link (q) null ; q link (h); free avail (h); copy node list q;end;205. hMake a copy of node p in node r 205 i �words 1; f this setting occurs in more branches than any other gif is char node (p) then r get availelse hCase statement to copy di�erent types and set words to the number of initial words not yetcopied 206 i;while words > 0 dobegin decr (words); mem [r + words] mem [p+ words];endThis code is used in section 204.

76 PART 14: COPYING BOXES TEXGPC x206206. hCase statement to copy di�erent types and set words to the number of initial words not yetcopied 206 i �case type (p) ofhlist node ; vlist node ; unset node : begin r get node (box node size); mem [r + 6] mem [p+ 6];mem [r + 5] mem [p+ 5]; f copy the last two words glist ptr (r) copy node list (list ptr (p)); f this a�ects mem [r + 5] gwords 5;end;rule node : begin r get node (rule node size); words rule node size ;end;ins node : begin r get node (ins node size); mem [r + 4] mem [p+ 4]; add glue ref (split top ptr (p));ins ptr (r) copy node list (ins ptr (p)); f this a�ects mem [r + 4] gwords ins node size � 1;end;whatsit node : hMake a partial copy of the whatsit node p and make r point to it; set words to thenumber of initial words not yet copied 1357 i;glue node : begin r get node (small node size); add glue ref (glue ptr (p)); glue ptr (r) glue ptr (p);leader ptr (r) copy node list (leader ptr (p));end;kern node ;math node ; penalty node : begin r get node (small node size); words small node size ;end;ligature node : begin r get node (small node size); mem [lig char (r)] mem [lig char (p)];f copy font and character glig ptr (r) copy node list (lig ptr (p));end;disc node : begin r get node (small node size); pre break (r) copy node list (pre break (p));post break (r) copy node list (post break (p));end;mark node : begin r get node (small node size); add token ref (mark ptr (p));words small node size ;end;adjust node : begin r get node (small node size); adjust ptr (r) copy node list (adjust ptr (p));end; fwords = 1 = small node size � 1 gothercases confusion ("copying")endcasesThis code is used in section 205.

x207 TEXGPC PART 15: THE COMMAND CODES 77207. The command codes. Before we can go any further, we need to de�ne symbolic names for theinternal code numbers that represent the various commands obeyed by TEX. These codes are somewhatarbitrary, but not completely so. For example, the command codes for character types are �xed by thelanguage, since a user says, e.g., `\catcode �\$ = 3' to make $ a math delimiter, and the command codemath shift is equal to 3. Some other codes have been made adjacent so that case statements in the programneed not consider cases that are widely spaced, or so that case statements can be replaced by if statements.At any rate, here is the list, for future reference. First come the \catcode" commands, several of whichshare their numeric codes with ordinary commands when the catcode cannot emerge from TEX's scanningroutine.de�ne escape = 0 f escape delimiter (called \ in The TEXbook) gde�ne relax = 0 f do nothing (\relax) gde�ne left brace = 1 f beginning of a group ({) gde�ne right brace = 2 f ending of a group (}) gde�ne math shift = 3 fmathematics shift character ($) gde�ne tab mark = 4 f alignment delimiter (&, \span) gde�ne car ret = 5 f end of line (carriage return , \cr, \crcr) gde�ne out param = 5 f output a macro parameter gde�ne mac param = 6 fmacro parameter symbol (#) gde�ne sup mark = 7 f superscript (^) gde�ne sub mark = 8 f subscript (_) gde�ne ignore = 9 f characters to ignore (^^@) gde�ne endv = 9 f end of hvji list in alignment template gde�ne spacer = 10 f characters equivalent to blank space () gde�ne letter = 11 f characters regarded as letters (A..Z, a..z) gde�ne other char = 12 f none of the special character types gde�ne active char = 13 f characters that invoke macros (~) gde�ne par end = 13 f end of paragraph (\par) gde�ne match = 13 fmatch a macro parameter gde�ne comment = 14 f characters that introduce comments (%) gde�ne end match = 14 f end of parameters to macro gde�ne stop = 14 f end of job (\end, \dump) gde�ne invalid char = 15 f characters that shouldn't appear (^^?) gde�ne delim num = 15 f specify delimiter numerically (\delimiter) gde�ne max char code = 15 f largest catcode for individual characters g

78 PART 15: THE COMMAND CODES TEXGPC x208208. Next are the ordinary run-of-the-mill command codes. Codes that aremin internal or more representinternal quantities that might be expanded by `\the'.de�ne char num = 16 f character speci�ed numerically (\char) gde�ne math char num = 17 f explicit math code (\mathchar) gde�ne mark = 18 fmark de�nition (\mark) gde�ne xray = 19 f peek inside of TEX (\show, \showbox, etc.) gde�ne make box = 20 fmake a box (\box, \copy, \hbox, etc.) gde�ne hmove = 21 f horizontal motion (\moveleft, \moveright) gde�ne vmove = 22 f vertical motion (\raise, \lower) gde�ne un hbox = 23 f unglue a box (\unhbox, \unhcopy) gde�ne un vbox = 24 f unglue a box (\unvbox, \unvcopy) gde�ne remove item = 25 f nullify last item (\unpenalty, \unkern, \unskip) gde�ne hskip = 26 f horizontal glue (\hskip, \hfil, etc.) gde�ne vskip = 27 f vertical glue (\vskip, \vfil, etc.) gde�ne mskip = 28 fmath glue (\mskip) gde�ne kern = 29 f �xed space (\kern) gde�ne mkern = 30 fmath kern (\mkern) gde�ne leader ship = 31 f use a box (\shipout, \leaders, etc.) gde�ne halign = 32 f horizontal table alignment (\halign) gde�ne valign = 33 f vertical table alignment (\valign) gde�ne no align = 34 f temporary escape from alignment (\noalign) gde�ne vrule = 35 f vertical rule (\vrule) gde�ne hrule = 36 f horizontal rule (\hrule) gde�ne insert = 37 f vlist inserted in box (\insert) gde�ne vadjust = 38 f vlist inserted in enclosing paragraph (\vadjust) gde�ne ignore spaces = 39 f gobble spacer tokens (\ignorespaces) gde�ne after assignment = 40 f save till assignment is done (\afterassignment) gde�ne after group = 41 f save till group is done (\aftergroup) gde�ne break penalty = 42 f additional badness (\penalty) gde�ne start par = 43 f begin paragraph (\indent, \noindent) gde�ne ital corr = 44 f italic correction (\/) gde�ne accent = 45 f attach accent in text (\accent) gde�ne math accent = 46 f attach accent in math (\mathaccent) gde�ne discretionary = 47 f discretionary texts (\-, \discretionary) gde�ne eq no = 48 f equation number (\eqno, \leqno) gde�ne left right = 49 f variable delimiter (\left, \right) gde�ne math comp = 50 f component of formula (\mathbin, etc.) gde�ne limit switch = 51 f diddle limit conventions (\displaylimits, etc.) gde�ne above = 52 f generalized fraction (\above, \atop, etc.) gde�ne math style = 53 f style speci�cation (\displaystyle, etc.) gde�ne math choice = 54 f choice speci�cation (\mathchoice) gde�ne non script = 55 f conditional math glue (\nonscript) gde�ne vcenter = 56 f vertically center a vbox (\vcenter) gde�ne case shift = 57 f force speci�c case (\lowercase, \uppercase) gde�ne message = 58 f send to user (\message, \errmessage) gde�ne extension = 59 f extensions to TEX (\write, \special, etc.) gde�ne in stream = 60 f �les for reading (\openin, \closein) gde�ne begin group = 61 f begin local grouping (\begingroup) gde�ne end group = 62 f end local grouping (\endgroup) gde�ne omit = 63 f omit alignment template (\omit) gde�ne ex space = 64 f explicit space (\) gde�ne no boundary = 65 f suppress boundary ligatures (\noboundary) g

x208 TEXGPC PART 15: THE COMMAND CODES 79de�ne radical = 66 f square root and similar signs (\radical) gde�ne end cs name = 67 f end control sequence (\endcsname) gde�ne min internal = 68 f the smallest code that can follow \thegde�ne char given = 68 f character code de�ned by \chardefgde�ne math given = 69 fmath code de�ned by \mathchardefgde�ne last item = 70 fmost recent item (\lastpenalty, \lastkern, \lastskip) gde�ne max non pre�xed command = 70 f largest command code that can't be \globalg209. The next codes are special; they all relate to mode-independent assignment of values to TEX's internalregisters or tables. Codes that are max internal or less represent internal quantities that might be expandedby `\the'.de�ne toks register = 71 f token list register (\toks) gde�ne assign toks = 72 f special token list (\output, \everypar, etc.) gde�ne assign int = 73 f user-de�ned integer (\tolerance, \day, etc.) gde�ne assign dimen = 74 f user-de�ned length (\hsize, etc.) gde�ne assign glue = 75 f user-de�ned glue (\baselineskip, etc.) gde�ne assign mu glue = 76 f user-de�ned muglue (\thinmuskip, etc.) gde�ne assign font dimen = 77 f user-de�ned font dimension (\fontdimen) gde�ne assign font int = 78 f user-de�ned font integer (\hyphenchar, \skewchar) gde�ne set aux = 79 f specify state info (\spacefactor, \prevdepth) gde�ne set prev graf = 80 f specify state info (\prevgraf) gde�ne set page dimen = 81 f specify state info (\pagegoal, etc.) gde�ne set page int = 82 f specify state info (\deadcycles, \insertpenalties) gde�ne set box dimen = 83 f change dimension of box (\wd, \ht, \dp) gde�ne set shape = 84 f specify fancy paragraph shape (\parshape) gde�ne def code = 85 f de�ne a character code (\catcode, etc.) gde�ne def family = 86 f declare math fonts (\textfont, etc.) gde�ne set font = 87 f set current font (font identi�ers) gde�ne def font = 88 f de�ne a font �le (\font) gde�ne register = 89 f internal register (\count, \dimen, etc.) gde�ne max internal = 89 f the largest code that can follow \thegde�ne advance = 90 f advance a register or parameter (\advance) gde�ne multiply = 91 fmultiply a register or parameter (\multiply) gde�ne divide = 92 f divide a register or parameter (\divide) gde�ne pre�x = 93 f qualify a de�nition (\global, \long, \outer) gde�ne let = 94 f assign a command code (\let, \futurelet) gde�ne shorthand def = 95 f code de�nition (\chardef, \countdef, etc.) gde�ne read to cs = 96 f read into a control sequence (\read) gde�ne def = 97 fmacro de�nition (\def, \gdef, \xdef, \edef) gde�ne set box = 98 f set a box (\setbox) gde�ne hyph data = 99 f hyphenation data (\hyphenation, \patterns) gde�ne set interaction = 100 f de�ne level of interaction (\batchmode, etc.) gde�ne max command = 100 f the largest command code seen at big switch g

80 PART 15: THE COMMAND CODES TEXGPC x210210. The remaining command codes are extra special, since they cannot get through TEX's scanner to themain control routine. They have been given values higher than max command so that their special natureis easily discernible. The \expandable" commands come �rst.de�ne unde�ned cs = max command + 1 f initial state of most eq type �elds gde�ne expand after = max command + 2 f special expansion (\expandafter) gde�ne no expand = max command + 3 f special nonexpansion (\noexpand) gde�ne input = max command + 4 f input a source �le (\input, \endinput) gde�ne if test = max command + 5 f conditional text (\if, \ifcase, etc.) gde�ne � or else = max command + 6 f delimiters for conditionals (\else, etc.) gde�ne cs name = max command + 7 fmake a control sequence from tokens (\csname) gde�ne convert = max command + 8 f convert to text (\number, \string, etc.) gde�ne the = max command + 9 f expand an internal quantity (\the) gde�ne top bot mark = max command + 10 f inserted mark (\topmark, etc.) gde�ne call = max command + 11 f non-long, non-outer control sequence gde�ne long call = max command + 12 f long, non-outer control sequence gde�ne outer call = max command + 13 f non-long, outer control sequence gde�ne long outer call = max command + 14 f long, outer control sequence gde�ne end template = max command + 15 f end of an alignment template gde�ne dont expand = max command + 16 f the following token was marked by \noexpandgde�ne glue ref = max command + 17 f the equivalent points to a glue speci�cation gde�ne shape ref = max command + 18 f the equivalent points to a parshape speci�cation gde�ne box ref = max command + 19 f the equivalent points to a box node, or is null gde�ne data = max command + 20 f the equivalent is simply a halfword number g

x211 TEXGPC PART 16: THE SEMANTIC NEST 81211. The semantic nest. TEX is typically in the midst of building many lists at once. For example,when a math formula is being processed, TEX is in math mode and working on an mlist; this formula hastemporarily interrupted TEX from being in horizontal mode and building the hlist of a paragraph; and thisparagraph has temporarily interrupted TEX from being in vertical mode and building the vlist for the nextpage of a document. Similarly, when a \vbox occurs inside of an \hbox, TEX is temporarily interrupted fromworking in restricted horizontal mode, and it enters internal vertical mode. The \semantic nest" is a stackthat keeps track of what lists and modes are currently suspended.At each level of processing we are in one of six modes:vmode stands for vertical mode (the page builder);hmode stands for horizontal mode (the paragraph builder);mmode stands for displayed formula mode;�vmode stands for internal vertical mode (e.g., in a \vbox);�hmode stands for restricted horizontal mode (e.g., in an \hbox);�mmode stands for math formula mode (not displayed).The mode is temporarily set to zero while processing \write texts in the ship out routine.Numeric values are assigned to vmode , hmode , and mmode so that TEX's \big semantic switch" can selectthe appropriate thing to do by computing the value abs (mode) + cur cmd , where mode is the current modeand cur cmd is the current command code.de�ne vmode = 1 f vertical mode gde�ne hmode = vmode +max command + 1 f horizontal mode gde�ne mmode = hmode +max command + 1 fmath mode gprocedure print mode (m : integer); f prints the mode represented by m gbegin if m > 0 thencase m div (max command + 1) of0: print ("vertical");1: print ("horizontal");2: print ("display math");endelse if m = 0 then print ("no")else case (�m) div (max command + 1) of0: print ("internal vertical");1: print ("restricted horizontal");2: print ("math");end;print (" mode");end;

82 PART 16: THE SEMANTIC NEST TEXGPC x212212. The state of a�airs at any semantic level can be represented by �ve values:mode is the number representing the semantic mode, as just explained.head is a pointer to a list head for the list being built; link (head) therefore points to the �rst element of thelist, or to null if the list is empty.tail is a pointer to the �nal node of the list being built; thus, tail = head if and only if the list is empty.prev graf is the number of lines of the current paragraph that have already been put into the present verticallist.aux is an auxiliary memory word that gives further information that is needed to characterize the situation.In vertical mode, aux is also known as prev depth ; it is the scaled value representing the depth of the previousbox, for use in baseline calculations, or it is � �1000pt if the next box on the vertical list is to be exempt frombaseline calculations. In horizontal mode, aux is also known as space factor and clang ; it holds the currentspace factor used in spacing calculations, and the current language used for hyphenation. (The value of clangis unde�ned in restricted horizontal mode.) In math mode, aux is also known as incompleat noad ; if notnull , it points to a record that represents the numerator of a generalized fraction for which the denominatoris currently being formed in the current list.There is also a sixth quantity, mode line , which correlates the semantic nest with the user's input;mode line contains the source line number at which the current level of nesting was entered. The negativeof this line number is the mode line at the level of the user's output routine.In horizontal mode, the prev graf �eld is used for initial language data.The semantic nest is an array called nest that holds the mode , head , tail , prev graf , aux , and mode linevalues for all semantic levels below the currently active one. Information about the currently active level iskept in the global quantities mode , head , tail , prev graf , aux , and mode line , which live in a Pascal recordthat is ready to be pushed onto nest if necessary.de�ne ignore depth � �65536000 f prev depth value that is ignored ghTypes in the outer block 18 i +�list state record = record mode �eld : �mmode : : mmode ; head �eld ; tail �eld : pointer ;pg �eld ;ml �eld : integer ; aux �eld : memory word ;end;213. de�ne mode � cur list :mode �eld f current mode gde�ne head � cur list :head �eld f header node of current list gde�ne tail � cur list :tail �eld f �nal node on current list gde�ne prev graf � cur list :pg �eld f number of paragraph lines accumulated gde�ne aux � cur list :aux �eld f auxiliary data about the current list gde�ne prev depth � aux :sc f the name of aux in vertical mode gde�ne space factor � aux :hh :lh f part of aux in horizontal mode gde�ne clang � aux :hh :rh f the other part of aux in horizontal mode gde�ne incompleat noad � aux :int f the name of aux in math mode gde�ne mode line � cur list :ml �eld f source �le line number at beginning of list ghGlobal variables 13 i +�nest : array [0 : : nest size] of list state record ;nest ptr : 0 : : nest size ; f �rst unused location of nest gmax nest stack : 0 : : nest size ; fmaximum of nest ptr when pushing gcur list : list state record ; f the \top" semantic state gshown mode : �mmode : : mmode ; fmost recent mode shown by \tracingcommandsg214. Here is a common way to make the current list grow:de�ne tail append (#) �begin link (tail) #; tail link (tail);end

x215 TEXGPC PART 16: THE SEMANTIC NEST 83215. We will see later that the vertical list at the bottom semantic level is split into two parts; the \currentpage" runs from page head to page tail , and the \contribution list" runs from contrib head to tail of semanticlevel zero. The idea is that contributions are �rst formed in vertical mode, then \contributed" to the currentpage (during which time the page-breaking decisions are made). For now, we don't need to know any moredetails about the page-building process.h Set initial values of key variables 21 i +�nest ptr 0; max nest stack 0; mode vmode ; head contrib head ; tail contrib head ;prev depth ignore depth ; mode line 0; prev graf 0; shown mode 0;h Start a new current page 991 i;216. When TEX's work on one level is interrupted, the state is saved by calling push nest . This routinechanges head and tail so that a new (empty) list is begun; it does not change mode or aux .procedure push nest ; f enter a new semantic level, save the old gbegin if nest ptr > max nest stack thenbegin max nest stack nest ptr ;if nest ptr = nest size then overow ("semantic nest size";nest size);end;nest [nest ptr] cur list ; f stack the record gincr (nest ptr); head get avail ; tail head ; prev graf 0; mode line line ;end;217. Conversely, when TEX is �nished on the current level, the former state is restored by calling pop nest .This routine will never be called at the lowest semantic level, nor will it be called unless head is a node thatshould be returned to free memory.procedure pop nest ; f leave a semantic level, re-enter the old gbegin free avail (head); decr (nest ptr); cur list nest [nest ptr];end;

84 PART 16: THE SEMANTIC NEST TEXGPC x218218. Here is a procedure that displays what TEX is working on, at all levels.procedure print totals ; forward ;procedure show activities ;var p: 0 : : nest size ; f index into nest gm: �mmode : : mmode ; fmode ga: memory word ; f auxiliary gq; r: pointer ; f for showing the current page gt: integer ; f ditto gbegin nest [nest ptr] cur list ; f put the top level into the array gprint nl (""); print ln ;for p nest ptr downto 0 dobegin m nest [p]:mode �eld ; a nest [p]:aux �eld ; print nl ("### "); print mode (m);print (" entered at line "); print int (abs (nest [p]:ml �eld));if m = hmode thenif nest [p]:pg �eld 6= �40600000 thenbegin print (" (language"); print int (nest [p]:pg �eld mod �200000); print (":hyphenmin");print int (nest [p]:pg �eld div �20000000); print char (",");print int ((nest [p]:pg �eld div �200000)mod �100); print char (")");end;if nest [p]:ml �eld < 0 then print (" (\output routine)");if p = 0 thenbegin h Show the status of the current page 986 i;if link (contrib head) 6= null then print nl ("### recent contributions:");end;show box (link (nest [p]:head �eld)); h Show the auxiliary �eld, a 219 i;end;end;219. h Show the auxiliary �eld, a 219 i �case abs (m) div (max command + 1) of0: begin print nl ("prevdepth ");if a:sc � ignore depth then print ("ignored")else print scaled (a:sc);if nest [p]:pg �eld 6= 0 thenbegin print (", prevgraf "); print int (nest [p]:pg �eld); print (" line");if nest [p]:pg �eld 6= 1 then print char ("s");end;end;1: begin print nl ("spacefactor "); print int (a:hh :lh);if m > 0 then if a:hh :rh > 0 thenbegin print (", current language "); print int (a:hh :rh); end;end;2: if a:int 6= null thenbegin print ("this will be denominator of:"); show box (a:int); end;end f there are no other cases gThis code is used in section 218.

x220 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 85220. The table of equivalents. Now that we have studied the data structures for TEX's semanticroutines, we ought to consider the data structures used by its syntactic routines. In other words, our nextconcern will be the tables that TEX looks at when it is scanning what the user has written.The biggest and most important such table is called eqtb . It holds the current \equivalents" of things;i.e., it explains what things mean or what their current values are, for all quantities that are subject to thenesting structure provided by TEX's grouping mechanism. There are six parts to eqtb :1) eqtb [active base : : (hash base � 1)] holds the current equivalents of single-character control sequences.2) eqtb [hash base : : (glue base � 1)] holds the current equivalents of multiletter control sequences.3) eqtb [glue base : : (local base � 1)] holds the current equivalents of glue parameters like the currentbaselineskip.4) eqtb [local base : : (int base � 1)] holds the current equivalents of local halfword quantities like the currentbox registers, the current \catcodes," the current font, and a pointer to the current paragraph shape.5) eqtb [int base : : (dimen base � 1)] holds the current equivalents of fullword integer parameters like thecurrent hyphenation penalty.6) eqtb [dimen base : : eqtb size] holds the current equivalents of fullword dimension parameters like thecurrent hsize or amount of hanging indentation.Note that, for example, the current amount of baselineskip glue is determined by the setting of a particularlocation in region 3 of eqtb , while the current meaning of the control sequence `\baselineskip' (which mighthave been changed by \def or \let) appears in region 2.221. Each entry in eqtb is a memory word . Most of these words are of type two halves , and subdividedinto three �elds:1) The eq level (a quarterword) is the level of grouping at which this equivalent was de�ned. If the levelis level zero , the equivalent has never been de�ned; level one refers to the outer level (outside of allgroups), and this level is also used for global de�nitions that never go away. Higher levels are forequivalents that will disappear at the end of their group.2) The eq type (another quarterword) speci�es what kind of entry this is. There are many types, since eachTEX primitive like \hbox, \def, etc., has its own special code. The list of command codes aboveincludes all possible settings of the eq type �eld.3) The equiv (a halfword) is the current equivalent value. This may be a font number, a pointer into mem ,or a variety of other things.de�ne eq level �eld (#) � #:hh :b1de�ne eq type �eld (#) � #:hh :b0de�ne equiv �eld (#) � #:hh :rhde�ne eq level (#) � eq level �eld (eqtb [#]) f level of de�nition gde�ne eq type (#) � eq type �eld (eqtb [#]) f command code for equivalent gde�ne equiv (#) � equiv �eld (eqtb [#]) f equivalent value gde�ne level zero = min quarterword f level for unde�ned quantities gde�ne level one = level zero + 1 f outermost level for de�ned quantities g

86 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x222222. Many locations in eqtb have symbolic names. The purpose of the next paragraphs is to de�ne thesenames, and to set up the initial values of the equivalents.In the �rst region we have 256 equivalents for \active characters" that act as control sequences, followedby 256 equivalents for single-character control sequences.Then comes region 2, which corresponds to the hash table that we will de�ne later. The maximum addressin this region is used for a dummy control sequence that is perpetually unde�ned. There also are severallocations for control sequences that are perpetually de�ned (since they are used in error recovery).de�ne active base = 1 f beginning of region 1, for active character equivalents gde�ne single base = active base + 256 f equivalents of one-character control sequences gde�ne null cs = single base + 256 f equivalent of \csname\endcsnamegde�ne hash base = null cs + 1 f beginning of region 2, for the hash table gde�ne frozen control sequence = hash base + hash size f for error recovery gde�ne frozen protection = frozen control sequence f inaccessible but de�nable gde�ne frozen cr = frozen control sequence + 1 f permanent `\cr' gde�ne frozen end group = frozen control sequence + 2 f permanent `\endgroup' gde�ne frozen right = frozen control sequence + 3 f permanent `\right' gde�ne frozen � = frozen control sequence + 4 f permanent `\fi' gde�ne frozen end template = frozen control sequence + 5 f permanent `\endtemplate' gde�ne frozen endv = frozen control sequence + 6 f second permanent `\endtemplate' gde�ne frozen relax = frozen control sequence + 7 f permanent `\relax' gde�ne end write = frozen control sequence + 8 f permanent `\endwrite' gde�ne frozen dont expand = frozen control sequence + 9 f permanent `\notexpanded:' gde�ne frozen null font = frozen control sequence + 10 f permanent `\nullfont' gde�ne font id base = frozen null font � font base f begins table of 257 permanent font identi�ers gde�ne unde�ned control sequence = frozen null font + 257 f dummy location gde�ne glue base = unde�ned control sequence + 1 f beginning of region 3 gh Initialize table entries (done by INITEX only) 164 i +�eq type (unde�ned control sequence) unde�ned cs ; equiv (unde�ned control sequence) null ;eq level (unde�ned control sequence) level zero ;for k active base to unde�ned control sequence � 1 do eqtb [k] eqtb [unde�ned control sequence];223. Here is a routine that displays the current meaning of an eqtb entry in region 1 or 2. (Similar routinesfor the other regions will appear below.)h Show equivalent n, in region 1 or 2 223 i �begin sprint cs (n); print char ("="); print cmd chr (eq type (n); equiv (n));if eq type (n) � call thenbegin print char (":"); show token list (link (equiv (n));null ; 32);end;endThis code is used in section 252.

x224 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 87224. Region 3 of eqtb contains the 256 \skip registers, as well as the glue parameters de�ned here. It isimportant that the \muskip" parameters have larger numbers than the others.de�ne line skip code = 0 f interline glue if baseline skip is infeasible gde�ne baseline skip code = 1 f desired glue between baselines gde�ne par skip code = 2 f extra glue just above a paragraph gde�ne above display skip code = 3 f extra glue just above displayed math gde�ne below display skip code = 4 f extra glue just below displayed math gde�ne above display short skip code = 5 f glue above displayed math following short lines gde�ne below display short skip code = 6 f glue below displayed math following short lines gde�ne left skip code = 7 f glue at left of justi�ed lines gde�ne right skip code = 8 f glue at right of justi�ed lines gde�ne top skip code = 9 f glue at top of main pages gde�ne split top skip code = 10 f glue at top of split pages gde�ne tab skip code = 11 f glue between aligned entries gde�ne space skip code = 12 f glue between words (if not zero glue) gde�ne xspace skip code = 13 f glue after sentences (if not zero glue) gde�ne par �ll skip code = 14 f glue on last line of paragraph gde�ne thin mu skip code = 15 f thin space in math formula gde�ne med mu skip code = 16 fmedium space in math formula gde�ne thick mu skip code = 17 f thick space in math formula gde�ne glue pars = 18 f total number of glue parameters gde�ne skip base = glue base + glue pars f table of 256 \skip" registers gde�ne mu skip base = skip base + 256 f table of 256 \muskip" registers gde�ne local base = mu skip base + 256 f beginning of region 4 gde�ne skip (#) � equiv (skip base + #) fmem location of glue speci�cation gde�ne mu skip (#) � equiv (mu skip base + #) fmem location of math glue spec gde�ne glue par (#) � equiv (glue base + #) fmem location of glue speci�cation gde�ne line skip � glue par (line skip code)de�ne baseline skip � glue par (baseline skip code)de�ne par skip � glue par (par skip code)de�ne above display skip � glue par (above display skip code)de�ne below display skip � glue par (below display skip code)de�ne above display short skip � glue par (above display short skip code)de�ne below display short skip � glue par (below display short skip code)de�ne left skip � glue par (left skip code)de�ne right skip � glue par (right skip code)de�ne top skip � glue par (top skip code)de�ne split top skip � glue par (split top skip code)de�ne tab skip � glue par (tab skip code)de�ne space skip � glue par (space skip code)de�ne xspace skip � glue par (xspace skip code)de�ne par �ll skip � glue par (par �ll skip code)de�ne thin mu skip � glue par (thin mu skip code)de�ne med mu skip � glue par (med mu skip code)de�ne thick mu skip � glue par (thick mu skip code)hCurrent mem equivalent of glue parameter number n 224 i �glue par (n)This code is used in sections 152 and 154.

88 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x225225. Sometimes we need to convert TEX's internal code numbers into symbolic form. The print skip paramroutine gives the symbolic name of a glue parameter.hDeclare the procedure called print skip param 225 i �procedure print skip param (n : integer);begin case n ofline skip code : print esc("lineskip");baseline skip code : print esc ("baselineskip");par skip code : print esc("parskip");above display skip code : print esc("abovedisplayskip");below display skip code : print esc("belowdisplayskip");above display short skip code : print esc("abovedisplayshortskip");below display short skip code : print esc("belowdisplayshortskip");left skip code : print esc("leftskip");right skip code : print esc("rightskip");top skip code : print esc("topskip");split top skip code : print esc("splittopskip");tab skip code : print esc ("tabskip");space skip code : print esc("spaceskip");xspace skip code : print esc ("xspaceskip");par �ll skip code : print esc("parfillskip");thin mu skip code : print esc ("thinmuskip");med mu skip code : print esc ("medmuskip");thick mu skip code : print esc("thickmuskip");othercases print ("[unknown glue parameter!]")endcases;end;This code is used in section 179.

x226 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 89226. The symbolic names for glue parameters are put into TEX's hash table by using the routine calledprimitive , de�ned below. Let us enter them now, so that we don't have to list all those parameter namesanywhere else.hPut each of TEX's primitives into the hash table 226 i �primitive ("lineskip"; assign glue ; glue base + line skip code);primitive ("baselineskip"; assign glue ; glue base + baseline skip code);primitive ("parskip"; assign glue ; glue base + par skip code);primitive ("abovedisplayskip"; assign glue ; glue base + above display skip code);primitive ("belowdisplayskip"; assign glue ; glue base + below display skip code);primitive ("abovedisplayshortskip"; assign glue ; glue base + above display short skip code);primitive ("belowdisplayshortskip"; assign glue ; glue base + below display short skip code);primitive ("leftskip"; assign glue ; glue base + left skip code);primitive ("rightskip"; assign glue ; glue base + right skip code);primitive ("topskip"; assign glue ; glue base + top skip code);primitive ("splittopskip"; assign glue ; glue base + split top skip code);primitive ("tabskip"; assign glue ; glue base + tab skip code);primitive ("spaceskip"; assign glue ; glue base + space skip code);primitive ("xspaceskip"; assign glue ; glue base + xspace skip code);primitive ("parfillskip"; assign glue ; glue base + par �ll skip code);primitive ("thinmuskip"; assign mu glue ; glue base + thin mu skip code);primitive ("medmuskip"; assign mu glue ; glue base +med mu skip code);primitive ("thickmuskip"; assign mu glue ; glue base + thick mu skip code);See also sections 230, 238, 248, 265, 334, 376, 384, 411, 416, 468, 487, 491, 553, 780, 983, 1052, 1058, 1071, 1088, 1107, 1114,1141, 1156, 1169, 1178, 1188, 1208, 1219, 1222, 1230, 1250, 1254, 1262, 1272, 1277, 1286, 1291, and 1344.This code is used in section 1336.227. hCases of print cmd chr for symbolic printing of primitives 227 i �assign glue ; assign mu glue : if chr code < skip base then print skip param (chr code � glue base)else if chr code < mu skip base thenbegin print esc ("skip"); print int (chr code � skip base);endelse begin print esc("muskip"); print int (chr code �mu skip base);end;See also sections 231, 239, 249, 266, 335, 377, 385, 412, 417, 469, 488, 492, 781, 984, 1053, 1059, 1072, 1089, 1108, 1115, 1143,1157, 1170, 1179, 1189, 1209, 1220, 1223, 1231, 1251, 1255, 1261, 1263, 1273, 1278, 1287, 1292, 1295, and 1346.This code is used in section 298.228. All glue parameters and registers are initially `0pt plus0pt minus0pt'.h Initialize table entries (done by INITEX only) 164 i +�equiv (glue base) zero glue ; eq level (glue base) level one ; eq type (glue base) glue ref ;for k glue base + 1 to local base � 1 do eqtb [k] eqtb [glue base];glue ref count (zero glue) glue ref count (zero glue) + local base � glue base ;

90 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x229229. h Show equivalent n, in region 3 229 i �if n < skip base thenbegin print skip param (n� glue base); print char ("=");if n < glue base + thin mu skip code then print spec(equiv (n); "pt")else print spec(equiv (n); "mu");endelse if n < mu skip base thenbegin print esc ("skip"); print int (n� skip base); print char ("="); print spec (equiv (n); "pt");endelse begin print esc("muskip"); print int (n�mu skip base); print char ("=");print spec(equiv (n); "mu");endThis code is used in section 252.

x230 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 91230. Region 4 of eqtb contains the local quantities de�ned here. The bulk of this region is taken up by�ve tables that are indexed by eight-bit characters; these tables are important to both the syntactic andsemantic portions of TEX. There are also a bunch of special things like font and token parameters, as wellas the tables of \toks and \box registers.de�ne par shape loc = local base f speci�es paragraph shape gde�ne output routine loc = local base + 1 f points to token list for \outputgde�ne every par loc = local base + 2 f points to token list for \everypargde�ne every math loc = local base + 3 f points to token list for \everymathgde�ne every display loc = local base + 4 f points to token list for \everydisplaygde�ne every hbox loc = local base + 5 f points to token list for \everyhboxgde�ne every vbox loc = local base + 6 f points to token list for \everyvboxgde�ne every job loc = local base + 7 f points to token list for \everyjobgde�ne every cr loc = local base + 8 f points to token list for \everycrgde�ne err help loc = local base + 9 f points to token list for \errhelpgde�ne toks base = local base + 10 f table of 256 token list registers gde�ne box base = toks base + 256 f table of 256 box registers gde�ne cur font loc = box base + 256 f internal font number outside math mode gde�ne math font base = cur font loc + 1 f table of 48 math font numbers gde�ne cat code base = math font base + 48 f table of 256 command codes (the \catcodes") gde�ne lc code base = cat code base + 256 f table of 256 lowercase mappings gde�ne uc code base = lc code base + 256 f table of 256 uppercase mappings gde�ne sf code base = uc code base + 256 f table of 256 spacefactor mappings gde�ne math code base = sf code base + 256 f table of 256 math mode mappings gde�ne int base = math code base + 256 f beginning of region 5 gde�ne par shape ptr � equiv (par shape loc)de�ne output routine � equiv (output routine loc)de�ne every par � equiv (every par loc)de�ne every math � equiv (every math loc)de�ne every display � equiv (every display loc)de�ne every hbox � equiv (every hbox loc)de�ne every vbox � equiv (every vbox loc)de�ne every job � equiv (every job loc)de�ne every cr � equiv (every cr loc)de�ne err help � equiv (err help loc)de�ne toks (#) � equiv (toks base + #)de�ne box (#) � equiv (box base + #)de�ne cur font � equiv (cur font loc)de�ne fam fnt (#) � equiv (math font base + #)de�ne cat code (#) � equiv (cat code base + #)de�ne lc code (#) � equiv (lc code base + #)de�ne uc code (#) � equiv (uc code base + #)de�ne sf code (#) � equiv (sf code base + #)de�ne math code (#) � equiv (math code base + #)fNote: math code (c) is the true math code plus min halfword ghPut each of TEX's primitives into the hash table 226 i +�primitive ("output"; assign toks ; output routine loc); primitive ("everypar"; assign toks ; every par loc);primitive ("everymath"; assign toks ; every math loc);primitive ("everydisplay"; assign toks ; every display loc);primitive ("everyhbox"; assign toks ; every hbox loc); primitive ("everyvbox"; assign toks ; every vbox loc);primitive ("everyjob"; assign toks ; every job loc); primitive ("everycr"; assign toks ; every cr loc);primitive ("errhelp"; assign toks ; err help loc);

92 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x231231. hCases of print cmd chr for symbolic printing of primitives 227 i +�assign toks : if chr code � toks base thenbegin print esc ("toks"); print int (chr code � toks base);endelse case chr code ofoutput routine loc : print esc ("output");every par loc : print esc("everypar");every math loc : print esc("everymath");every display loc : print esc("everydisplay");every hbox loc : print esc("everyhbox");every vbox loc : print esc ("everyvbox");every job loc : print esc ("everyjob");every cr loc : print esc("everycr");othercases print esc ("errhelp")endcases;232. We initialize most things to null or unde�ned values. An unde�ned font is represented by the internalcode font base .However, the character code tables are given initial values based on the conventional interpretation ofASCII code. These initial values should not be changed when TEX is adapted for use with non-Englishlanguages; all changes to the initialization conventions should be made in format packages, not in TEX itself,so that global interchange of formats is possible.de�ne null font � font basede�ne var code � �70000 fmath code meaning \use the current family" gh Initialize table entries (done by INITEX only) 164 i +�par shape ptr null ; eq type (par shape loc) shape ref ; eq level (par shape loc) level one ;for k output routine loc to toks base + 255 do eqtb [k] eqtb [unde�ned control sequence];box (0) null ; eq type (box base) box ref ; eq level (box base) level one ;for k box base + 1 to box base + 255 do eqtb [k] eqtb [box base];cur font null font ; eq type (cur font loc) data ; eq level (cur font loc) level one ;for k math font base to math font base + 47 do eqtb [k] eqtb [cur font loc];equiv (cat code base) 0; eq type (cat code base) data ; eq level (cat code base) level one ;for k cat code base + 1 to int base � 1 do eqtb [k] eqtb [cat code base];for k 0 to 255 dobegin cat code (k) other char ; math code (k) hi (k); sf code (k) 1000;end;cat code (carriage return) car ret ; cat code (" ") spacer ; cat code ("\") escape ;cat code ("%") comment ; cat code (invalid code) invalid char ; cat code (null code) ignore ;for k "0" to "9" do math code (k) hi (k + var code);for k "A" to "Z" dobegin cat code (k) letter ; cat code (k + "a"� "A") letter ;math code (k) hi (k + var code + }100);math code (k + "a"� "A") hi (k + "a"� "A"+ var code + }100);lc code (k) k + "a"� "A"; lc code (k + "a"� "A") k + "a"� "A";uc code (k) k; uc code (k + "a"� "A") k;sf code (k) 999;end;

x233 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 93233. h Show equivalent n, in region 4 233 i �if n = par shape loc thenbegin print esc ("parshape"); print char ("=");if par shape ptr = null then print char ("0")else print int (info (par shape ptr));endelse if n < toks base thenbegin print cmd chr (assign toks ; n); print char ("=");if equiv (n) 6= null then show token list (link (equiv (n));null ; 32);endelse if n < box base thenbegin print esc ("toks"); print int (n� toks base); print char ("=");if equiv (n) 6= null then show token list (link (equiv (n));null ; 32);endelse if n < cur font loc thenbegin print esc ("box"); print int (n� box base); print char ("=");if equiv (n) = null then print ("void")else begin depth threshold 0; breadth max 1; show node list (equiv (n));end;endelse if n < cat code base then h Show the font identi�er in eqtb [n] 234 ielse h Show the halfword code in eqtb [n] 235 iThis code is used in section 252.234. h Show the font identi�er in eqtb [n] 234 i �begin if n = cur font loc then print ("current font")else if n < math font base + 16 thenbegin print esc ("textfont"); print int (n�math font base);endelse if n < math font base + 32 thenbegin print esc ("scriptfont"); print int (n�math font base � 16);endelse begin print esc("scriptscriptfont"); print int (n�math font base � 32);end;print char ("=");print esc(hash [font id base + equiv (n)]:rh); f that's font id text (equiv (n)) gendThis code is used in section 233.

94 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x235235. h Show the halfword code in eqtb [n] 235 i �if n < math code base thenbegin if n < lc code base thenbegin print esc ("catcode"); print int (n� cat code base);endelse if n < uc code base thenbegin print esc ("lccode"); print int (n� lc code base);endelse if n < sf code base thenbegin print esc ("uccode"); print int (n� uc code base);endelse begin print esc("sfcode"); print int (n� sf code base);end;print char ("="); print int (equiv (n));endelse begin print esc("mathcode"); print int (n�math code base); print char ("=");print int (ho (equiv (n)));endThis code is used in section 233.

x236 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 95236. Region 5 of eqtb contains the integer parameters and registers de�ned here, as well as the del codetable. The latter table di�ers from the cat code : : math code tables that precede it, since delimiter codesare fullword integers while the other kinds of codes occupy at most a halfword. This is what makes region 5di�erent from region 4. We will store the eq level information in an auxiliary array of quarterwords that willbe de�ned later.de�ne pretolerance code = 0 f badness tolerance before hyphenation gde�ne tolerance code = 1 f badness tolerance after hyphenation gde�ne line penalty code = 2 f added to the badness of every line gde�ne hyphen penalty code = 3 f penalty for break after discretionary hyphen gde�ne ex hyphen penalty code = 4 f penalty for break after explicit hyphen gde�ne club penalty code = 5 f penalty for creating a club line gde�ne widow penalty code = 6 f penalty for creating a widow line gde�ne display widow penalty code = 7 f ditto, just before a display gde�ne broken penalty code = 8 f penalty for breaking a page at a broken line gde�ne bin op penalty code = 9 f penalty for breaking after a binary operation gde�ne rel penalty code = 10 f penalty for breaking after a relation gde�ne pre display penalty code = 11 f penalty for breaking just before a displayed formula gde�ne post display penalty code = 12 f penalty for breaking just after a displayed formula gde�ne inter line penalty code = 13 f additional penalty between lines gde�ne double hyphen demerits code = 14 f demerits for double hyphen break gde�ne �nal hyphen demerits code = 15 f demerits for �nal hyphen break gde�ne adj demerits code = 16 f demerits for adjacent incompatible lines gde�ne mag code = 17 fmagni�cation ratio gde�ne delimiter factor code = 18 f ratio for variable-size delimiters gde�ne looseness code = 19 f change in number of lines for a paragraph gde�ne time code = 20 f current time of day gde�ne day code = 21 f current day of the month gde�ne month code = 22 f current month of the year gde�ne year code = 23 f current year of our Lord gde�ne show box breadth code = 24 f nodes per level in show box gde�ne show box depth code = 25 fmaximum level in show box gde�ne hbadness code = 26 f hboxes exceeding this badness will be shown by hpack gde�ne vbadness code = 27 f vboxes exceeding this badness will be shown by vpack gde�ne pausing code = 28 f pause after each line is read from a �le gde�ne tracing online code = 29 f show diagnostic output on terminal gde�ne tracing macros code = 30 f show macros as they are being expanded gde�ne tracing stats code = 31 f show memory usage if TEX knows it gde�ne tracing paragraphs code = 32 f show line-break calculations gde�ne tracing pages code = 33 f show page-break calculations gde�ne tracing output code = 34 f show boxes when they are shipped out gde�ne tracing lost chars code = 35 f show characters that aren't in the font gde�ne tracing commands code = 36 f show command codes at big switch gde�ne tracing restores code = 37 f show equivalents when they are restored gde�ne uc hyph code = 38 f hyphenate words beginning with a capital letter gde�ne output penalty code = 39 f penalty found at current page break gde�ne max dead cycles code = 40 f bound on consecutive dead cycles of output gde�ne hang after code = 41 f hanging indentation changes after this many lines gde�ne oating penalty code = 42 f penalty for insertions heldover after a split gde�ne global defs code = 43 f override \global speci�cations gde�ne cur fam code = 44 f current family gde�ne escape char code = 45 f escape character for token output gde�ne default hyphen char code = 46 f value of \hyphenchar when a font is loaded g

96 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x236de�ne default skew char code = 47 f value of \skewchar when a font is loaded gde�ne end line char code = 48 f character placed at the right end of the bu�er gde�ne new line char code = 49 f character that prints as print ln gde�ne language code = 50 f current hyphenation table gde�ne left hyphen min code = 51 fminimum left hyphenation fragment size gde�ne right hyphen min code = 52 fminimum right hyphenation fragment size gde�ne holding inserts code = 53 f do not remove insertion nodes from \box255gde�ne error context lines code = 54 fmaximum intermediate line pairs shown gde�ne int pars = 55 f total number of integer parameters gde�ne count base = int base + int pars f 256 user \count registers gde�ne del code base = count base + 256 f 256 delimiter code mappings gde�ne dimen base = del code base + 256 f beginning of region 6 gde�ne del code (#) � eqtb [del code base + #]:intde�ne count (#) � eqtb [count base + #]:intde�ne int par (#) � eqtb [int base + #]:int f an integer parameter gde�ne pretolerance � int par (pretolerance code)de�ne tolerance � int par (tolerance code)de�ne line penalty � int par (line penalty code)de�ne hyphen penalty � int par (hyphen penalty code)de�ne ex hyphen penalty � int par (ex hyphen penalty code)de�ne club penalty � int par (club penalty code)de�ne widow penalty � int par (widow penalty code)de�ne display widow penalty � int par (display widow penalty code)de�ne broken penalty � int par (broken penalty code)de�ne bin op penalty � int par (bin op penalty code)de�ne rel penalty � int par (rel penalty code)de�ne pre display penalty � int par (pre display penalty code)de�ne post display penalty � int par (post display penalty code)de�ne inter line penalty � int par (inter line penalty code)de�ne double hyphen demerits � int par (double hyphen demerits code)de�ne �nal hyphen demerits � int par (�nal hyphen demerits code)de�ne adj demerits � int par (adj demerits code)de�ne mag � int par (mag code)de�ne delimiter factor � int par (delimiter factor code)de�ne looseness � int par (looseness code)de�ne time � int par (time code)de�ne day � int par (day code)de�ne month � int par (month code)de�ne year � int par (year code)de�ne show box breadth � int par (show box breadth code)de�ne show box depth � int par (show box depth code)de�ne hbadness � int par (hbadness code)de�ne vbadness � int par (vbadness code)de�ne pausing � int par (pausing code)de�ne tracing online � int par (tracing online code)de�ne tracing macros � int par (tracing macros code)de�ne tracing stats � int par (tracing stats code)de�ne tracing paragraphs � int par (tracing paragraphs code)de�ne tracing pages � int par (tracing pages code)de�ne tracing output � int par (tracing output code)de�ne tracing lost chars � int par (tracing lost chars code)de�ne tracing commands � int par (tracing commands code)

x236 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 97de�ne tracing restores � int par (tracing restores code)de�ne uc hyph � int par (uc hyph code)de�ne output penalty � int par (output penalty code)de�ne max dead cycles � int par (max dead cycles code)de�ne hang after � int par (hang after code)de�ne oating penalty � int par (oating penalty code)de�ne global defs � int par (global defs code)de�ne cur fam � int par (cur fam code)de�ne escape char � int par (escape char code)de�ne default hyphen char � int par (default hyphen char code)de�ne default skew char � int par (default skew char code)de�ne end line char � int par (end line char code)de�ne new line char � int par (new line char code)de�ne language � int par (language code)de�ne left hyphen min � int par (left hyphen min code)de�ne right hyphen min � int par (right hyphen min code)de�ne holding inserts � int par (holding inserts code)de�ne error context lines � int par (error context lines code)hAssign the values depth threshold show box depth and breadth max show box breadth 236 i �depth threshold show box depth ; breadth max show box breadthThis code is used in section 198.

98 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x237237. We can print the symbolic name of an integer parameter as follows.procedure print param (n : integer);begin case n ofpretolerance code : print esc ("pretolerance");tolerance code : print esc("tolerance");line penalty code : print esc ("linepenalty");hyphen penalty code : print esc ("hyphenpenalty");ex hyphen penalty code : print esc("exhyphenpenalty");club penalty code : print esc("clubpenalty");widow penalty code : print esc ("widowpenalty");display widow penalty code : print esc("displaywidowpenalty");broken penalty code : print esc("brokenpenalty");bin op penalty code : print esc("binoppenalty");rel penalty code : print esc("relpenalty");pre display penalty code : print esc("predisplaypenalty");post display penalty code : print esc("postdisplaypenalty");inter line penalty code : print esc("interlinepenalty");double hyphen demerits code : print esc("doublehyphendemerits");�nal hyphen demerits code : print esc("finalhyphendemerits");adj demerits code : print esc("adjdemerits");mag code : print esc("mag");delimiter factor code : print esc("delimiterfactor");looseness code : print esc ("looseness");time code : print esc("time");day code : print esc("day");month code : print esc("month");year code : print esc ("year");show box breadth code : print esc ("showboxbreadth");show box depth code : print esc("showboxdepth");hbadness code : print esc("hbadness");vbadness code : print esc ("vbadness");pausing code : print esc("pausing");tracing online code : print esc("tracingonline");tracing macros code : print esc("tracingmacros");tracing stats code : print esc("tracingstats");tracing paragraphs code : print esc ("tracingparagraphs");tracing pages code : print esc ("tracingpages");tracing output code : print esc("tracingoutput");tracing lost chars code : print esc("tracinglostchars");tracing commands code : print esc("tracingcommands");tracing restores code : print esc ("tracingrestores");uc hyph code : print esc("uchyph");output penalty code : print esc("outputpenalty");max dead cycles code : print esc("maxdeadcycles");hang after code : print esc("hangafter");oating penalty code : print esc("floatingpenalty");global defs code : print esc("globaldefs");cur fam code : print esc("fam");escape char code : print esc("escapechar");default hyphen char code : print esc("defaulthyphenchar");default skew char code : print esc("defaultskewchar");end line char code : print esc("endlinechar");

x237 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 99new line char code : print esc ("newlinechar");language code : print esc("language");left hyphen min code : print esc("lefthyphenmin");right hyphen min code : print esc("righthyphenmin");holding inserts code : print esc("holdinginserts");error context lines code : print esc("errorcontextlines");othercases print ("[unknown integer parameter!]")endcases;end;

100 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x238238. The integer parameter names must be entered into the hash table.hPut each of TEX's primitives into the hash table 226 i +�primitive ("pretolerance"; assign int ; int base + pretolerance code);primitive ("tolerance"; assign int ; int base + tolerance code);primitive ("linepenalty"; assign int ; int base + line penalty code);primitive ("hyphenpenalty"; assign int ; int base + hyphen penalty code);primitive ("exhyphenpenalty"; assign int ; int base + ex hyphen penalty code);primitive ("clubpenalty"; assign int ; int base + club penalty code);primitive ("widowpenalty"; assign int ; int base + widow penalty code);primitive ("displaywidowpenalty"; assign int ; int base + display widow penalty code);primitive ("brokenpenalty"; assign int ; int base + broken penalty code);primitive ("binoppenalty"; assign int ; int base + bin op penalty code);primitive ("relpenalty"; assign int ; int base + rel penalty code);primitive ("predisplaypenalty"; assign int ; int base + pre display penalty code);primitive ("postdisplaypenalty"; assign int ; int base + post display penalty code);primitive ("interlinepenalty"; assign int ; int base + inter line penalty code);primitive ("doublehyphendemerits"; assign int ; int base + double hyphen demerits code);primitive ("finalhyphendemerits"; assign int ; int base + �nal hyphen demerits code);primitive ("adjdemerits"; assign int ; int base + adj demerits code);primitive ("mag"; assign int ; int base +mag code);primitive ("delimiterfactor"; assign int ; int base + delimiter factor code);primitive ("looseness"; assign int ; int base + looseness code);primitive ("time"; assign int ; int base + time code);primitive ("day"; assign int ; int base + day code);primitive ("month"; assign int ; int base +month code);primitive ("year"; assign int ; int base + year code);primitive ("showboxbreadth"; assign int ; int base + show box breadth code);primitive ("showboxdepth"; assign int ; int base + show box depth code);primitive ("hbadness"; assign int ; int base + hbadness code);primitive ("vbadness"; assign int ; int base + vbadness code);primitive ("pausing"; assign int ; int base + pausing code);primitive ("tracingonline"; assign int ; int base + tracing online code);primitive ("tracingmacros"; assign int ; int base + tracing macros code);primitive ("tracingstats"; assign int ; int base + tracing stats code);primitive ("tracingparagraphs"; assign int ; int base + tracing paragraphs code);primitive ("tracingpages"; assign int ; int base + tracing pages code);primitive ("tracingoutput"; assign int ; int base + tracing output code);primitive ("tracinglostchars"; assign int ; int base + tracing lost chars code);primitive ("tracingcommands"; assign int ; int base + tracing commands code);primitive ("tracingrestores"; assign int ; int base + tracing restores code);primitive ("uchyph"; assign int ; int base + uc hyph code);primitive ("outputpenalty"; assign int ; int base + output penalty code);primitive ("maxdeadcycles"; assign int ; int base +max dead cycles code);primitive ("hangafter"; assign int ; int base + hang after code);primitive ("floatingpenalty"; assign int ; int base + oating penalty code);primitive ("globaldefs"; assign int ; int base + global defs code);primitive ("fam"; assign int ; int base + cur fam code);primitive ("escapechar"; assign int ; int base + escape char code);primitive ("defaulthyphenchar"; assign int ; int base + default hyphen char code);primitive ("defaultskewchar"; assign int ; int base + default skew char code);primitive ("endlinechar"; assign int ; int base + end line char code);primitive ("newlinechar"; assign int ; int base + new line char code);

x238 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 101primitive ("language"; assign int ; int base + language code);primitive ("lefthyphenmin"; assign int ; int base + left hyphen min code);primitive ("righthyphenmin"; assign int ; int base + right hyphen min code);primitive ("holdinginserts"; assign int ; int base + holding inserts code);primitive ("errorcontextlines"; assign int ; int base + error context lines code);239. hCases of print cmd chr for symbolic printing of primitives 227 i +�assign int : if chr code < count base then print param (chr code � int base)else begin print esc("count"); print int (chr code � count base);end;240. The integer parameters should really be initialized by a macro package; the following initializationdoes the minimum to keep TEX from complete failure.h Initialize table entries (done by INITEX only) 164 i +�for k int base to del code base � 1 do eqtb [k]:int 0;mag 1000; tolerance 10000; hang after 1; max dead cycles 25; escape char "\";end line char carriage return ;for k 0 to 255 do del code (k) �1;del code (".") 0; f this null delimiter is used in error recovery g241*. The following procedure, which is called just before TEX initializes its input and output, establishesthe initial values of the date and time. Since standard Pascal cannot provide such information, somethingspecial is needed. The program here simply speci�es July 4, 1776, at noon; but users probably want a betterapproximation to the truth.GNU Pascal provides the gpc get time stamp function, which stores the system time in its argument.G de�ne gpc time stamp � t@&i@&m@&e@&s@&t@&a@&m@&pde�ne gpc get time stamp � g@&e@&t@&t@&i@&m@&e@&s@&t@&a@&m@&pde�ne gpc minute � m@&i@&n@&u@&t@&ede�ne gpc hour � h@&o@&u@&rde�ne gpc day � d@&a@&yde�ne gpc month � m@&o@&n@&t@&hde�ne gpc year � y@&e@&a@&rprocedure �x date and time ;var t: gpc time stamp ;begin gpc get time stamp (t); time t:gpc minute + t:gpc hour � 60; fminutes since midnight gday t:gpc day ; month t:gpc month ; year t:gpc year ; fAnno Domini gend;242. h Show equivalent n, in region 5 242 i �begin if n < count base then print param (n� int base)else if n < del code base thenbegin print esc ("count"); print int (n� count base);endelse begin print esc("delcode"); print int (n� del code base);end;print char ("="); print int (eqtb [n]:int);endThis code is used in section 252.

102 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x243243. h Set variable c to the current escape character 243 i �c escape charThis code is used in section 63.244. hCharacter s is the current new-line character 244 i �s = new line charThis code is used in sections 58 and 59.245. TEX is occasionally supposed to print diagnostic information that goes only into the transcript �le,unless tracing online is positive. Here are two routines that adjust the destination of print commands:procedure begin diagnostic ; f prepare to do some tracing gbegin old setting selector ;if (tracing online � 0) ^ (selector = term and log) thenbegin decr (selector);if history = spotless then history warning issued ;end;end;procedure end diagnostic (blank line : boolean); f restore proper conditions after tracing gbegin print nl ("");if blank line then print ln ;selector old setting ;end;246. Of course we had better declare another global variable, if the previous routines are going to work.hGlobal variables 13 i +�old setting : 0 : : max selector ;

x247 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 103247. The �nal region of eqtb contains the dimension parameters de�ned here, and the 256 \dimen registers.de�ne par indent code = 0 f indentation of paragraphs gde�ne math surround code = 1 f space around math in text gde�ne line skip limit code = 2 f threshold for line skip instead of baseline skip gde�ne hsize code = 3 f line width in horizontal mode gde�ne vsize code = 4 f page height in vertical mode gde�ne max depth code = 5 fmaximum depth of boxes on main pages gde�ne split max depth code = 6 fmaximum depth of boxes on split pages gde�ne box max depth code = 7 fmaximum depth of explicit vboxes gde�ne hfuzz code = 8 f tolerance for overfull hbox messages gde�ne vfuzz code = 9 f tolerance for overfull vbox messages gde�ne delimiter shortfall code = 10 fmaximum amount uncovered by variable delimiters gde�ne null delimiter space code = 11 f blank space in null delimiters gde�ne script space code = 12 f extra space after subscript or superscript gde�ne pre display size code = 13 f length of text preceding a display gde�ne display width code = 14 f length of line for displayed equation gde�ne display indent code = 15 f indentation of line for displayed equation gde�ne overfull rule code = 16 fwidth of rule that identi�es overfull hboxes gde�ne hang indent code = 17 f amount of hanging indentation gde�ne h o�set code = 18 f amount of horizontal o�set when shipping pages out gde�ne v o�set code = 19 f amount of vertical o�set when shipping pages out gde�ne emergency stretch code = 20 f reduces badnesses on �nal pass of line-breaking gde�ne dimen pars = 21 f total number of dimension parameters gde�ne scaled base = dimen base + dimen pars f table of 256 user-de�ned \dimen registers gde�ne eqtb size = scaled base + 255 f largest subscript of eqtb gde�ne dimen (#) � eqtb [scaled base + #]:scde�ne dimen par (#) � eqtb [dimen base + #]:sc f a scaled quantity gde�ne par indent � dimen par (par indent code)de�ne math surround � dimen par (math surround code)de�ne line skip limit � dimen par (line skip limit code)de�ne hsize � dimen par (hsize code)de�ne vsize � dimen par (vsize code)de�ne max depth � dimen par (max depth code)de�ne split max depth � dimen par (split max depth code)de�ne box max depth � dimen par (box max depth code)de�ne hfuzz � dimen par (hfuzz code)de�ne vfuzz � dimen par (vfuzz code)de�ne delimiter shortfall � dimen par (delimiter shortfall code)de�ne null delimiter space � dimen par (null delimiter space code)de�ne script space � dimen par (script space code)de�ne pre display size � dimen par (pre display size code)de�ne display width � dimen par (display width code)de�ne display indent � dimen par (display indent code)de�ne overfull rule � dimen par (overfull rule code)de�ne hang indent � dimen par (hang indent code)de�ne h o�set � dimen par (h o�set code)de�ne v o�set � dimen par (v o�set code)de�ne emergency stretch � dimen par (emergency stretch code)procedure print length param (n : integer);begin case n ofpar indent code : print esc("parindent");math surround code : print esc("mathsurround");

104 PART 17: THE TABLE OF EQUIVALENTS TEXGPC x247line skip limit code : print esc("lineskiplimit");hsize code : print esc("hsize");vsize code : print esc ("vsize");max depth code : print esc("maxdepth");split max depth code : print esc ("splitmaxdepth");box max depth code : print esc("boxmaxdepth");hfuzz code : print esc("hfuzz");vfuzz code : print esc("vfuzz");delimiter shortfall code : print esc("delimitershortfall");null delimiter space code : print esc("nulldelimiterspace");script space code : print esc ("scriptspace");pre display size code : print esc("predisplaysize");display width code : print esc ("displaywidth");display indent code : print esc ("displayindent");overfull rule code : print esc("overfullrule");hang indent code : print esc("hangindent");h o�set code : print esc("hoffset");v o�set code : print esc ("voffset");emergency stretch code : print esc ("emergencystretch");othercases print ("[unknown dimen parameter!]")endcases;end;248. hPut each of TEX's primitives into the hash table 226 i +�primitive ("parindent"; assign dimen ; dimen base + par indent code);primitive ("mathsurround"; assign dimen ; dimen base +math surround code);primitive ("lineskiplimit"; assign dimen ; dimen base + line skip limit code);primitive ("hsize"; assign dimen ; dimen base + hsize code);primitive ("vsize"; assign dimen ; dimen base + vsize code);primitive ("maxdepth"; assign dimen ; dimen base +max depth code);primitive ("splitmaxdepth"; assign dimen ; dimen base + split max depth code);primitive ("boxmaxdepth"; assign dimen ; dimen base + box max depth code);primitive ("hfuzz"; assign dimen ; dimen base + hfuzz code);primitive ("vfuzz"; assign dimen ; dimen base + vfuzz code);primitive ("delimitershortfall"; assign dimen ; dimen base + delimiter shortfall code);primitive ("nulldelimiterspace"; assign dimen ; dimen base + null delimiter space code);primitive ("scriptspace"; assign dimen ; dimen base + script space code);primitive ("predisplaysize"; assign dimen ; dimen base + pre display size code);primitive ("displaywidth"; assign dimen ; dimen base + display width code);primitive ("displayindent"; assign dimen ; dimen base + display indent code);primitive ("overfullrule"; assign dimen ; dimen base + overfull rule code);primitive ("hangindent"; assign dimen ; dimen base + hang indent code);primitive ("hoffset"; assign dimen ; dimen base + h o�set code);primitive ("voffset"; assign dimen ; dimen base + v o�set code);primitive ("emergencystretch"; assign dimen ; dimen base + emergency stretch code);249. hCases of print cmd chr for symbolic printing of primitives 227 i +�assign dimen : if chr code < scaled base then print length param (chr code � dimen base)else begin print esc("dimen"); print int (chr code � scaled base);end;

x250 TEXGPC PART 17: THE TABLE OF EQUIVALENTS 105250. h Initialize table entries (done by INITEX only) 164 i +�for k dimen base to eqtb size do eqtb [k]:sc 0;251. h Show equivalent n, in region 6 251 i �begin if n < scaled base then print length param (n� dimen base)else begin print esc("dimen"); print int (n� scaled base);end;print char ("="); print scaled (eqtb [n]:sc); print ("pt");endThis code is used in section 252.252. Here is a procedure that displays the contents of eqtb [n] symbolically.hDeclare the procedure called print cmd chr 298 istat procedure show eqtb (n : pointer);begin if n < active base then print char ("?") f this can't happen gelse if n < glue base then h Show equivalent n, in region 1 or 2 223 ielse if n < local base then h Show equivalent n, in region 3 229 ielse if n < int base then h Show equivalent n, in region 4 233 ielse if n < dimen base then h Show equivalent n, in region 5 242 ielse if n � eqtb size then h Show equivalent n, in region 6 251 ielse print char ("?"); f this can't happen either gend;tats253. The last two regions of eqtb have fullword values instead of the three �elds eq level , eq type , andequiv . An eq type is unnecessary, but TEX needs to store the eq level information in another array calledxeq level .hGlobal variables 13 i +�eqtb : array [active base : : eqtb size] of memory word ;xeq level : array [int base : : eqtb size] of quarterword ;254. h Set initial values of key variables 21 i +�for k int base to eqtb size do xeq level [k] level one ;255. When the debugging routine search mem is looking for pointers having a given value, it is interestedonly in regions 1 to 3 of eqtb , and in the �rst part of region 4.h Search eqtb for equivalents equal to p 255 i �for q active base to box base + 255 dobegin if equiv (q) = p thenbegin print nl ("EQUIV("); print int (q); print char (")");end;endThis code is used in section 172.

106 PART 18: THE HASH TABLE TEXGPC x256256. The hash table. Control sequences are stored and retrieved by means of a fairly standard hashtable algorithm called the method of \coalescing lists" (cf. Algorithm 6.4C in The Art of Computer Pro-gramming). Once a control sequence enters the table, it is never removed, because there are complicatedsituations involving \gdef where the removal of a control sequence at the end of a group would be a mistakepreventable only by the introduction of a complicated reference-count mechanism.The actual sequence of letters forming a control sequence identi�er is stored in the str pool array togetherwith all the other strings. An auxiliary array hash consists of items with two halfword �elds per word. The�rst of these, called next (p), points to the next identi�er belonging to the same coalesced list as the identi�ercorresponding to p; and the other, called text (p), points to the str start entry for p's identi�er. If position pof the hash table is empty, we have text (p) = 0; if position p is either empty or the end of a coalesced hashlist, we have next (p) = 0. An auxiliary pointer variable called hash used is maintained in such a way thatall locations p � hash used are nonempty. The global variable cs count tells how many multiletter controlsequences have been de�ned, if statistics are being kept.A global boolean variable called no new control sequence is set to true during the time that new hashtable entries are forbidden.de�ne next (#) � hash [#]:lh f link for coalesced lists gde�ne text (#) � hash [#]:rh f string number for control sequence name gde�ne hash is full � (hash used = hash base) f test if all positions are occupied gde�ne font id text (#) � text (font id base + #) f a frozen font identi�er's name ghGlobal variables 13 i +�hash : array [hash base : : unde�ned control sequence � 1] of two halves ; f the hash table ghash used : pointer ; f allocation pointer for hash gno new control sequence : boolean ; f are new identi�ers legal? gcs count : integer ; f total number of known identi�ers g257. h Set initial values of key variables 21 i +�no new control sequence true ; f new identi�ers are usually forbidden gnext (hash base) 0; text (hash base) 0;for k hash base + 1 to unde�ned control sequence � 1 do hash [k] hash [hash base];258. h Initialize table entries (done by INITEX only) 164 i +�hash used frozen control sequence ; f nothing is used gcs count 0; eq type (frozen dont expand) dont expand ;text (frozen dont expand) "notexpanded:";

x259 TEXGPC PART 18: THE HASH TABLE 107259. Here is the subroutine that searches the hash table for an identi�er that matches a given string oflength l > 1 appearing in bu�er [j : : (j + l � 1)]. If the identi�er is found, the corresponding hash tableaddress is returned. Otherwise, if the global variable no new control sequence is true , the dummy addressunde�ned control sequence is returned. Otherwise the identi�er is inserted into the hash table and its locationis returned.function id lookup (j; l : integer): pointer ; f search the hash table glabel found ; f go here if you found it gvar h: integer ; f hash code gd: integer ; f number of characters in incomplete current string gp: pointer ; f index in hash array gk: pointer ; f index in bu�er array gbegin hCompute the hash code h 261 i;p h+ hash base ; fwe start searching here; note that 0 � h < hash prime gloop begin if text (p) > 0 thenif length (text (p)) = l thenif str eq buf (text (p); j) then goto found ;if next (p) = 0 thenbegin if no new control sequence then p unde�ned control sequenceelse h Insert a new control sequence after p, then make p point to it 260 i;goto found ;end;p next (p);end;found : id lookup p;end;260. h Insert a new control sequence after p, then make p point to it 260 i �begin if text (p) > 0 thenbegin repeat if hash is full then overow ("hash size"; hash size);decr (hash used);until text (hash used) = 0; f search for an empty location in hash gnext (p) hash used ; p hash used ;end;str room (l); d cur length ;while pool ptr > str start [str ptr] dobegin decr (pool ptr); str pool [pool ptr + l] str pool [pool ptr];end; fmove current string up to make room for another gfor k j to j + l � 1 do append char (bu�er [k]);text (p) make string ; pool ptr pool ptr + d;stat incr (cs count); tatsendThis code is used in section 259.

108 PART 18: THE HASH TABLE TEXGPC x261261. The value of hash prime should be roughly 85% of hash size , and it should be a prime number. Thetheory of hashing tells us to expect fewer than two table probes, on the average, when the search is successful.[See J. S. Vitter, Journal of the ACM 30 (1983), 231{258.]hCompute the hash code h 261 i �h bu�er [j];for k j + 1 to j + l � 1 dobegin h h+ h+ bu�er [k];while h � hash prime do h h� hash prime ;endThis code is used in section 259.262. Single-character control sequences do not need to be looked up in a hash table, since we can usethe character code itself as a direct address. The procedure print cs prints the name of a control sequence,given a pointer to its address in eqtb . A space is printed after the name unless it is a single nonletter or anactive character. This procedure might be invoked with invalid data, so it is \extra robust." The individualcharacters must be printed one at a time using print , since they may be unprintable.hBasic printing procedures 57 i +�procedure print cs (p : integer); f prints a purported control sequence gbegin if p < hash base then f single character gif p � single base thenif p = null cs thenbegin print esc ("csname"); print esc("endcsname");endelse begin print esc(p� single base);if cat code (p� single base) = letter then print char (" ");endelse if p < active base then print esc("IMPOSSIBLE.")else print (p� active base)else if p � unde�ned control sequence then print esc("IMPOSSIBLE.")else if (text (p) < 0) _ (text (p) � str ptr) then print esc("NONEXISTENT.")else begin print esc(text (p)); print char (" ");end;end;263. Here is a similar procedure; it avoids the error checks, and it never prints a space after the controlsequence.hBasic printing procedures 57 i +�procedure sprint cs (p : pointer); f prints a control sequence gbegin if p < hash base thenif p < single base then print (p� active base)else if p < null cs then print esc(p� single base)else begin print esc("csname"); print esc("endcsname");endelse print esc (text (p));end;

x264 TEXGPC PART 18: THE HASH TABLE 109264. We need to put TEX's \primitive" control sequences into the hash table, together with their commandcode (which will be the eq type) and an operand (which will be the equiv). The primitive procedure doesthis, in a way that no TEX user can. The global value cur val contains the new eqtb pointer after primitivehas acted.init procedure primitive (s : str number ; c : quarterword ; o : halfword);var k: pool pointer ; f index into str pool gj: small number ; f index into bu�er gl: small number ; f length of the string gbegin if s < 256 then cur val s+ single baseelse begin k str start [s]; l str start [s+ 1]� k; fwe will move s into the (empty) bu�er gfor j 0 to l � 1 do bu�er [j] so (str pool [k + j]);cur val id lookup (0; l); fno new control sequence is false gush string ; text (cur val) s; fwe don't want to have the string twice gend;eq level (cur val) level one ; eq type (cur val) c; equiv (cur val) o;end;tini

110 PART 18: THE HASH TABLE TEXGPC x265265. Many of TEX's primitives need no equiv , since they are identi�able by their eq type alone. Theseprimitives are loaded into the hash table as follows:hPut each of TEX's primitives into the hash table 226 i +�primitive (" "; ex space ; 0);primitive ("/"; ital corr ; 0);primitive ("accent"; accent ; 0);primitive ("advance"; advance ; 0);primitive ("afterassignment"; after assignment ; 0);primitive ("aftergroup"; after group ; 0);primitive ("begingroup"; begin group ; 0);primitive ("char"; char num ; 0);primitive ("csname"; cs name ; 0);primitive ("delimiter"; delim num ; 0);primitive ("divide"; divide ; 0);primitive ("endcsname"; end cs name ; 0);primitive ("endgroup"; end group ; 0); text (frozen end group) "endgroup";eqtb [frozen end group] eqtb [cur val];primitive ("expandafter"; expand after ; 0);primitive ("font"; def font ; 0);primitive ("fontdimen"; assign font dimen ; 0);primitive ("halign"; halign ; 0);primitive ("hrule"; hrule ; 0);primitive ("ignorespaces"; ignore spaces ; 0);primitive ("insert"; insert ; 0);primitive ("mark";mark ; 0);primitive ("mathaccent";math accent ; 0);primitive ("mathchar";math char num ; 0);primitive ("mathchoice";math choice ; 0);primitive ("multiply";multiply ; 0);primitive ("noalign";no align ; 0);primitive ("noboundary";no boundary ; 0);primitive ("noexpand";no expand ; 0);primitive ("nonscript";non script ; 0);primitive ("omit"; omit ; 0);primitive ("parshape"; set shape ; 0);primitive ("penalty"; break penalty ; 0);primitive ("prevgraf"; set prev graf ; 0);primitive ("radical"; radical ; 0);primitive ("read"; read to cs ; 0);primitive ("relax"; relax ; 256); f cf. scan �le name gtext (frozen relax) "relax"; eqtb [frozen relax] eqtb [cur val];primitive ("setbox"; set box ; 0);primitive ("the"; the ; 0);primitive ("toks"; toks register ; 0);primitive ("vadjust"; vadjust ; 0);primitive ("valign"; valign ; 0);primitive ("vcenter"; vcenter ; 0);primitive ("vrule"; vrule ; 0);

x266 TEXGPC PART 18: THE HASH TABLE 111266. Each primitive has a corresponding inverse, so that it is possible to display the cryptic numericcontents of eqtb in symbolic form. Every call of primitive in this program is therefore accompanied by somestraightforward code that forms part of the print cmd chr routine below.hCases of print cmd chr for symbolic printing of primitives 227 i +�accent : print esc("accent");advance : print esc("advance");after assignment : print esc("afterassignment");after group : print esc("aftergroup");assign font dimen : print esc("fontdimen");begin group : print esc ("begingroup");break penalty : print esc("penalty");char num : print esc("char");cs name : print esc("csname");def font : print esc("font");delim num : print esc ("delimiter");divide : print esc ("divide");end cs name : print esc("endcsname");end group : print esc("endgroup");ex space : print esc (" ");expand after : print esc("expandafter");halign : print esc("halign");hrule : print esc("hrule");ignore spaces : print esc("ignorespaces");insert : print esc("insert");ital corr : print esc("/");mark : print esc("mark");math accent : print esc("mathaccent");math char num : print esc("mathchar");math choice : print esc("mathchoice");multiply : print esc("multiply");no align : print esc("noalign");no boundary : print esc("noboundary");no expand : print esc("noexpand");non script : print esc("nonscript");omit : print esc ("omit");radical : print esc ("radical");read to cs : print esc("read");relax : print esc("relax");set box : print esc("setbox");set prev graf : print esc("prevgraf");set shape : print esc("parshape");the : print esc ("the");toks register : print esc("toks");vadjust : print esc("vadjust");valign : print esc("valign");vcenter : print esc("vcenter");vrule : print esc ("vrule");

112 PART 18: THE HASH TABLE TEXGPC x267267. We will deal with the other primitives later, at some point in the program where their eq type andequiv values are more meaningful. For example, the primitives for math mode will be loaded when weconsider the routines that deal with formulas. It is easy to �nd where each particular primitive was treatedby looking in the index at the end; for example, the section where "radical" entered eqtb is listed under`\radical primitive'. (Primitives consisting of a single nonalphabetic character, like `\/', are listed under`Single-character primitives'.)Meanwhile, this is a convenient place to catch up on something we were unable to do before the hash tablewas de�ned:hPrint the font identi�er for font (p) 267 i �print esc(font id text (font (p)))This code is used in sections 174 and 176.

x268 TEXGPC PART 19: SAVING AND RESTORING EQUIVALENTS 113268. Saving and restoring equivalents. The nested structure provided by `{ : : :}' groups in TEXmeans that eqtb entries valid in outer groups should be saved and restored later if they are overridden insidethe braces. When a new eqtb value is being assigned, the program therefore checks to see if the previousentry belongs to an outer level. In such a case, the old value is placed on the save stack just before the newvalue enters eqtb . At the end of a grouping level, i.e., when the right brace is sensed, the save stack is usedto restore the outer values, and the inner ones are destroyed.Entries on the save stack are of type memory word . The top item on this stack is save stack [p], wherep = save ptr � 1; it contains three �elds called save type , save level , and save index , and it is interpreted inone of four ways:1) If save type (p) = restore old value , then save index (p) is a location in eqtb whose current value shouldbe destroyed at the end of the current group and replaced by save stack [p � 1]. Furthermore ifsave index (p) � int base , then save level (p) should replace the corresponding entry in xeq level .2) If save type (p) = restore zero , then save index (p) is a location in eqtb whose current value should bedestroyed at the end of the current group, when it should be replaced by the current value ofeqtb [unde�ned control sequence].3) If save type (p) = insert token , then save index (p) is a token that should be inserted into TEX's inputwhen the current group ends.4) If save type (p) = level boundary , then save level (p) is a code explaining what kind of group we werepreviously in, and save index (p) points to the level boundary word at the bottom of the entries forthat group.de�ne save type (#) � save stack [#]:hh :b0 f classi�es a save stack entry gde�ne save level (#) � save stack [#]:hh :b1 f saved level for regions 5 and 6, or group code gde�ne save index (#) � save stack [#]:hh :rh f eqtb location or token or save stack location gde�ne restore old value = 0 f save type when a value should be restored later gde�ne restore zero = 1 f save type when an unde�ned entry should be restored gde�ne insert token = 2 f save type when a token is being saved for later use gde�ne level boundary = 3 f save type corresponding to beginning of group g

114 PART 19: SAVING AND RESTORING EQUIVALENTS TEXGPC x269269. Here are the group codes that are used to discriminate between di�erent kinds of groups. They allowTEX to decide what special actions, if any, should be performed when a group ends.Some groups are not supposed to be ended by right braces. For example, the `$' that begins a mathformula causes a math shift group to be started, and this should be terminated by a matching `$'. Similarly,a group that starts with \left should end with \right, and one that starts with \begingroup should endwith \endgroup.de�ne bottom level = 0 f group code for the outside world gde�ne simple group = 1 f group code for local structure only gde�ne hbox group = 2 f code for `\hbox{...}' gde�ne adjusted hbox group = 3 f code for `\hbox{...}' in vertical mode gde�ne vbox group = 4 f code for `\vbox{...}' gde�ne vtop group = 5 f code for `\vtop{...}' gde�ne align group = 6 f code for `\halign{...}', `\valign{...}' gde�ne no align group = 7 f code for `\noalign{...}' gde�ne output group = 8 f code for output routine gde�ne math group = 9 f code for, e.g., `^{...}' gde�ne disc group = 10 f code for `\discretionary{...}{...}{...}' gde�ne insert group = 11 f code for `\insert{...}', `\vadjust{...}' gde�ne vcenter group = 12 f code for `\vcenter{...}' gde�ne math choice group = 13 f code for `\mathchoice{...}{...}{...}{...}' gde�ne semi simple group = 14 f code for `\begingroup...\endgroup' gde�ne math shift group = 15 f code for `$...$' gde�ne math left group = 16 f code for `\left...\right' gde�ne max group code = 16hTypes in the outer block 18 i +�group code = 0 : : max group code ; f save level for a level boundary g270. The global variable cur group keeps track of what sort of group we are currently in. Another globalvariable, cur boundary , points to the topmost level boundary word. And cur level is the current depth ofnesting. The routines are designed to preserve the condition that no entry in the save stack or in eqtb everhas a level greater than cur level .271. hGlobal variables 13 i +�save stack : array [0 : : save size] of memory word ;save ptr : 0 : : save size ; f �rst unused entry on save stack gmax save stack : 0 : : save size ; fmaximum usage of save stack gcur level : quarterword ; f current nesting level for groups gcur group : group code ; f current group type gcur boundary : 0 : : save size ; fwhere the current level begins g272. At this time it might be a good idea for the reader to review the introduction to eqtb that was givenabove just before the long lists of parameter names. Recall that the \outer level" of the program is level one ,since unde�ned control sequences are assumed to be \de�ned" at level zero .h Set initial values of key variables 21 i +�save ptr 0; cur level level one ; cur group bottom level ; cur boundary 0; max save stack 0;

x273 TEXGPC PART 19: SAVING AND RESTORING EQUIVALENTS 115273. The following macro is used to test if there is room for up to six more entries on save stack . Bymaking a conservative test like this, we can get by with testing for overow in only a few places.de�ne check full save stack �if save ptr > max save stack thenbegin max save stack save ptr ;if max save stack > save size � 6 then overow ("save size"; save size);end274. Procedure new save level is called when a group begins. The argument is a group identi�cation codelike `hbox group '. After calling this routine, it is safe to put �ve more entries on save stack .In some cases integer-valued items are placed onto the save stack just below a level boundary word, becausethis is a convenient place to keep information that is supposed to \pop up" just when the group has �nished.For example, when `\hbox to 100pt{...}' is being treated, the 100pt dimension is stored on save stackjust before new save level is called.We use the notation saved (k) to stand for an integer item that appears in location save ptr + k of thesave stack.de�ne saved (#) � save stack [save ptr + #]:intprocedure new save level (c : group code); f begin a new level of grouping gbegin check full save stack ; save type (save ptr) level boundary ; save level (save ptr) cur group ;save index (save ptr) cur boundary ;if cur level = max quarterword thenoverow ("grouping levels";max quarterword �min quarterword);f quit if (cur level + 1) is too big to be stored in eqtb gcur boundary save ptr ; incr (cur level); incr (save ptr); cur group c;end;275. Just before an entry of eqtb is changed, the following procedure should be called to update the otherdata structures properly. It is important to keep in mind that reference counts in mem include referencesfrom within save stack , so these counts must be handled carefully.procedure eq destroy (w : memory word); f gets ready to forget w gvar q: pointer ; f equiv �eld of w gbegin case eq type �eld (w) ofcall ; long call ; outer call ; long outer call : delete token ref (equiv �eld (w));glue ref : delete glue ref (equiv �eld (w));shape ref : begin q equiv �eld (w); fwe need to free a \parshape block gif q 6= null then free node (q; info (q) + info (q) + 1);end; f such a block is 2n+ 1 words long, where n = info (q) gbox ref : ush node list (equiv �eld (w));othercases do nothingendcases;end;276. To save a value of eqtb [p] that was established at level l, we can use the following subroutine.procedure eq save (p : pointer ; l : quarterword); f saves eqtb [p] gbegin check full save stack ;if l = level zero then save type (save ptr) restore zeroelse begin save stack [save ptr] eqtb [p]; incr (save ptr); save type (save ptr) restore old value ;end;save level (save ptr) l; save index (save ptr) p; incr (save ptr);end;

116 PART 19: SAVING AND RESTORING EQUIVALENTS TEXGPC x277277. The procedure eq de�ne de�nes an eqtb entry having speci�ed eq type and equiv �elds, and saves theformer value if appropriate. This procedure is used only for entries in the �rst four regions of eqtb , i.e., onlyfor entries that have eq type and equiv �elds. After calling this routine, it is safe to put four more entrieson save stack , provided that there was room for four more entries before the call, since eq save makes thenecessary test.procedure eq de�ne (p : pointer ; t : quarterword ; e : halfword); f new data for eqtb gbegin if eq level (p) = cur level then eq destroy (eqtb [p])else if cur level > level one then eq save (p; eq level (p));eq level (p) cur level ; eq type (p) t; equiv (p) e;end;278. The counterpart of eq de�ne for the remaining (fullword) positions in eqtb is called eq word de�ne .Since xeq level [p] � level one for all p, a `restore zero ' will never be used in this case.procedure eq word de�ne (p : pointer ; w : integer);begin if xeq level [p] 6= cur level thenbegin eq save (p; xeq level [p]); xeq level [p] cur level ;end;eqtb [p]:int w;end;279. The eq de�ne and eq word de�ne routines take care of local de�nitions. Global de�nitions are done inalmost the same way, but there is no need to save old values, and the new value is associated with level one .procedure geq de�ne (p : pointer ; t : quarterword ; e : halfword); f global eq de�ne gbegin eq destroy (eqtb [p]); eq level (p) level one ; eq type (p) t; equiv (p) e;end;procedure geq word de�ne (p : pointer ; w : integer); f global eq word de�ne gbegin eqtb [p]:int w; xeq level [p] level one ;end;280. Subroutine save for after puts a token on the stack for save-keeping.procedure save for after (t : halfword);begin if cur level > level one thenbegin check full save stack ; save type (save ptr) insert token ; save level (save ptr) level zero ;save index (save ptr) t; incr (save ptr);end;end;281. The unsave routine goes the other way, taking items o� of save stack . This routine takes care ofrestoration when a level ends; everything belonging to the topmost group is cleared o� of the save stack.hDeclare the procedure called restore trace 284 iprocedure back input ; forward ;procedure unsave ; f pops the top level o� the save stack glabel done ;var p: pointer ; f position to be restored gl: quarterword ; f saved level, if in fullword regions of eqtb gt: halfword ; f saved value of cur tok gbegin if cur level > level one thenbegin decr (cur level); hClear o� top level from save stack 282 i;endelse confusion ("curlevel"); f unsave is not used when cur group = bottom level gend;

x282 TEXGPC PART 19: SAVING AND RESTORING EQUIVALENTS 117282. hClear o� top level from save stack 282 i �loop begin decr (save ptr);if save type (save ptr) = level boundary then goto done ;p save index (save ptr);if save type (save ptr) = insert token then h Insert token p into TEX's input 326 ielse begin if save type (save ptr) = restore old value thenbegin l save level (save ptr); decr (save ptr);endelse save stack [save ptr] eqtb [unde�ned control sequence];h Store save stack [save ptr] in eqtb [p], unless eqtb [p] holds a global value 283 i;end;end;done : cur group save level (save ptr); cur boundary save index (save ptr)This code is used in section 281.283. A global de�nition, which sets the level to level one , will not be undone by unsave . If at least oneglobal de�nition of eqtb [p] has been carried out within the group that just ended, the last such de�nitionwill therefore survive.h Store save stack [save ptr] in eqtb [p], unless eqtb [p] holds a global value 283 i �if p < int base thenif eq level (p) = level one thenbegin eq destroy (save stack [save ptr]); f destroy the saved value gstat if tracing restores > 0 then restore trace (p; "retaining");tatsendelse begin eq destroy (eqtb [p]); f destroy the current value geqtb [p] save stack [save ptr]; f restore the saved value gstat if tracing restores > 0 then restore trace (p; "restoring");tatsendelse if xeq level [p] 6= level one thenbegin eqtb [p] save stack [save ptr]; xeq level [p] l;stat if tracing restores > 0 then restore trace (p; "restoring");tatsendelse begin stat if tracing restores > 0 then restore trace (p; "retaining");tatsendThis code is used in section 282.284. hDeclare the procedure called restore trace 284 i �stat procedure restore trace (p : pointer ; s : str number); f eqtb [p] has just been restored or retained gbegin begin diagnostic ; print char ("{"); print (s); print char (" "); show eqtb (p); print char ("}");end diagnostic (false);end;tatsThis code is used in section 281.

118 PART 19: SAVING AND RESTORING EQUIVALENTS TEXGPC x285285. When looking for possible pointers to a memory location, it is helpful to look for references from eqtbthat might be waiting on the save stack. Of course, we might �nd spurious pointers too; but this routine ismerely an aid when debugging, and at such times we are grateful for any scraps of information, even if theyprove to be irrelevant.h Search save stack for equivalents that point to p 285 i �if save ptr > 0 thenfor q 0 to save ptr � 1 dobegin if equiv �eld (save stack [q]) = p thenbegin print nl ("SAVE("); print int (q); print char (")");end;endThis code is used in section 172.286. Most of the parameters kept in eqtb can be changed freely, but there's an exception: The magni�cationshould not be used with two di�erent values during any TEX job, since a single magni�cation is applied toan entire run. The global variable mag set is set to the current magni�cation whenever it becomes necessaryto \freeze" it at a particular value.hGlobal variables 13 i +�mag set : integer ; f if nonzero, this magni�cation should be used henceforth g287. h Set initial values of key variables 21 i +�mag set 0;288. The prepare mag subroutine is called whenever TEX wants to use mag for magni�cation.procedure prepare mag ;begin if (mag set > 0) ^ (mag 6= mag set) thenbegin print err ("Incompatible magnification ("); print int (mag); print (");");print nl (" the previous value will be retained");help2 ("I can handle only one magnification ratio per job. So I�ve")("reverted to the magnification you used earlier on this run.");int error (mag set); geq word de�ne (int base +mag code ;mag set); fmag mag set gend;if (mag � 0) _ (mag > 32768) thenbegin print err ("Illegal magnification has been changed to 1000");help1 ("The magnification ratio must be between 1 and 32768."); int error (mag);geq word de�ne (int base +mag code ; 1000);end;mag set mag ;end;

x289 TEXGPC PART 20: TOKEN LISTS 119289. Token lists. A TEX token is either a character or a control sequence, and it is represented internallyin one of two ways: (1) A character whose ASCII code number is c and whose command code is m isrepresented as the number 28m+ c; the command code is in the range 1 � m � 14. (2) A control sequencewhose eqtb address is p is represented as the number cs token ag +p. Here cs token ag = 212 � 1 is largerthan 28m+ c, yet it is small enough that cs token ag + p < max halfword ; thus, a token �ts comfortablyin a halfword.A token t represents a left brace command if and only if t < left brace limit ; it represents a right bracecommand if and only if we have left brace limit � t < right brace limit ; and it represents a match orend match command if and only if match token � t � end match token . The following de�nitions take careof these token-oriented constants and a few others.de�ne cs token ag � �7777 f amount added to the eqtb location in a token that stands for a controlsequence; is a multiple of 256, less 1 gde�ne left brace token = �0400 f 28 � left brace gde�ne left brace limit = �1000 f 28 � (left brace + 1) gde�ne right brace token = �1000 f 28 � right brace gde�ne right brace limit = �1400 f 28 � (right brace + 1) gde�ne math shift token = �1400 f 28 �math shift gde�ne tab token = �2000 f 28 � tab mark gde�ne out param token = �2400 f 28 � out param gde�ne space token = �5040 f 28 � spacer + " "gde�ne letter token = �5400 f 28 � letter gde�ne other token = �6000 f 28 � other char gde�ne match token = �6400 f 28 �match gde�ne end match token = �7000 f 28 � end match g290. hCheck the \constant" values for consistency 14 i +�if cs token ag + unde�ned control sequence > max halfword then bad 21;

120 PART 20: TOKEN LISTS TEXGPC x291291. A token list is a singly linked list of one-word nodes in mem , where each word contains a tokenand a link. Macro de�nitions, output-routine de�nitions, marks, \write texts, and a few other things areremembered by TEX in the form of token lists, usually preceded by a node with a reference count in itstoken ref count �eld. The token stored in location p is called info (p).Three special commands appear in the token lists of macro de�nitions. When m = match , it meansthat TEX should scan a parameter for the current macro; when m = end match , it means that parametermatching should end and TEX should start reading the macro text; and when m = out param , it means thatTEX should insert parameter number c into the text at this point.The enclosing { and } characters of a macro de�nition are omitted, but the �nal right brace of an outputroutine is included at the end of its token list.Here is an example macro de�nition that illustrates these conventions. After TEX processes the text\def\mac a#1#2 \b {#1\-a ##1#2 #2}the de�nition of \mac is represented as a token list containing(reference count), letter a, match #, match #, spacer , \b, end match ,out param 1, \-, letter a, spacer , mac param #, other char 1,out param 2, spacer , out param 2.The procedure scan toks builds such token lists, and macro call does the parameter matching.Examples such as \def\m{\def\m{a} b}explain why reference counts would be needed even if TEX had no \let operation: When the token list for\m is being read, the rede�nition of \m changes the eqtb entry before the token list has been fully consumed,so we dare not simply destroy a token list when its control sequence is being rede�ned.If the parameter-matching part of a de�nition ends with `#{', the corresponding token list will have `{'just before the `end match ' and also at the very end. The �rst `{' is used to delimit the parameter; thesecond one keeps the �rst from disappearing.

x292 TEXGPC PART 20: TOKEN LISTS 121292. The procedure show token list , which prints a symbolic form of the token list that starts at a givennode p, illustrates these conventions. The token list being displayed should not begin with a reference count.However, the procedure is intended to be robust, so that if the memory links are awry or if p is not really apointer to a token list, nothing catastrophic will happen.An additional parameter q is also given; this parameter is either null or it points to a node in the tokenlist where a certain magic computation takes place that will be explained later. (Basically, q is non-nullwhen we are printing the two-line context information at the time of an error message; q marks the placecorresponding to where the second line should begin.)For example, if p points to the node containing the �rst a in the token list above, then show token listwill print the string `a#1#2 \b ->#1\-a ##1#2 #2';and if q points to the node containing the second a, the magic computation will be performed just beforethe second a is printed.The generation will stop, and `\ETC.' will be printed, if the length of printing exceeds a given limit l.Anomalous entries are printed in the form of control sequences that are not followed by a blank space, e.g.,`\BAD.'; this cannot be confused with actual control sequences because a real control sequence named BADwould come out `\BAD '.hDeclare the procedure called show token list 292 i �procedure show token list (p; q : integer ; l : integer);label exit ;var m; c: integer ; f pieces of a token gmatch chr : ASCII code ; f character used in a `match ' gn: ASCII code ; f the highest parameter number, as an ASCII digit gbegin match chr "#"; n "0"; tally 0;while (p 6= null) ^ (tally < l) dobegin if p = q then hDo magic computation 320 i;hDisplay token p, and return if there are problems 293 i;p link (p);end;if p 6= null then print esc("ETC.");exit : end;This code is used in section 119.293. hDisplay token p, and return if there are problems 293 i �if (p < hi mem min) _ (p > mem end) thenbegin print esc ("CLOBBERED."); return;end;if info (p) � cs token ag then print cs (info (p)� cs token ag)else begin m info (p) div �400 ; c info (p)mod �400 ;if info (p) < 0 then print esc("BAD.")else hDisplay the token (m; c) 294 i;endThis code is used in section 292.

122 PART 20: TOKEN LISTS TEXGPC x294294. The procedure usually \learns" the character code used for macro parameters by seeing one in amatch command before it runs into any out param commands.hDisplay the token (m; c) 294 i �case m ofleft brace ; right brace ;math shift ; tab mark ; sup mark ; sub mark ; spacer ; letter ; other char : print (c);mac param : begin print (c); print (c);end;out param : begin print (match chr);if c � 9 then print char (c+ "0")else begin print char ("!"); return;end;end;match : begin match chr c; print (c); incr (n); print char (n);if n > "9" then return;end;end match : print ("->");othercases print esc ("BAD.")endcasesThis code is used in section 293.295. Here's the way we sometimes want to display a token list, given a pointer to its reference count; thepointer may be null.procedure token show (p : pointer);begin if p 6= null then show token list (link (p);null ; 10000000);end;296. The print meaning subroutine displays cur cmd and cur chr in symbolic form, including the expan-sion of a macro or mark.procedure print meaning ;begin print cmd chr (cur cmd ; cur chr);if cur cmd � call thenbegin print char (":"); print ln ; token show (cur chr);endelse if cur cmd = top bot mark thenbegin print char (":"); print ln ; token show (cur mark [cur chr]);end;end;

x297 TEXGPC PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES 123297. Introduction to the syntactic routines. Let's pause a moment now and try to look at the BigPicture. The TEX program consists of three main parts: syntactic routines, semantic routines, and outputroutines. The chief purpose of the syntactic routines is to deliver the user's input to the semantic routines,one token at a time. The semantic routines act as an interpreter responding to these tokens, which may beregarded as commands. And the output routines are periodically called on to convert box-and-glue lists intoa compact set of instructions that will be sent to a typesetter. We have discussed the basic data structuresand utility routines of TEX, so we are good and ready to plunge into the real activity by considering thesyntactic routines.Our current goal is to come to grips with the get next procedure, which is the keystone of TEX's inputmechanism. Each call of get next sets the value of three variables cur cmd , cur chr , and cur cs , representingthe next input token.cur cmd denotes a command code from the long list of codes given above;cur chr denotes a character code or other modi�er of the command code;cur cs is the eqtb location of the current control sequence,if the current token was a control sequence, otherwise it's zero.Underlying this external behavior of get next is all the machinery necessary to convert from character �lesto tokens. At a given time we may be only partially �nished with the reading of several �les (for which\input was speci�ed), and partially �nished with the expansion of some user-de�ned macros and/or somemacro parameters, and partially �nished with the generation of some text in a template for \halign, and soon. When reading a character �le, special characters must be classi�ed as math delimiters, etc.; commentsand extra blank spaces must be removed, paragraphs must be recognized, and control sequences must befound in the hash table. Furthermore there are occasions in which the scanning routines have looked aheadfor a word like `plus' but only part of that word was found, hence a few characters must be put back intothe input and scanned again.To handle these situations, which might all be present simultaneously, TEX uses various stacks thathold information about the incomplete activities, and there is a �nite state control for each level of theinput mechanism. These stacks record the current state of an implicitly recursive process, but the get nextprocedure is not recursive. Therefore it will not be di�cult to translate these algorithms into low-levellanguages that do not support recursion.hGlobal variables 13 i +�cur cmd : eight bits ; f current command set by get next gcur chr : halfword ; f operand of current command gcur cs : pointer ; f control sequence found here, zero if none found gcur tok : halfword ; f packed representative of cur cmd and cur chr g

124 PART 21: INTRODUCTION TO THE SYNTACTIC ROUTINES TEXGPC x298298. The print cmd chr routine prints a symbolic interpretation of a command code and its modi�er. Thisis used in certain `You can�t' error messages, and in the implementation of diagnostic routines like \show.The body of print cmd chr is a rather tedious listing of print commands, and most of it is essentially aninverse to the primitive routine that enters a TEX primitive into eqtb . Therefore much of this procedureappears elsewhere in the program, together with the corresponding primitive calls.de�ne chr cmd (#) �begin print (#); print ASCII (chr code);endhDeclare the procedure called print cmd chr 298 i �procedure print cmd chr (cmd : quarterword ; chr code : halfword);begin case cmd ofleft brace : chr cmd ("begin-group character ");right brace : chr cmd ("end-group character ");math shift : chr cmd ("math shift character ");mac param : chr cmd ("macro parameter character ");sup mark : chr cmd ("superscript character ");sub mark : chr cmd ("subscript character ");endv : print ("end of alignment template");spacer : chr cmd ("blank space ");letter : chr cmd ("the letter ");other char : chr cmd ("the character ");hCases of print cmd chr for symbolic printing of primitives 227 iothercases print ("[unknown command code!]")endcases;end;This code is used in section 252.299. Here is a procedure that displays the current command.procedure show cur cmd chr ;begin begin diagnostic ; print nl ("{");if mode 6= shown mode thenbegin print mode (mode); print (": "); shown mode mode ;end;print cmd chr (cur cmd ; cur chr); print char ("}"); end diagnostic (false);end;

x300 TEXGPC PART 22: INPUT STACKS AND STATES 125300. Input stacks and states. This implementation of TEX uses two di�erent conventions for repre-senting sequential stacks.1) If there is frequent access to the top entry, and if the stack is essentially never empty, then the top entryis kept in a global variable (even better would be a machine register), and the other entries appear inthe array stack [0 : : (ptr � 1)]. For example, the semantic stack described above is handled this way,and so is the input stack that we are about to study.2) If there is infrequent top access, the entire stack contents are in the array stack [0 : : (ptr � 1)]. Forexample, the save stack is treated this way, as we have seen.The state of TEX's input mechanism appears in the input stack, whose entries are records with six �elds,called state , index , start , loc , limit , and name . This stack is maintained with convention (1), so it is declaredin the following way:hTypes in the outer block 18 i +�in state record = record state �eld ; index �eld : quarterword ;start �eld ; loc �eld ; limit �eld ;name �eld : halfword ;end;301. hGlobal variables 13 i +�input stack : array [0 : : stack size] of in state record ;input ptr : 0 : : stack size ; f �rst unused location of input stack gmax in stack : 0 : : stack size ; f largest value of input ptr when pushing gcur input : in state record ; f the \top" input state, according to convention (1) g302. We've already de�ned the special variable loc � cur input :loc �eld in our discussion of basic input-output routines. The other components of cur input are de�ned in the same way:de�ne state � cur input :state �eld f current scanner state gde�ne index � cur input :index �eld f reference for bu�er information gde�ne start � cur input :start �eld f starting position in bu�er gde�ne limit � cur input :limit �eld f end of current line in bu�er gde�ne name � cur input :name �eld f name of the current �le g

126 PART 22: INPUT STACKS AND STATES TEXGPC x303303. Let's look more closely now at the control variables (state , index , start , loc , limit , name), assumingthat TEX is reading a line of characters that have been input from some �le or from the user's terminal.There is an array called bu�er that acts as a stack of all lines of characters that are currently being readfrom �les, including all lines on subsidiary levels of the input stack that are not yet completed. TEX willreturn to the other lines when it is �nished with the present input �le.(Incidentally, on a machine with byte-oriented addressing, it might be appropriate to combine bu�er withthe str pool array, letting the bu�er entries grow downward from the top of the string pool and checkingthat these two tables don't bump into each other.)The line we are currently working on begins in position start of the bu�er; the next character we are aboutto read is bu�er [loc]; and limit is the location of the last character present. If loc > limit , the line has beencompletely read. Usually bu�er [limit] is the end line char , denoting the end of a line, but this is not trueif the current line is an insertion that was entered on the user's terminal in response to an error message.The name variable is a string number that designates the name of the current �le, if we are reading a text�le. It is zero if we are reading from the terminal; it is n+ 1 if we are reading from input stream n, where0 � n � 16. (Input stream 16 stands for an invalid stream number; in such cases the input is actually fromthe terminal, under control of the procedure read toks .)The state variable has one of three values, when we are scanning such �les:1) state = mid line is the normal state.2) state = skip blanks is like mid line , but blanks are ignored.3) state = new line is the state at the beginning of a line.These state values are assigned numeric codes so that if we add the state code to the next character'scommand code, we get distinct values. For example, `mid line + spacer ' stands for the case that a blankspace character occurs in the middle of a line when it is not being ignored; after this case is processed, thenext value of state will be skip blanks .de�ne mid line = 1 f state code when scanning a line of characters gde�ne skip blanks = 2 +max char code f state code when ignoring blanks gde�ne new line = 3 +max char code +max char code f state code at start of line g

x304 TEXGPC PART 22: INPUT STACKS AND STATES 127304. Additional information about the current line is available via the index variable, which counts howmany lines of characters are present in the bu�er below the current level. We have index = 0 when readingfrom the terminal and prompting the user for each line; then if the user types, e.g., `\input paper', we willhave index = 1 while reading the �le paper.tex. However, it does not follow that index is the same as theinput stack pointer, since many of the levels on the input stack may come from token lists. For example,the instruction `\input paper' might occur in a token list.The global variable in open is equal to the index value of the highest non-token-list level. Thus, thenumber of partially read lines in the bu�er is in open + 1, and we have in open = index when we are notreading a token list.If we are not currently reading from the terminal, or from an input stream, we are reading from the �levariable input �le [index]. We use the notation terminal input as a convenient abbreviation for name = 0,and cur �le as an abbreviation for input �le [index].The global variable line contains the line number in the topmost open �le, for use in error messages. Ifwe are not reading from the terminal, line stack [index] holds the line number for the enclosing level, so thatline can be restored when the current �le has been read. Line numbers should never be negative, since thenegative of the current line number is used to identify the user's output routine in the mode line �eld of thesemantic nest entries.If more information about the input state is needed, it can be included in small arrays like those shownhere. For example, the current page or segment number in the input �le might be put into a variablepage , maintained for enclosing levels in `page stack : array [1 : : max in open] of integer ' by analogy withline stack .de�ne terminal input � (name = 0) f are we reading from the terminal? gde�ne cur �le � input �le [index] f the current alpha �le variable ghGlobal variables 13 i +�in open : 0 : : max in open ; f the number of lines in the bu�er, less one gopen parens : 0 : : max in open ; f the number of open text �les ginput �le : array [1 : : max in open] of alpha �le ;line : integer ; f current line number in the current source �le gline stack : array [1 : : max in open] of integer ;

128 PART 22: INPUT STACKS AND STATES TEXGPC x305305. Users of TEX sometimes forget to balance left and right braces properly, and one of the ways TEXtries to spot such errors is by considering an input �le as broken into sub�les by control sequences that aredeclared to be \outer.A variable called scanner status tells TEX whether or not to complain when a sub�le ends. This variablehas six possible values:normal , means that a sub�le can safely end here without incident.skipping , means that a sub�le can safely end here, but not a �le, because we're reading past some conditionaltext that was not selected.de�ning , means that a sub�le shouldn't end now because a macro is being de�ned.matching , means that a sub�le shouldn't end now because a macro is being used and we are searching forthe end of its arguments.aligning , means that a sub�le shouldn't end now because we are not �nished with the preamble of an \halignor \valign.absorbing , means that a sub�le shouldn't end now because we are reading a balanced token list for \message,\write, etc.If the scanner status is not normal , the variable warning index points to the eqtb location for the relevantcontrol sequence name to print in an error message.de�ne skipping = 1 f scanner status when passing conditional text gde�ne de�ning = 2 f scanner status when reading a macro de�nition gde�ne matching = 3 f scanner status when reading macro arguments gde�ne aligning = 4 f scanner status when reading an alignment preamble gde�ne absorbing = 5 f scanner status when reading a balanced text ghGlobal variables 13 i +�scanner status : normal : : absorbing ; f can a sub�le end now? gwarning index : pointer ; f identi�er relevant to non-normal scanner status gdef ref : pointer ; f reference count of token list being de�ned g306. Here is a procedure that uses scanner status to print a warning message when a sub�le has ended,and at certain other crucial times:hDeclare the procedure called runaway 306 i �procedure runaway ;var p: pointer ; f head of runaway list gbegin if scanner status > skipping thenbegin print nl ("Runaway ");case scanner status ofde�ning : begin print ("definition"); p def ref ;end;matching : begin print ("argument"); p temp head ;end;aligning : begin print ("preamble"); p hold head ;end;absorbing : begin print ("text"); p def ref ;end;end; f there are no other cases gprint char ("?"); print ln ; show token list (link (p);null ; error line � 10);end;end;This code is used in section 119.

x307 TEXGPC PART 22: INPUT STACKS AND STATES 129307. However, all this discussion about input state really applies only to the case that we are inputtingfrom a �le. There is another important case, namely when we are currently getting input from a token list.In this case state = token list , and the conventions about the other state variables are di�erent:loc is a pointer to the current node in the token list, i.e., the node that will be read next. If loc = null , thetoken list has been fully read.start points to the �rst node of the token list; this node may or may not contain a reference count, dependingon the type of token list involved.token type , which takes the place of index in the discussion above, is a code number that explains what kindof token list is being scanned.name points to the eqtb address of the control sequence being expanded, if the current token list is a macro.param start , which takes the place of limit , tells where the parameters of the current macro begin in theparam stack , if the current token list is a macro.The token type can take several values, depending on where the current token list came from:parameter , if a parameter is being scanned;u template , if the huji part of an alignment template is being scanned;v template , if the hvji part of an alignment template is being scanned;backed up , if the token list being scanned has been inserted as `to be read again'.inserted , if the token list being scanned has been inserted as the text expansion of a \count or similarvariable;macro , if a user-de�ned control sequence is being scanned;output text , if an \output routine is being scanned;every par text , if the text of \everypar is being scanned;every math text , if the text of \everymath is being scanned;every display text , if the text of \everydisplay is being scanned;every hbox text , if the text of \everyhbox is being scanned;every vbox text , if the text of \everyvbox is being scanned;every job text , if the text of \everyjob is being scanned;every cr text , if the text of \everycr is being scanned;mark text , if the text of a \mark is being scanned;write text , if the text of a \write is being scanned.The codes for output text , every par text , etc., are equal to a constant plus the corresponding codes for tokenlist parameters output routine loc , every par loc , etc. The token list begins with a reference count if andonly if token type � macro .de�ne token list = 0 f state code when scanning a token list gde�ne token type � index f type of current token list gde�ne param start � limit f base of macro parameters in param stack gde�ne parameter = 0 f token type code for parameter gde�ne u template = 1 f token type code for huji template gde�ne v template = 2 f token type code for hvji template gde�ne backed up = 3 f token type code for text to be reread gde�ne inserted = 4 f token type code for inserted texts gde�ne macro = 5 f token type code for de�ned control sequences gde�ne output text = 6 f token type code for output routines gde�ne every par text = 7 f token type code for \everypargde�ne every math text = 8 f token type code for \everymathgde�ne every display text = 9 f token type code for \everydisplaygde�ne every hbox text = 10 f token type code for \everyhboxgde�ne every vbox text = 11 f token type code for \everyvboxgde�ne every job text = 12 f token type code for \everyjobgde�ne every cr text = 13 f token type code for \everycrg

130 PART 22: INPUT STACKS AND STATES TEXGPC x307de�ne mark text = 14 f token type code for \topmark, etc. gde�ne write text = 15 f token type code for \writeg308. The param stack is an auxiliary array used to hold pointers to the token lists for parameters at thecurrent level and subsidiary levels of input. This stack is maintained with convention (2), and it grows at adi�erent rate from the others.hGlobal variables 13 i +�param stack : array [0 : : param size] of pointer ; f token list pointers for parameters gparam ptr : 0 : : param size ; f �rst unused entry in param stack gmax param stack : integer ; f largest value of param ptr , will be � param size + 9 g309. The input routines must also interact with the processing of \halign and \valign, since the appear-ance of tab marks and \cr in certain places is supposed to trigger the beginning of special hvji template textin the scanner. This magic is accomplished by an align state variable that is increased by 1 when a `{' isscanned and decreased by 1 when a `}' is scanned. The align state is nonzero during the huji template, afterwhich it is set to zero; the hvji template begins when a tab mark or \cr occurs at a time that align state = 0.hGlobal variables 13 i +�align state : integer ; f group level with respect to current alignment g310. Thus, the \current input state" can be very complicated indeed; there can be many levels and eachlevel can arise in a variety of ways. The show context procedure, which is used by TEX's error-reportingroutine to print out the current input state on all levels down to the most recent line of characters from aninput �le, illustrates most of these conventions. The global variable base ptr contains the lowest level thatwas displayed by this procedure.hGlobal variables 13 i +�base ptr : 0 : : stack size ; f shallowest level shown by show context g

x311 TEXGPC PART 22: INPUT STACKS AND STATES 131311. The status at each level is indicated by printing two lines, where the �rst line indicates what wasread so far and the second line shows what remains to be read. The context is cropped, if necessary, sothat the �rst line contains at most half error line characters, and the second contains at most error line .Non-current input levels whose token type is `backed up ' are shown only if they have not been fully read.procedure show context ; f prints where the scanner is glabel done ;var old setting : 0 : : max selector ; f saved selector setting gnn : integer ; f number of contexts shown so far, less one gbottom line : boolean ; f have we reached the �nal context to be shown? ghLocal variables for formatting calculations 315 ibegin base ptr input ptr ; input stack [base ptr] cur input ; f store current state gnn �1; bottom line false ;loop begin cur input input stack [base ptr]; f enter into the context gif (state 6= token list) thenif (name > 17) _ (base ptr = 0) then bottom line true ;if (base ptr = input ptr) _ bottom line _ (nn < error context lines) thenhDisplay the current context 312 ielse if nn = error context lines thenbegin print nl ("..."); incr (nn); f omitted if error context lines < 0 gend;if bottom line then goto done ;decr (base ptr);end;done : cur input input stack [input ptr]; f restore original state gend;312. hDisplay the current context 312 i �begin if (base ptr = input ptr) _ (state 6= token list) _ (token type 6= backed up) _ (loc 6= null) thenfwe omit backed-up token lists that have already been read gbegin tally 0; f get ready to count characters gold setting selector ;if state 6= token list thenbegin hPrint location of current line 313 i;hPseudoprint the line 318 i;endelse begin hPrint type of token list 314 i;hPseudoprint the token list 319 i;end;selector old setting ; f stop pseudoprinting ghPrint two lines using the tricky pseudoprinted information 317 i;incr (nn);end;endThis code is used in section 311.

132 PART 22: INPUT STACKS AND STATES TEXGPC x313313. This routine should be changed, if necessary, to give the best possible indication of where the currentline resides in the input �le. For example, on some systems it is best to print both a page and line number.hPrint location of current line 313 i �if name � 17 thenif terminal input thenif base ptr = 0 then print nl ("<*>")else print nl ("<insert> ")else begin print nl ("<read ");if name = 17 then print char ("*") else print int (name � 1);print char (">");endelse begin print nl ("l."); print int (line);end;print char (" ")This code is used in section 312.314. hPrint type of token list 314 i �case token type ofparameter : print nl ("<argument> ");u template ; v template : print nl ("<template> ");backed up : if loc = null then print nl ("<recently read> ")else print nl ("<to be read again> ");inserted : print nl ("<inserted text> ");macro : begin print ln ; print cs (name);end;output text : print nl ("<output> ");every par text : print nl ("<everypar> ");every math text : print nl ("<everymath> ");every display text : print nl ("<everydisplay> ");every hbox text : print nl ("<everyhbox> ");every vbox text : print nl ("<everyvbox> ");every job text : print nl ("<everyjob> ");every cr text : print nl ("<everycr> ");mark text : print nl ("<mark> ");write text : print nl ("<write> ");othercases print nl ("?") f this should never happen gendcasesThis code is used in section 312.

x315 TEXGPC PART 22: INPUT STACKS AND STATES 133315. Here it is necessary to explain a little trick. We don't want to store a long string that correspondsto a token list, because that string might take up lots of memory; and we are printing during a timewhen an error message is being given, so we dare not do anything that might overow one of TEX's tables.So `pseudoprinting' is the answer: We enter a mode of printing that stores characters into a bu�er oflength error line , where character k + 1 is placed into trick buf [kmod error line] if k < trick count ,otherwise character k is dropped. Initially we set tally 0 and trick count 1000000; then whenwe reach the point where transition from line 1 to line 2 should occur, we set �rst count tally andtrick count max(error line ; tally +1+ error line � half error line). At the end of the pseudoprinting, thevalues of �rst count , tally , and trick count give us all the information we need to print the two lines, andall of the necessary text is in trick buf .Namely, let l be the length of the descriptive information that appears on the �rst line. The length ofthe context information gathered for that line is k = �rst count , and the length of the context informationgathered for line 2 is m = min(tally ; trick count) � k. If l + k � h, where h = half error line , we printtrick buf [0 : : k � 1] after the descriptive information on line 1, and set n l + k; here n is the length ofline 1. If l + k > h, some cropping is necessary, so we set n h and print `...' followed bytrick buf [(l + k � h+ 3) : : k � 1],where subscripts of trick buf are circular modulo error line . The second line consists of n spaces followedby trick buf [k : : (k +m� 1)], unless n +m > error line ; in the latter case, further cropping is done. Thisis easier to program than to explain.hLocal variables for formatting calculations 315 i �i: 0 : : buf size ; f index into bu�er gj: 0 : : buf size ; f end of current line in bu�er gl: 0 : : half error line ; f length of descriptive information on line 1 gm: integer ; f context information gathered for line 2 gn: 0 : : error line ; f length of line 1 gp: integer ; f starting or ending place in trick buf gq: integer ; f temporary index gThis code is used in section 311.316. The following code sets up the print routines so that they will gather the desired information.de�ne begin pseudoprint �begin l tally ; tally 0; selector pseudo ; trick count 1000000;endde�ne set trick count �begin �rst count tally ; trick count tally + 1 + error line � half error line ;if trick count < error line then trick count error line ;end

134 PART 22: INPUT STACKS AND STATES TEXGPC x317317. And the following code uses the information after it has been gathered.hPrint two lines using the tricky pseudoprinted information 317 i �if trick count = 1000000 then set trick count ; f set trick count must be performed gif tally < trick count then m tally � �rst countelse m trick count � �rst count ; f context on line 2 gif l+ �rst count � half error line thenbegin p 0; n l+ �rst count ;endelse begin print ("..."); p l + �rst count � half error line + 3; n half error line ;end;for q p to �rst count � 1 do print char (trick buf [qmod error line]);print ln ;for q 1 to n do print char (" "); f print n spaces to begin line 2 gif m+ n � error line then p �rst count +melse p �rst count + (error line � n� 3);for q �rst count to p� 1 do print char (trick buf [qmod error line]);if m+ n > error line then print ("...")This code is used in section 312.318. But the trick is distracting us from our current goal, which is to understand the input state. So let'sconcentrate on the data structures that are being pseudoprinted as we �nish up the show context procedure.hPseudoprint the line 318 i �begin pseudoprint ;if bu�er [limit] = end line char then j limitelse j limit + 1; f determine the e�ective end of the line gif j > 0 thenfor i start to j � 1 dobegin if i = loc then set trick count ;print (bu�er [i]);endThis code is used in section 312.319. hPseudoprint the token list 319 i �begin pseudoprint ;if token type < macro then show token list (start ; loc ; 100000)else show token list (link (start); loc ; 100000) f avoid reference count gThis code is used in section 312.320. Here is the missing piece of show token list that is activated when the token beginning line 2 is aboutto be shown:hDo magic computation 320 i �set trick countThis code is used in section 292.

x321 TEXGPC PART 23: MAINTAINING THE INPUT STACKS 135321. Maintaining the input stacks. The following subroutines change the input status in commonlyneeded ways.First comes push input , which stores the current state and creates a new level (having, initially, the sameproperties as the old).de�ne push input � f enter a new input level, save the old gbegin if input ptr > max in stack thenbegin max in stack input ptr ;if input ptr = stack size then overow ("input stack size"; stack size);end;input stack [input ptr] cur input ; f stack the record gincr (input ptr);end322. And of course what goes up must come down.de�ne pop input � f leave an input level, re-enter the old gbegin decr (input ptr); cur input input stack [input ptr];end323. Here is a procedure that starts a new level of token-list input, given a token list p and its type t. Ift = macro , the calling routine should set name and loc .de�ne back list (#) � begin token list (#; backed up) f backs up a simple token list gde�ne ins list (#) � begin token list (#; inserted) f inserts a simple token list gprocedure begin token list (p : pointer ; t : quarterword);begin push input ; state token list ; start p; token type t;if t � macro then f the token list starts with a reference count gbegin add token ref (p);if t = macro then param start param ptrelse begin loc link (p);if tracing macros > 1 thenbegin begin diagnostic ; print nl ("");case t ofmark text : print esc("mark");write text : print esc("write");othercases print cmd chr (assign toks ; t� output text + output routine loc)endcases;print ("->"); token show (p); end diagnostic (false);end;end;endelse loc p;end;

136 PART 23: MAINTAINING THE INPUT STACKS TEXGPC x324324. When a token list has been fully scanned, the following computations should be done as we leavethat level of input. The token type tends to be equal to either backed up or inserted about 2/3 of the time.procedure end token list ; f leave a token-list input level gbegin if token type � backed up then f token list to be deleted gbegin if token type � inserted then ush list (start)else begin delete token ref (start); f update reference count gif token type = macro then f parameters must be ushed gwhile param ptr > param start dobegin decr (param ptr); ush list (param stack [param ptr]);end;end;endelse if token type = u template thenif align state > 500000 then align state 0else fatal error ("(interwoven alignment preambles are not allowed)");pop input ; check interrupt ;end;325. Sometimes TEX has read too far and wants to \unscan" what it has seen. The back input proceduretakes care of this by putting the token just scanned back into the input stream, ready to be read again. Thisprocedure can be used only if cur tok represents the token to be replaced. Some applications of TEX usethis procedure a lot, so it has been slightly optimized for speed.procedure back input ; f undoes one token of input gvar p: pointer ; f a token list of length one gbegin while (state = token list) ^ (loc = null) ^ (token type 6= v template) do end token list ;f conserve stack space gp get avail ; info (p) cur tok ;if cur tok < right brace limit thenif cur tok < left brace limit then decr (align state)else incr (align state);push input ; state token list ; start p; token type backed up ; loc p;f that was back list (p), without procedure overhead gend;326. h Insert token p into TEX's input 326 i �begin t cur tok ; cur tok p; back input ; cur tok t;endThis code is used in section 282.327. The back error routine is used when we want to replace an o�ending token just before issuing an errormessage. This routine, like back input , requires that cur tok has been set. We disable interrupts during thecall of back input so that the help message won't be lost.procedure back error ; f back up one token and call error gbegin OK to interrupt false ; back input ; OK to interrupt true ; error ;end;procedure ins error ; f back up one inserted token and call error gbegin OK to interrupt false ; back input ; token type inserted ; OK to interrupt true ; error ;end;

x328 TEXGPC PART 23: MAINTAINING THE INPUT STACKS 137328. The begin �le reading procedure starts a new level of input for lines of characters to be read from a�le, or as an insertion from the terminal. It does not take care of opening the �le, nor does it set loc or limitor line .procedure begin �le reading ;begin if in open = max in open then overow ("text input levels";max in open);if �rst = buf size then overow ("buffer size"; buf size);incr (in open); push input ; index in open ; line stack [index] line ; start �rst ; state mid line ;name 0; f terminal input is now true gend;329. Conversely, the variables must be downdated when such a level of input is �nished:procedure end �le reading ;begin �rst start ; line line stack [index];if name > 17 then a close (cur �le); f forget it gpop input ; decr (in open);end;330. In order to keep the stack from overowing during a long sequence of inserted `\show' commands,the following routine removes completed error-inserted lines from memory.procedure clear for error prompt ;begin while (state 6= token list) ^ terminal input ^ (input ptr > 0) ^ (loc > limit) do end �le reading ;print ln ; clear terminal ;end;331. To get TEX's whole input mechanism going, we perform the following actions.h Initialize the input routines 331 i �begin input ptr 0; max in stack 0; in open 0; open parens 0; max buf stack 0;param ptr 0; max param stack 0; �rst buf size ;repeat bu�er [�rst] 0; decr (�rst);until �rst = 0;scanner status normal ; warning index null ; �rst 1; state new line ; start 1; index 0;line 0; name 0; force eof false ; align state 1000000;if :init terminal then goto �nal end ;limit last ; �rst last + 1; f init terminal has set loc and last gendThis code is used in section 1337.

138 PART 24: GETTING THE NEXT TOKEN TEXGPC x332332. Getting the next token. The heart of TEX's input mechanism is the get next procedure, whichwe shall develop in the next few sections of the program. Perhaps we shouldn't actually call it the \heart,"however, because it really acts as TEX's eyes and mouth, reading the source �les and gobbling them up. Andit also helps TEX to regurgitate stored token lists that are to be processed again.The main duty of get next is to input one token and to set cur cmd and cur chr to that token's commandcode and modi�er. Furthermore, if the input token is a control sequence, the eqtb location of that controlsequence is stored in cur cs ; otherwise cur cs is set to zero.Underlying this simple description is a certain amount of complexity because of all the cases that need tobe handled. However, the inner loop of get next is reasonably short and fast.When get next is asked to get the next token of a \read line, it sets cur cmd = cur chr = cur cs = 0 inthe case that no more tokens appear on that line. (There might not be any tokens at all, if the end line charhas ignore as its catcode.)333. The value of par loc is the eqtb address of `\par'. This quantity is needed because a blank line ofinput is supposed to be exactly equivalent to the appearance of \par; we must set cur cs par loc whendetecting a blank line.hGlobal variables 13 i +�par loc : pointer ; f location of `\par' in eqtb gpar token : halfword ; f token representing `\par' g334. hPut each of TEX's primitives into the hash table 226 i +�primitive ("par"; par end ; 256); f cf. scan �le name gpar loc cur val ; par token cs token ag + par loc ;335. hCases of print cmd chr for symbolic printing of primitives 227 i +�par end : print esc("par");336. Before getting into get next , let's consider the subroutine that is called when an `\outer' controlsequence has been scanned or when the end of a �le has been reached. These two cases are distinguished bycur cs , which is zero at the end of a �le.procedure check outer validity ;var p: pointer ; f points to inserted token list gq: pointer ; f auxiliary pointer gbegin if scanner status 6= normal thenbegin deletions allowed false ; hBack up an outer control sequence so that it can be reread 337 i;if scanner status > skipping then hTell the user what has run away and try to recover 338 ielse begin print err ("Incomplete "); print cmd chr (if test ; cur if);print ("; all text was ignored after line "); print int (skip line);help3 ("A forbidden control sequence occurred in skipped text.")("This kind of error happens when you say �\if...� and forget")("the matching �\fi�. I�ve inserted a �\fi�; this might work.");if cur cs 6= 0 then cur cs 0else help line [2] "The file ended while I was skipping conditional text.";cur tok cs token ag + frozen � ; ins error ;end;deletions allowed true ;end;end;

x337 TEXGPC PART 24: GETTING THE NEXT TOKEN 139337. An outer control sequence that occurs in a \read will not be reread, since the error recovery for\read is not very powerful.hBack up an outer control sequence so that it can be reread 337 i �if cur cs 6= 0 thenbegin if (state = token list) _ (name < 1) _ (name > 17) thenbegin p get avail ; info (p) cs token ag + cur cs ; back list (p);f prepare to read the control sequence again gend;cur cmd spacer ; cur chr " "; f replace it by a space gendThis code is used in section 336.338. hTell the user what has run away and try to recover 338 i �begin runaway ; f print a de�nition, argument, or preamble gif cur cs = 0 then print err ("File ended")else begin cur cs 0; print err ("Forbidden control sequence found");end;print (" while scanning "); hPrint either `definition' or `use' or `preamble' or `text', and inserttokens that should lead to recovery 339 i;print (" of "); sprint cs (warning index);help4 ("I suspect you have forgotten a �}�, causing me")("to read past where you wanted me to stop.")("I�ll try to recover; but if the error is serious,")("you�d better type �E� or �X� now and fix your file.");error ;endThis code is used in section 336.339. The recovery procedure can't be fully understood without knowing more about the TEX routines thatshould be aborted, but we can sketch the ideas here: For a runaway de�nition we will insert a right brace;for a runaway preamble, we will insert a special \cr token and a right brace; and for a runaway argument,we will set long state to outer call and insert \par.hPrint either `definition' or `use' or `preamble' or `text', and insert tokens that should lead torecovery 339 i �p get avail ;case scanner status ofde�ning : begin print ("definition"); info (p) right brace token + "}";end;matching : begin print ("use"); info (p) par token ; long state outer call ;end;aligning : begin print ("preamble"); info (p) right brace token + "}"; q p; p get avail ;link (p) q; info (p) cs token ag + frozen cr ; align state �1000000;end;absorbing : begin print ("text"); info (p) right brace token + "}";end;end; f there are no other cases gins list (p)This code is used in section 338.340. We need to mention a procedure here that may be called by get next .procedure �rm up the line ; forward ;

140 PART 24: GETTING THE NEXT TOKEN TEXGPC x341341. Now we're ready to take the plunge into get next itself. Parts of this routine are executed more oftenthan any other instructions of TEX.de�ne switch = 25 f a label in get next gde�ne start cs = 26 f another gprocedure get next ; f sets cur cmd , cur chr , cur cs to next token glabel restart ; f go here to get the next input token gswitch ; f go here to eat the next character from a �le greswitch ; f go here to digest it again gstart cs ; f go here to start looking for a control sequence gfound ; f go here when a control sequence has been found gexit ; f go here when the next input token has been got gvar k: 0 : : buf size ; f an index into bu�er gt: halfword ; f a token gcat : 0 : : max char code ; f cat code (cur chr), usually gc; cc : ASCII code ; f constituents of a possible expanded code gd: 2 : : 3; f number of excess characters in an expanded code gbegin restart : cur cs 0;if state 6= token list then h Input from external �le, goto restart if no input found 343 ielse h Input from token list, goto restart if end of list or if a parameter needs to be expanded 357 i;h If an alignment entry has just ended, take appropriate action 342 i;exit : end;342. An alignment entry ends when a tab or \cr occurs, provided that the current level of braces is thesame as the level that was present at the beginning of that alignment entry; i.e., provided that align statehas returned to the value it had after the huji template for that entry.h If an alignment entry has just ended, take appropriate action 342 i �if cur cmd � car ret thenif cur cmd � tab mark thenif align state = 0 then h Insert the hvji template and goto restart 789 iThis code is used in section 341.343. h Input from external �le, goto restart if no input found 343 i �begin switch : if loc � limit then f current line not yet �nished gbegin cur chr bu�er [loc]; incr (loc);reswitch : cur cmd cat code (cur chr); hChange state if necessary, and goto switch if the currentcharacter should be ignored, or goto reswitch if the current character changes to another 344 i;endelse begin state new line ;hMove to next line of �le, or goto restart if there is no next line, or return if a \read line has�nished 360* i;check interrupt ; goto switch ;end;endThis code is used in section 341.

x344 TEXGPC PART 24: GETTING THE NEXT TOKEN 141344. The following 48-way switch accomplishes the scanning quickly, assuming that a decent Pascalcompiler has translated the code. Note that the numeric values for mid line , skip blanks , and new lineare spaced apart from each other by max char code + 1, so we can add a character's command code to thestate to get a single number that characterizes both.de�ne any state plus (#) � mid line + #; skip blanks + #;new line + #hChange state if necessary, and goto switch if the current character should be ignored, or goto reswitch ifthe current character changes to another 344 i �case state + cur cmd ofhCases where character is ignored 345 i: goto switch ;any state plus (escape): h Scan a control sequence and set state skip blanks or mid line 354 i;any state plus (active char): hProcess an active-character control sequence and set state mid line 353 i;any state plus (sup mark): h If this sup mark starts an expanded character like ^^A or ^^df, then gotoreswitch , otherwise set state mid line 352 i;any state plus (invalid char): hDecry the invalid character and goto restart 346 i;hHandle situations involving spaces, braces, changes of state 347 iothercases do nothingendcasesThis code is used in section 343.345. hCases where character is ignored 345 i �any state plus (ignore); skip blanks + spacer ;new line + spacerThis code is used in section 344.346. We go to restart instead of to switch , because state might equal token list after the error has beendealt with (cf. clear for error prompt).hDecry the invalid character and goto restart 346 i �begin print err ("Text line contains an invalid character");help2 ("A funny symbol that I can�t read has just been input.")("Continue, and I�ll forget that it ever happened.");deletions allowed false ; error ; deletions allowed true ; goto restart ;endThis code is used in section 344.347. de�ne add delims to (#) � #+math shift ; #+ tab mark ; #+mac param ; #+ sub mark ; #+ letter ;#+ other charhHandle situations involving spaces, braces, changes of state 347 i �mid line + spacer : hEnter skip blanks state, emit a space 349 i;mid line + car ret : hFinish line, emit a space 348 i;skip blanks + car ret ; any state plus (comment): hFinish line, goto switch 350 i;new line + car ret : hFinish line, emit a \par 351 i;mid line + left brace : incr (align state);skip blanks + left brace ;new line + left brace : begin state mid line ; incr (align state);end;mid line + right brace : decr (align state);skip blanks + right brace ;new line + right brace : begin state mid line ; decr (align state);end;add delims to(skip blanks); add delims to (new line): state mid line ;This code is used in section 344.

142 PART 24: GETTING THE NEXT TOKEN TEXGPC x348348. When a character of type spacer gets through, its character code is changed to " " = �40 . Thismeans that the ASCII codes for tab and space, and for the space inserted at the end of a line, will be treatedalike when macro parameters are being matched. We do this since such characters are indistinguishable onmost computer terminal displays.hFinish line, emit a space 348 i �begin loc limit + 1; cur cmd spacer ; cur chr " ";endThis code is used in section 347.349. The following code is performed only when cur cmd = spacer .hEnter skip blanks state, emit a space 349 i �begin state skip blanks ; cur chr " ";endThis code is used in section 347.350. hFinish line, goto switch 350 i �begin loc limit + 1; goto switch ;endThis code is used in section 347.351. hFinish line, emit a \par 351 i �begin loc limit + 1; cur cs par loc ; cur cmd eq type (cur cs); cur chr equiv (cur cs);if cur cmd � outer call then check outer validity ;endThis code is used in section 347.352. Notice that a code like ^^8 becomes x if not followed by a hex digit.de�ne is hex (#) � (((# � "0") ^ (# � "9")) _ ((# � "a") ^ (# � "f")))de�ne hex to cur chr �if c � "9" then cur chr c� "0" else cur chr c� "a"+ 10;if cc � "9" then cur chr 16 � cur chr + cc � "0"else cur chr 16 � cur chr + cc � "a"+ 10h If this sup mark starts an expanded character like ^^A or ^^df, then goto reswitch , otherwise setstate mid line 352 i �begin if cur chr = bu�er [loc] thenif loc < limit thenbegin c bu�er [loc + 1]; if c < �200 then f yes we have an expanded char gbegin loc loc + 2;if is hex (c) thenif loc � limit thenbegin cc bu�er [loc]; if is hex (cc) thenbegin incr (loc); hex to cur chr ; goto reswitch ;end;end;if c < �100 then cur chr c+ �100 else cur chr c� �100 ;goto reswitch ;end;end;state mid line ;endThis code is used in section 344.

x353 TEXGPC PART 24: GETTING THE NEXT TOKEN 143353. hProcess an active-character control sequence and set state mid line 353 i �begin cur cs cur chr + active base ; cur cmd eq type (cur cs); cur chr equiv (cur cs);state mid line ;if cur cmd � outer call then check outer validity ;endThis code is used in section 344.354. Control sequence names are scanned only when they appear in some line of a �le; once they havebeen scanned the �rst time, their eqtb location serves as a unique identi�cation, so TEX doesn't need to referto the original name any more except when it prints the equivalent in symbolic form.The program that scans a control sequence has been written carefully in order to avoid the blowups thatmight otherwise occur if a malicious user tried something like `\catcode�15=0'. The algorithm might lookat bu�er [limit + 1], but it never looks at bu�er [limit + 2].If expanded characters like `^^A' or `^^df' appear in or just following a control sequence name, they areconverted to single characters in the bu�er and the process is repeated, slowly but surely.h Scan a control sequence and set state skip blanks or mid line 354 i �begin if loc > limit then cur cs null cs f state is irrelevant in this case gelse begin start cs : k loc ; cur chr bu�er [k]; cat cat code (cur chr); incr (k);if cat = letter then state skip blankselse if cat = spacer then state skip blankselse state mid line ;if (cat = letter)^ (k � limit) then h Scan ahead in the bu�er until �nding a nonletter; if an expandedcode is encountered, reduce it and goto start cs ; otherwise if a multiletter control sequence isfound, adjust cur cs and loc , and goto found 356 ielse h If an expanded code is present, reduce it and goto start cs 355 i;cur cs single base + bu�er [loc]; incr (loc);end;found : cur cmd eq type (cur cs); cur chr equiv (cur cs);if cur cmd � outer call then check outer validity ;endThis code is used in section 344.

144 PART 24: GETTING THE NEXT TOKEN TEXGPC x355355. Whenever we reach the following piece of code, we will have cur chr = bu�er [k�1] and k � limit +1and cat = cat code (cur chr). If an expanded code like ^^A or ^^df appears in bu�er [(k � 1) : : (k + 1)] orbu�er [(k� 1) : : (k+2)], we will store the corresponding code in bu�er [k� 1] and shift the rest of the bu�erleft two or three places.h If an expanded code is present, reduce it and goto start cs 355 i �begin if bu�er [k] = cur chr then if cat = sup mark then if k < limit thenbegin c bu�er [k + 1]; if c < �200 then f yes, one is indeed present gbegin d 2;if is hex (c) then if k + 2 � limit thenbegin cc bu�er [k + 2]; if is hex (cc) then incr (d);end;if d > 2 thenbegin hex to cur chr ; bu�er [k � 1] cur chr ;endelse if c < �100 then bu�er [k � 1] c+ �100else bu�er [k � 1] c� �100 ;limit limit � d; �rst �rst � d;while k � limit dobegin bu�er [k] bu�er [k + d]; incr (k);end;goto start cs ;end;end;endThis code is used in sections 354 and 356.356. h Scan ahead in the bu�er until �nding a nonletter; if an expanded code is encountered, reduce itand goto start cs ; otherwise if a multiletter control sequence is found, adjust cur cs and loc , andgoto found 356 i �begin repeat cur chr bu�er [k]; cat cat code (cur chr); incr (k);until (cat 6= letter) _ (k > limit);h If an expanded code is present, reduce it and goto start cs 355 i;if cat 6= letter then decr (k); f now k points to �rst nonletter gif k > loc + 1 then fmultiletter control sequence has been scanned gbegin cur cs id lookup (loc ; k � loc); loc k; goto found ;end;endThis code is used in section 354.

x357 TEXGPC PART 24: GETTING THE NEXT TOKEN 145357. Let's consider now what happens when get next is looking at a token list.h Input from token list, goto restart if end of list or if a parameter needs to be expanded 357 i �if loc 6= null then f list not exhausted gbegin t info (loc); loc link (loc); fmove to next gif t � cs token ag then f a control sequence token gbegin cur cs t� cs token ag ; cur cmd eq type (cur cs); cur chr equiv (cur cs);if cur cmd � outer call thenif cur cmd = dont expand then hGet the next token, suppressing expansion 358 ielse check outer validity ;endelse begin cur cmd t div �400 ; cur chr tmod �400 ;case cur cmd ofleft brace : incr (align state);right brace : decr (align state);out param : h Insert macro parameter and goto restart 359 i;othercases do nothingendcases;end;endelse begin fwe are done with this token list gend token list ; goto restart ; f resume previous level gendThis code is used in section 341.358. The present point in the program is reached only when the expand routine has inserted a specialmarker into the input. In this special case, info (loc) is known to be a control sequence token, andlink (loc) = null .de�ne no expand ag = 257 f this characterizes a special variant of relax ghGet the next token, suppressing expansion 358 i �begin cur cs info (loc)� cs token ag ; loc null ;cur cmd eq type (cur cs); cur chr equiv (cur cs);if cur cmd > max command thenbegin cur cmd relax ; cur chr no expand ag ;end;endThis code is used in section 357.359. h Insert macro parameter and goto restart 359 i �begin begin token list (param stack [param start + cur chr � 1]; parameter); goto restart ;endThis code is used in section 357.

146 PART 24: GETTING THE NEXT TOKEN TEXGPC x360360*. All of the easy branches of get next have now been taken care of. There is one more branch.TEX82 ends the current line by calling print ln even if the line is empty. This causes an additional emptyh line that I want to avoid. Calling print nl ("") is smarter. It ends the current line only if it is not empty.de�ne end line char inactive � (end line char < 0) _ (end line char > 255)hMove to next line of �le, or goto restart if there is no next line, or return if a \read line has�nished 360* i �if name > 17 then hRead next line of �le into bu�er , or goto restart if the �le has ended 362 ielse begin if :terminal input then f \read line has ended gbegin cur cmd 0; cur chr 0; return;end;if input ptr > 0 then f text was inserted during error recovery gbegin end �le reading ; goto restart ; f resume previous level gend;if selector < log only then open log �le ;if interaction > nonstop mode thenbegin if end line char inactive then incr (limit);if limit = start then f previous line was empty gprint nl ("(Please type a command or say �\end�)");print nl (""); �rst start ; prompt input ("*"); f input on-line into bu�er glimit last ;if end line char inactive then decr (limit)else bu�er [limit] end line char ;�rst limit + 1; loc start ;endelse fatal error ("*** (job aborted, no legal \end found)");f nonstop mode, which is intended for overnight batch processing, never waits for on-line input gendThis code is used in section 343.361. The global variable force eof is normally false ; it is set true by an \endinput command.hGlobal variables 13 i +�force eof : boolean ; f should the next \input be aborted early? g362. hRead next line of �le into bu�er , or goto restart if the �le has ended 362 i �begin incr (line); �rst start ;if :force eof thenbegin if input ln (cur �le ; true) then f not end of �le g�rm up the line f this sets limit gelse force eof true ;end;if force eof thenbegin print char (")"); decr (open parens); update terminal ; f show user that �le has been read gforce eof false ; end �le reading ; f resume previous level gcheck outer validity ; goto restart ;end;if end line char inactive then decr (limit)else bu�er [limit] end line char ;�rst limit + 1; loc start ; f ready to read gendThis code is used in section 360*.

x363 TEXGPC PART 24: GETTING THE NEXT TOKEN 147363. If the user has set the pausing parameter to some positive value, and if nonstop mode has not beenselected, each line of input is displayed on the terminal and the transcript �le, followed by `=>'. TEX waitsfor a response. If the response is simply carriage return , the line is accepted as it stands, otherwise the linetyped is used instead of the line in the �le.procedure �rm up the line ;var k: 0 : : buf size ; f an index into bu�er gbegin limit last ;if pausing > 0 thenif interaction > nonstop mode thenbegin wake up terminal ; print ln ;if start < limit thenfor k start to limit � 1 do print (bu�er [k]);�rst limit ; prompt input ("=>"); fwait for user response gif last > �rst thenbegin for k �rst to last � 1 do fmove line down in bu�er gbu�er [k + start � �rst] bu�er [k];limit start + last � �rst ;end;end;end;364. Since get next is used so frequently in TEX, it is convenient to de�ne three related procedures thatdo a little more:get token not only sets cur cmd and cur chr , it also sets cur tok , a packed halfword version of the currenttoken.get x token , meaning \get an expanded token," is like get token , but if the current token turns out to bea user-de�ned control sequence (i.e., a macro call), or a conditional, or something like \topmark or\expandafter or \csname, it is eliminated from the input by beginning the expansion of the macroor the evaluation of the conditional.x token is like get x token except that it assumes that get next has already been called.In fact, these three procedures account for almost every use of get next .365. No new control sequences will be de�ned except during a call of get token , or when \csname com-presses a token list, because no new control sequence is always true at other times.procedure get token ; f sets cur cmd , cur chr , cur tok gbegin no new control sequence false ; get next ; no new control sequence true ;if cur cs = 0 then cur tok (cur cmd � �400) + cur chrelse cur tok cs token ag + cur cs ;end;

148 PART 25: EXPANDING THE NEXT TOKEN TEXGPC x366366. Expanding the next token. Only a dozen or so command codes > max command can possiblybe returned by get next ; in increasing order, they are unde�ned cs , expand after , no expand , input , if test ,� or else , cs name , convert , the , top bot mark , call , long call , outer call , long outer call , and end template .The expand subroutine is used when cur cmd > max command . It removes a \call" or a conditional orone of the other special operations just listed. It follows that expand might invoke itself recursively. In allcases, expand destroys the current token, but it sets things up so that the next get next will deliver theappropriate next token. The value of cur tok need not be known when expand is called.Since several of the basic scanning routines communicate via global variables, their values are saved aslocal variables of expand so that recursive calls don't invalidate them.hDeclare the procedure called macro call 389 ihDeclare the procedure called insert relax 379 iprocedure pass text ; forward ;procedure start input ; forward ;procedure conditional ; forward ;procedure get x token ; forward ;procedure conv toks ; forward ;procedure ins the toks ; forward ;procedure expand ;var t: halfword ; f token that is being \expanded after" gp; q; r: pointer ; f for list manipulation gj: 0 : : buf size ; f index into bu�er gcv backup : integer ; f to save the global quantity cur val gcvl backup ; radix backup ; co backup : small number ; f to save cur val level , etc. gbackup backup : pointer ; f to save link (backup head) gsave scanner status : small number ; f temporary storage of scanner status gbegin cv backup cur val ; cvl backup cur val level ; radix backup radix ; co backup cur order ;backup backup link (backup head);if cur cmd < call then hExpand a nonmacro 367 ielse if cur cmd < end template then macro callelse h Insert a token containing frozen endv 375 i;cur val cv backup ; cur val level cvl backup ; radix radix backup ; cur order co backup ;link (backup head) backup backup ;end;367. hExpand a nonmacro 367 i �begin if tracing commands > 1 then show cur cmd chr ;case cur cmd oftop bot mark : h Insert the appropriate mark text into the scanner 386 i;expand after : hExpand the token after the next token 368 i;no expand : h Suppress expansion of the next token 369 i;cs name : hManufacture a control sequence name 372 i;convert : conv toks ; f this procedure is discussed in Part 27 below gthe : ins the toks ; f this procedure is discussed in Part 27 below gif test : conditional ; f this procedure is discussed in Part 28 below g� or else : hTerminate the current conditional and skip to \fi 510 i;input : h Initiate or terminate input from a �le 378 i;othercases hComplain about an unde�ned macro 370 iendcases;endThis code is used in section 366.

x368 TEXGPC PART 25: EXPANDING THE NEXT TOKEN 149368. It takes only a little shu�ing to do what TEX calls \expandafter.hExpand the token after the next token 368 i �begin get token ; t cur tok ; get token ;if cur cmd > max command then expand else back input ;cur tok t; back input ;endThis code is used in section 367.369. The implementation of \noexpand is a bit trickier, because it is necessary to insert a special`dont expand ' marker into TEX's reading mechanism. This special marker is processed by get next , but itdoes not slow down the inner loop.Since \outer macros might arise here, we must also clear the scanner status temporarily.h Suppress expansion of the next token 369 i �begin save scanner status scanner status ; scanner status normal ; get token ;scanner status save scanner status ; t cur tok ; back input ;f now start and loc point to the backed-up token t gif t � cs token ag thenbegin p get avail ; info (p) cs token ag + frozen dont expand ; link (p) loc ; start p;loc p;end;endThis code is used in section 367.370. hComplain about an unde�ned macro 370 i �begin print err ("Undefined control sequence");help5 ("The control sequence at the end of the top line")("of your error message was never \def�ed. If you have")("misspelled it (e.g., �\hobx�), type �I� and the correct")("spelling (e.g., �I\hbox�). Otherwise just continue,")("and I�ll forget about whatever was undefined."); error ;endThis code is used in section 367.371. The expand procedure and some other routines that construct token lists �nd it convenient to usethe following macros, which are valid only if the variables p and q are reserved for token-list building.de�ne store new token (#) �begin q get avail ; link (p) q; info (q) #; p q; f link (p) is null gendde�ne fast store new token (#) �begin fast get avail (q); link (p) q; info (q) #; p q; f link (p) is null gend

150 PART 25: EXPANDING THE NEXT TOKEN TEXGPC x372372. hManufacture a control sequence name 372 i �begin r get avail ; p r; f head of the list of characters grepeat get x token ;if cur cs = 0 then store new token (cur tok);until cur cs 6= 0;if cur cmd 6= end cs name then hComplain about missing \endcsname 373 i;hLook up the characters of list r in the hash table, and set cur cs 374 i;ush list (r);if eq type (cur cs) = unde�ned cs thenbegin eq de�ne (cur cs ; relax ; 256); fN.B.: The save stack might change gend; f the control sequence will now match `\relax' gcur tok cur cs + cs token ag ; back input ;endThis code is used in section 367.373. hComplain about missing \endcsname 373 i �begin print err ("Missing "); print esc ("endcsname"); print (" inserted");help2 ("The control sequence marked <to be read again> should")("not appear between \csname and \endcsname."); back error ;endThis code is used in section 372.374. hLook up the characters of list r in the hash table, and set cur cs 374 i �j �rst ; p link (r);while p 6= null dobegin if j � max buf stack thenbegin max buf stack j + 1;if max buf stack = buf size then overow ("buffer size"; buf size);end;bu�er [j] info (p)mod �400 ; incr (j); p link (p);end;if j > �rst + 1 thenbegin no new control sequence false ; cur cs id lookup (�rst ; j � �rst);no new control sequence true ;endelse if j = �rst then cur cs null cs f the list is empty gelse cur cs single base + bu�er [�rst] f the list has length one gThis code is used in section 372.375. An end template command is e�ectively changed to an endv command by the following code. (Thereason for this is discussed below; the frozen end template at the end of the template has passed thecheck outer validity test, so its mission of error detection has been accomplished.)h Insert a token containing frozen endv 375 i �begin cur tok cs token ag + frozen endv ; back input ;endThis code is used in section 366.

x376 TEXGPC PART 25: EXPANDING THE NEXT TOKEN 151376. The processing of \input involves the start input subroutine, which will be declared later; theprocessing of \endinput is trivial.hPut each of TEX's primitives into the hash table 226 i +�primitive ("input"; input ; 0);primitive ("endinput"; input ; 1);377. hCases of print cmd chr for symbolic printing of primitives 227 i +�input : if chr code = 0 then print esc("input") else print esc("endinput");378. h Initiate or terminate input from a �le 378 i �if cur chr > 0 then force eof trueelse if name in progress then insert relaxelse start inputThis code is used in section 367.379. Sometimes the expansion looks too far ahead, so we want to insert a harmless \relax into the user'sinput.hDeclare the procedure called insert relax 379 i �procedure insert relax ;begin cur tok cs token ag + cur cs ; back input ; cur tok cs token ag + frozen relax ; back input ;token type inserted ;end;This code is used in section 366.380. Here is a recursive procedure that is TEX's usual way to get the next token of input. It has beenslightly optimized to take account of common cases.procedure get x token ; f sets cur cmd , cur chr , cur tok , and expands macros glabel restart ; done ;begin restart : get next ;if cur cmd � max command then goto done ;if cur cmd � call thenif cur cmd < end template then macro callelse begin cur cs frozen endv ; cur cmd endv ; goto done ; f cur chr = null list gendelse expand ;goto restart ;done : if cur cs = 0 then cur tok (cur cmd � �400) + cur chrelse cur tok cs token ag + cur cs ;end;381. The get x token procedure is equivalent to two consecutive procedure calls: get next ; x token .procedure x token ; f get x token without the initial get next gbegin while cur cmd > max command dobegin expand ; get next ;end;if cur cs = 0 then cur tok (cur cmd � �400) + cur chrelse cur tok cs token ag + cur cs ;end;

152 PART 25: EXPANDING THE NEXT TOKEN TEXGPC x382382. A control sequence that has been \def'ed by the user is expanded by TEX's macro call procedure.Before we get into the details of macro call , however, let's consider the treatment of primitives like\topmark, since they are essentially macros without parameters. The token lists for such marks are kept ina global array of �ve pointers; we refer to the individual entries of this array by symbolic names top mark ,etc. The value of top mark is either null or a pointer to the reference count of a token list.de�ne top mark code = 0 f the mark in e�ect at the previous page break gde�ne �rst mark code = 1 f the �rst mark between top mark and bot mark gde�ne bot mark code = 2 f the mark in e�ect at the current page break gde�ne split �rst mark code = 3 f the �rst mark found by \vsplitgde�ne split bot mark code = 4 f the last mark found by \vsplitgde�ne top mark � cur mark [top mark code]de�ne �rst mark � cur mark [�rst mark code]de�ne bot mark � cur mark [bot mark code]de�ne split �rst mark � cur mark [split �rst mark code]de�ne split bot mark � cur mark [split bot mark code]hGlobal variables 13 i +�cur mark : array [top mark code : : split bot mark code] of pointer ; f token lists for marks g383. h Set initial values of key variables 21 i +�top mark null ; �rst mark null ; bot mark null ; split �rst mark null ; split bot mark null ;384. hPut each of TEX's primitives into the hash table 226 i +�primitive ("topmark"; top bot mark ; top mark code);primitive ("firstmark"; top bot mark ;�rst mark code);primitive ("botmark"; top bot mark ; bot mark code);primitive ("splitfirstmark"; top bot mark ; split �rst mark code);primitive ("splitbotmark"; top bot mark ; split bot mark code);385. hCases of print cmd chr for symbolic printing of primitives 227 i +�top bot mark : case chr code of�rst mark code : print esc("firstmark");bot mark code : print esc("botmark");split �rst mark code : print esc("splitfirstmark");split bot mark code : print esc("splitbotmark");othercases print esc ("topmark")endcases;386. The following code is activated when cur cmd = top bot mark and when cur chr is a code liketop mark code .h Insert the appropriate mark text into the scanner 386 i �begin if cur mark [cur chr] 6= null then begin token list (cur mark [cur chr];mark text);endThis code is used in section 367.

x387 TEXGPC PART 25: EXPANDING THE NEXT TOKEN 153387. Now let's consider macro call itself, which is invoked when TEX is scanning a control sequence whosecur cmd is either call , long call , outer call , or long outer call . The control sequence de�nition appears inthe token list whose reference count is in location cur chr of mem .The global variable long state will be set to call or to long call , depending on whether or not the controlsequence disallows \par in its parameters. The get next routine will set long state to outer call and emit\par, if a �le ends or if an \outer control sequence occurs in the midst of an argument.hGlobal variables 13 i +�long state : call : : long outer call ; f governs the acceptance of \par g388. The parameters, if any, must be scanned before the macro is expanded. Parameters are token listswithout reference counts. They are placed on an auxiliary stack called pstack while they are being scanned,since the param stack may be losing entries during the matching process. (Note that param stack can'tbe gaining entries, since macro call is the only routine that puts anything onto param stack , and it is notrecursive.)hGlobal variables 13 i +�pstack : array [0 : : 8] of pointer ; f arguments supplied to a macro g389. After parameter scanning is complete, the parameters are moved to the param stack . Then the macrobody is fed to the scanner; in other words, macro call places the de�ned text of the control sequence at thetop of TEX's input stack, so that get next will proceed to read it next.The global variable cur cs contains the eqtb address of the control sequence being expanded, whenmacro call begins. If this control sequence has not been declared \long, i.e., if its command code in theeq type �eld is not long call or long outer call , its parameters are not allowed to contain the control sequence\par. If an illegal \par appears, the macro call is aborted, and the \par will be rescanned.hDeclare the procedure called macro call 389 i �procedure macro call ; f invokes a user-de�ned control sequence glabel exit ; continue ; done ; done1 ; found ;var r: pointer ; f current node in the macro's token list gp: pointer ; f current node in parameter token list being built gq: pointer ; f new node being put into the token list gs: pointer ; f backup pointer for parameter matching gt: pointer ; f cycle pointer for backup recovery gu; v: pointer ; f auxiliary pointers for backup recovery grbrace ptr : pointer ; f one step before the last right brace token gn: small number ; f the number of parameters scanned gunbalance : halfword ; f unmatched left braces in current parameter gm: halfword ; f the number of tokens or groups (usually) gref count : pointer ; f start of the token list gsave scanner status : small number ; f scanner status upon entry gsave warning index : pointer ; fwarning index upon entry gmatch chr : ASCII code ; f character used in parameter gbegin save scanner status scanner status ; save warning index warning index ;warning index cur cs ; ref count cur chr ; r link (ref count); n 0;if tracing macros > 0 then h Show the text of the macro being expanded 401 i;if info (r) 6= end match token then h Scan the parameters and make link (r) point to the macro body;but return if an illegal \par is detected 391 i;hFeed the macro body and its parameters to the scanner 390 i;exit : scanner status save scanner status ; warning index save warning index ;end;This code is used in section 366.

154 PART 25: EXPANDING THE NEXT TOKEN TEXGPC x390390. Before we put a new token list on the input stack, it is wise to clean o� all token lists that haverecently been depleted. Then a user macro that ends with a call to itself will not require unbounded stackspace.hFeed the macro body and its parameters to the scanner 390 i �while (state = token list) ^ (loc = null) ^ (token type 6= v template) do end token list ;f conserve stack space gbegin token list (ref count ;macro); name warning index ; loc link (r);if n > 0 thenbegin if param ptr + n > max param stack thenbegin max param stack param ptr + n;if max param stack > param size then overow ("parameter stack size"; param size);end;for m 0 to n� 1 do param stack [param ptr +m] pstack [m];param ptr param ptr + n;endThis code is used in section 389.391. At this point, the reader will �nd it advisable to review the explanation of token list format that waspresented earlier, since many aspects of that format are of importance chiey in the macro call routine.The token list might begin with a string of compulsory tokens before the �rst match or end match . Inthat case the macro name is supposed to be followed by those tokens; the following program will set s = nullto represent this restriction. Otherwise s will be set to the �rst token of a string that will delimit the nextparameter.h Scan the parameters and make link (r) point to the macro body; but return if an illegal \par isdetected 391 i �begin scanner status matching ; unbalance 0; long state eq type (cur cs);if long state � outer call then long state long state � 2;repeat link (temp head) null ;if (info (r) > match token + 255) _ (info (r) < match token) then s nullelse begin match chr info (r)�match token ; s link (r); r s; p temp head ; m 0;end;h Scan a parameter until its delimiter string has been found; or, if s = null , simply scan the delimiterstring 392 i;f now info (r) is a token whose command code is either match or end match guntil info (r) = end match token ;endThis code is used in section 389.

x392 TEXGPC PART 25: EXPANDING THE NEXT TOKEN 155392. If info (r) is a match or end match command, it cannot be equal to any token found by get token .Therefore an undelimited parameter|i.e., a match that is immediately followed by match or end match|will always fail the test `cur tok = info (r)' in the following algorithm.h Scan a parameter until its delimiter string has been found; or, if s = null , simply scan the delimiterstring 392 i �continue : get token ; f set cur tok to the next token of input gif cur tok = info (r) then hAdvance r; goto found if the parameter delimiter has been fully matched,otherwise goto continue 394 i;hContribute the recently matched tokens to the current parameter, and goto continue if a partial matchis still in e�ect; but abort if s = null 397 i;if cur tok = par token thenif long state 6= long call then hReport a runaway argument and abort 396 i;if cur tok < right brace limit thenif cur tok < left brace limit then hContribute an entire group to the current parameter 399 ielse hReport an extra right brace and goto continue 395 ielse h Store the current token, but goto continue if it is a blank space that would become an undelimitedparameter 393 i;incr (m);if info (r) > end match token then goto continue ;if info (r) < match token then goto continue ;found : if s 6= null then hTidy up the parameter just scanned, and tuck it away 400 iThis code is used in section 391.393. h Store the current token, but goto continue if it is a blank space that would become an undelimitedparameter 393 i �begin if cur tok = space token thenif info (r) � end match token thenif info (r) � match token then goto continue ;store new token (cur tok);endThis code is used in section 392.394. A slightly subtle point arises here: When the parameter delimiter ends with `#{', the token list willhave a left brace both before and after the end match . Only one of these should a�ect the align state , butboth will be scanned, so we must make a correction.hAdvance r; goto found if the parameter delimiter has been fully matched, otherwise goto continue 394 i �begin r link (r);if (info (r) � match token) ^ (info (r) � end match token) thenbegin if cur tok < left brace limit then decr (align state);goto found ;endelse goto continue ;endThis code is used in section 392.

156 PART 25: EXPANDING THE NEXT TOKEN TEXGPC x395395. hReport an extra right brace and goto continue 395 i �begin back input ; print err ("Argument of "); sprint cs (warning index); print (" has an extra }");help6 ("I�ve run across a �}� that doesn�t seem to match anything.")("For example, �\def\a#1{...}� and �\a}� would produce")("this error. If you simply proceed now, the �\par� that")("I�ve just inserted will cause me to report a runaway")("argument that might be the root of the problem. But if")("your �}� was spurious, just type �2� and it will go away."); incr (align state);long state call ; cur tok par token ; ins error ; goto continue ;end f a white lie; the \par won't always trigger a runaway gThis code is used in section 392.396. If long state = outer call , a runaway argument has already been reported.hReport a runaway argument and abort 396 i �begin if long state = call thenbegin runaway ; print err ("Paragraph ended before "); sprint cs (warning index);print (" was complete");help3 ("I suspect you�ve forgotten a �}�, causing me to apply this")("control sequence to too much text. How can we recover?")("My plan is to forget the whole thing and hope for the best."); back error ;end;pstack [n] link (temp head); align state align state � unbalance ;for m 0 to n do ush list (pstack [m]);return;endThis code is used in sections 392 and 399.

x397 TEXGPC PART 25: EXPANDING THE NEXT TOKEN 157397. When the following code becomes active, we have matched tokens from s to the predecessor of r, andwe have found that cur tok 6= info (r). An interesting situation now presents itself: If the parameter is to bedelimited by a string such as `ab', and if we have scanned `aa', we want to contribute one `a' to the currentparameter and resume looking for a `b'. The program must account for such partial matches and for othersthat can be quite complex. But most of the time we have s = r and nothing needs to be done.Incidentally, it is possible for \par tokens to sneak in to certain parameters of non-\long macros. Forexample, consider a case like `\def\a#1\par!{...}' where the �rst \par is not followed by an exclamationpoint. In such situations it does not seem appropriate to prohibit the \par, so TEX keeps quiet about thisbending of the rules.hContribute the recently matched tokens to the current parameter, and goto continue if a partial match isstill in e�ect; but abort if s = null 397 i �if s 6= r thenif s = null then hReport an improper use of the macro and abort 398 ielse begin t s;repeat store new token (info (t)); incr (m); u link (t); v s;loop begin if u = r thenif cur tok 6= info (v) then goto doneelse begin r link (v); goto continue ;end;if info (u) 6= info (v) then goto done ;u link (u); v link (v);end;done : t link (t);until t = r;r s; f at this point, no tokens are recently matched gendThis code is used in section 392.398. hReport an improper use of the macro and abort 398 i �begin print err ("Use of "); sprint cs (warning index); print (" doesn�t match its definition");help4 ("If you say, e.g., �\def\a1{...}�, then you must always")("put �1� after �\a�, since control sequence names are")("made up of letters only. The macro here has not been")("followed by the required stuff, so I�m ignoring it."); error ; return;endThis code is used in section 397.399. hContribute an entire group to the current parameter 399 i �begin unbalance 1;loop begin fast store new token (cur tok); get token ;if cur tok = par token thenif long state 6= long call then hReport a runaway argument and abort 396 i;if cur tok < right brace limit thenif cur tok < left brace limit then incr (unbalance)else begin decr (unbalance);if unbalance = 0 then goto done1 ;end;end;done1 : rbrace ptr p; store new token (cur tok);endThis code is used in section 392.

158 PART 25: EXPANDING THE NEXT TOKEN TEXGPC x400400. If the parameter consists of a single group enclosed in braces, we must strip o� the enclosing braces.That's why rbrace ptr was introduced.hTidy up the parameter just scanned, and tuck it away 400 i �begin if (m = 1) ^ (info (p) < right brace limit) ^ (p 6= temp head) thenbegin link (rbrace ptr) null ; free avail (p); p link (temp head); pstack [n] link (p); free avail (p);endelse pstack [n] link (temp head);incr (n);if tracing macros > 0 thenbegin begin diagnostic ; print nl (match chr); print int (n); print ("<-");show token list (pstack [n� 1];null ; 1000); end diagnostic (false);end;endThis code is used in section 392.401. h Show the text of the macro being expanded 401 i �begin begin diagnostic ; print ln ; print cs (warning index); token show (ref count);end diagnostic (false);endThis code is used in section 389.

x402 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 159402. Basic scanning subroutines. Let's turn now to some procedures that TEX calls upon frequentlyto digest certain kinds of patterns in the input. Most of these are quite simple; some are quite elaborate.Almost all of the routines call get x token , which can cause them to be invoked recursively.403. The scan left brace routine is called when a left brace is supposed to be the next non-blank token.(The term \left brace" means, more precisely, a character whose catcode is left brace .) TEX allows \relaxto appear before the left brace .procedure scan left brace ; f reads a mandatory left brace gbegin hGet the next non-blank non-relax non-call token 404 i;if cur cmd 6= left brace thenbegin print err ("Missing { inserted");help4 ("A left brace was mandatory here, so I�ve put one in.")("You might want to delete and/or insert some corrections")("so that I will find a matching right brace soon.")("(If you�re confused by all this, try typing �I}� now.)"); back error ;cur tok left brace token + "{"; cur cmd left brace ; cur chr "{"; incr (align state);end;end;404. hGet the next non-blank non-relax non-call token 404 i �repeat get x token ;until (cur cmd 6= spacer) ^ (cur cmd 6= relax)This code is used in sections 403, 1078, 1084, 1151, 1160, 1211, 1226, and 1270.405. The scan optional equals routine looks for an optional `=' sign preceded by optional spaces; `\relax'is not ignored here.procedure scan optional equals ;begin hGet the next non-blank non-call token 406 i;if cur tok 6= other token + "=" then back input ;end;406. hGet the next non-blank non-call token 406 i �repeat get x token ;until cur cmd 6= spacerThis code is used in sections 405, 441, 455, 503, 526, 577, 785, 791, and 1045.

160 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x407407. In case you are getting bored, here is a slightly less trivial routine: Given a string of lowercase letters,like `pt' or `plus' or `width', the scan keyword routine checks to see whether the next tokens of input matchthis string. The match must be exact, except that uppercase letters will match their lowercase counterparts;uppercase equivalents are determined by subtracting "a"� "A", rather than using the uc code table, sinceTEX uses this routine only for its own limited set of keywords.If a match is found, the characters are e�ectively removed from the input and true is returned. Otherwisefalse is returned, and the input is left essentially unchanged (except for the fact that some macros may havebeen expanded, etc.).function scan keyword (s : str number): boolean ; f look for a given string glabel exit ;var p: pointer ; f tail of the backup list gq: pointer ; f new node being added to the token list via store new token gk: pool pointer ; f index into str pool gbegin p backup head ; link (p) null ; k str start [s];while k < str start [s+ 1] dobegin get x token ; f recursion is possible here gif (cur cs = 0) ^ ((cur chr = so(str pool [k])) _ (cur chr = so (str pool [k])� "a"+ "A")) thenbegin store new token (cur tok); incr (k);endelse if (cur cmd 6= spacer) _ (p 6= backup head) thenbegin back input ;if p 6= backup head then back list (link (backup head));scan keyword false ; return;end;end;ush list (link (backup head)); scan keyword true ;exit : end;408. Here is a procedure that sounds an alarm when mu and non-mu units are being switched.procedure mu error ;begin print err ("Incompatible glue units");help1 ("I�m going to assume that 1mu=1pt when they�re mixed."); error ;end;409. The next routine `scan something internal ' is used to fetch internal numeric quantities like `\hsize',and also to handle the `\the' when expanding constructions like `\the\toks0' and `\the\baselineskip'.Soon we will be considering the scan int procedure, which calls scan something internal ; on the other hand,scan something internal also calls scan int , for constructions like `\catcode�\$' or `\fontdimen 3 \ff'. Sowe have to declare scan int as a forward procedure. A few other procedures are also declared at this point.procedure scan int ; forward ; f scans an integer value ghDeclare procedures that scan restricted classes of integers 433 ihDeclare procedures that scan font-related stu� 577 i

x410 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 161410. TEX doesn't know exactly what to expect when scan something internal begins. For example, aninteger or dimension or glue value could occur immediately after `\hskip'; and one can even say \the withrespect to token lists in constructions like `\xdef\o{\the\output}'. On the other hand, only integers areallowed after a construction like `\count'. To handle the various possibilities, scan something internal hasa level parameter, which tells the \highest" kind of quantity that scan something internal is allowed toproduce. Six levels are distinguished, namely int val , dimen val , glue val , mu val , ident val , and tok val .The output of scan something internal (and of the other routines scan int , scan dimen , and scan gluebelow) is put into the global variable cur val , and its level is put into cur val level . The highest values ofcur val level are special: mu val is used only when cur val points to something in a \muskip" register, or toone of the three parameters \thinmuskip, \medmuskip, \thickmuskip; ident val is used only when cur valpoints to a font identi�er; tok val is used only when cur val points to null or to the reference count of atoken list. The last two cases are allowed only when scan something internal is called with level = tok val .If the output is glue, cur val will point to a glue speci�cation, and the reference count of that glue willhave been updated to reect this reference; if the output is a nonempty token list, cur val will point to itsreference count, but in this case the count will not have been updated. Otherwise cur val will contain theinteger or scaled value in question.de�ne int val = 0 f integer values gde�ne dimen val = 1 f dimension values gde�ne glue val = 2 f glue speci�cations gde�ne mu val = 3 fmath glue speci�cations gde�ne ident val = 4 f font identi�er gde�ne tok val = 5 f token lists ghGlobal variables 13 i +�cur val : integer ; f value returned by numeric scanners gcur val level : int val : : tok val ; f the \level" of this value g411. The hash table is initialized with `\count', `\dimen', `\skip', and `\muskip' all having register astheir command code; they are distinguished by the chr code , which is either int val , dimen val , glue val , ormu val .hPut each of TEX's primitives into the hash table 226 i +�primitive ("count"; register ; int val); primitive ("dimen"; register ; dimen val);primitive ("skip"; register ; glue val); primitive ("muskip"; register ;mu val);412. hCases of print cmd chr for symbolic printing of primitives 227 i +�register : if chr code = int val then print esc("count")else if chr code = dimen val then print esc("dimen")else if chr code = glue val then print esc ("skip")else print esc ("muskip");

162 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x413413. OK, we're ready for scan something internal itself. A second parameter, negative , is set true ifthe value that is found should be negated. It is assumed that cur cmd and cur chr represent the �rsttoken of the internal quantity to be scanned; an error will be signalled if cur cmd < min internal orcur cmd > max internal .de�ne scanned result end (#) � cur val level #; endde�ne scanned result (#) � begin cur val #; scanned result endprocedure scan something internal (level : small number ; negative : boolean);f fetch an internal parameter gvar m: halfword ; f chr code part of the operand token gp: 0 : : nest size ; f index into nest gbegin m cur chr ;case cur cmd ofdef code : hFetch a character code from some table 414 i;toks register ; assign toks ; def family ; set font ; def font : hFetch a token list or font identi�er, providedthat level = tok val 415 i;assign int : scanned result (eqtb [m]:int)(int val);assign dimen : scanned result (eqtb [m]:sc)(dimen val);assign glue : scanned result (equiv (m))(glue val);assign mu glue : scanned result (equiv (m))(mu val);set aux : hFetch the space factor or the prev depth 418 i;set prev graf : hFetch the prev graf 422 i;set page int : hFetch the dead cycles or the insert penalties 419 i;set page dimen : hFetch something on the page so far 421 i;set shape : hFetch the par shape size 423 i;set box dimen : hFetch a box dimension 420 i;char given ;math given : scanned result (cur chr)(int val);assign font dimen : hFetch a font dimension 425 i;assign font int : hFetch a font integer 426 i;register : hFetch a register 427 i;last item : hFetch an item in the current node, if appropriate 424 i;othercases hComplain that \the can't do this; give zero result 428 iendcases;while cur val level > level do hConvert cur val to a lower level 429 i;hFix the reference count, if any, and negate cur val if negative 430 i;end;414. hFetch a character code from some table 414 i �begin scan char num ;if m = math code base then scanned result (ho (math code (cur val)))(int val)else if m < math code base then scanned result (equiv (m+ cur val))(int val)else scanned result (eqtb [m+ cur val]:int)(int val);endThis code is used in section 413.

x415 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 163415. hFetch a token list or font identi�er, provided that level = tok val 415 i �if level 6= tok val thenbegin print err ("Missing number, treated as zero");help3 ("A number should have been here; I inserted �0�.")("(If you can�t figure out why I needed to see a number,")("look up �weird error� in the index to The TeXbook.)"); back error ;scanned result (0)(dimen val);endelse if cur cmd � assign toks thenbegin if cur cmd < assign toks then f cur cmd = toks register gbegin scan eight bit int ; m toks base + cur val ;end;scanned result (equiv (m))(tok val);endelse begin back input ; scan font ident ; scanned result (font id base + cur val)(ident val);endThis code is used in section 413.416. Users refer to `\the\spacefactor' only in horizontal mode, and to `\the\prevdepth' only in verticalmode; so we put the associated mode in the modi�er part of the set aux command. The set page intcommand has modi�er 0 or 1, for `\deadcycles' and `\insertpenalties', respectively. The set box dimencommand is modi�ed by either width o�set , height o�set , or depth o�set . And the last item command ismodi�ed by either int val , dimen val , glue val , input line no code , or badness code .de�ne input line no code = glue val + 1 f code for \inputlinenogde�ne badness code = glue val + 2 f code for \badnessghPut each of TEX's primitives into the hash table 226 i +�primitive ("spacefactor"; set aux ; hmode); primitive ("prevdepth"; set aux ; vmode);primitive ("deadcycles"; set page int ; 0); primitive ("insertpenalties"; set page int ; 1);primitive ("wd"; set box dimen ;width o�set); primitive ("ht"; set box dimen ; height o�set);primitive ("dp"; set box dimen ; depth o�set); primitive ("lastpenalty"; last item ; int val);primitive ("lastkern"; last item ; dimen val); primitive ("lastskip"; last item ; glue val);primitive ("inputlineno"; last item ; input line no code); primitive ("badness"; last item ; badness code);417. hCases of print cmd chr for symbolic printing of primitives 227 i +�set aux : if chr code = vmode then print esc("prevdepth") else print esc("spacefactor");set page int : if chr code = 0 then print esc("deadcycles") else print esc ("insertpenalties");set box dimen : if chr code = width o�set then print esc ("wd")else if chr code = height o�set then print esc("ht")else print esc ("dp");last item : case chr code ofint val : print esc("lastpenalty");dimen val : print esc("lastkern");glue val : print esc("lastskip");input line no code : print esc("inputlineno");othercases print esc ("badness")endcases;

164 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x418418. hFetch the space factor or the prev depth 418 i �if abs (mode) 6= m thenbegin print err ("Improper "); print cmd chr (set aux ;m);help4 ("You can refer to \spacefactor only in horizontal mode;")("you can refer to \prevdepth only in vertical mode; and")("neither of these is meaningful inside \write. So")("I�m forgetting what you said and using zero instead."); error ;if level 6= tok val then scanned result (0)(dimen val)else scanned result (0)(int val);endelse if m = vmode then scanned result (prev depth)(dimen val)else scanned result (space factor)(int val)This code is used in section 413.419. hFetch the dead cycles or the insert penalties 419 i �begin if m = 0 then cur val dead cycles else cur val insert penalties ;cur val level int val ;endThis code is used in section 413.420. hFetch a box dimension 420 i �begin scan eight bit int ;if box (cur val) = null then cur val 0 else cur val mem [box (cur val) +m]:sc ;cur val level dimen val ;endThis code is used in section 413.421. Inside an \output routine, a user may wish to look at the page totals that were present at the momentwhen output was triggered.de�ne max dimen � �7777777777 f 230 � 1 ghFetch something on the page so far 421 i �begin if (page contents = empty) ^ (:output active) thenif m = 0 then cur val max dimen else cur val 0else cur val page so far [m];cur val level dimen val ;endThis code is used in section 413.422. hFetch the prev graf 422 i �if mode = 0 then scanned result (0)(int val) f prev graf = 0 within \writegelse begin nest [nest ptr] cur list ; p nest ptr ;while abs (nest [p]:mode �eld) 6= vmode do decr (p);scanned result (nest [p]:pg �eld)(int val);endThis code is used in section 413.

x423 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 165423. hFetch the par shape size 423 i �begin if par shape ptr = null then cur val 0else cur val info (par shape ptr);cur val level int val ;endThis code is used in section 413.424. Here is where \lastpenalty, \lastkern, and \lastskip are implemented. The reference count for\lastskip will be updated later.We also handle \inputlineno and \badness here, because they are legal in similar contexts.hFetch an item in the current node, if appropriate 424 i �if cur chr > glue val thenbegin if cur chr = input line no code then cur val lineelse cur val last badness ; f cur chr = badness code gcur val level int val ;endelse begin if cur chr = glue val then cur val zero glue else cur val 0;cur val level cur chr ;if :is char node (tail) ^ (mode 6= 0) thencase cur chr ofint val : if type (tail) = penalty node then cur val penalty (tail);dimen val : if type (tail) = kern node then cur val width (tail);glue val : if type (tail) = glue node thenbegin cur val glue ptr (tail);if subtype (tail) = mu glue then cur val level mu val ;end;end f there are no other cases gelse if (mode = vmode) ^ (tail = head) thencase cur chr ofint val : cur val last penalty ;dimen val : cur val last kern ;glue val : if last glue 6= max halfword then cur val last glue ;end; f there are no other cases gendThis code is used in section 413.425. hFetch a font dimension 425 i �begin �nd font dimen (false); font info [fmem ptr]:sc 0;scanned result (font info [cur val]:sc)(dimen val);endThis code is used in section 413.426. hFetch a font integer 426 i �begin scan font ident ;if m = 0 then scanned result (hyphen char [cur val])(int val)else scanned result (skew char [cur val])(int val);endThis code is used in section 413.

166 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x427427. hFetch a register 427 i �begin scan eight bit int ;case m ofint val : cur val count (cur val);dimen val : cur val dimen (cur val);glue val : cur val skip (cur val);mu val : cur val mu skip (cur val);end; f there are no other cases gcur val level m;endThis code is used in section 413.428. hComplain that \the can't do this; give zero result 428 i �begin print err ("You can�t use �"); print cmd chr (cur cmd ; cur chr); print ("� after ");print esc("the"); help1 ("I�m forgetting what you said and using zero instead."); error ;if level 6= tok val then scanned result (0)(dimen val)else scanned result (0)(int val);endThis code is used in section 413.429. When a glue val changes to a dimen val , we use the width component of the glue; there is no need todecrease the reference count, since it has not yet been increased. When a dimen val changes to an int val ,we use scaled points so that the value doesn't actually change. And when a mu val changes to a glue val ,the value doesn't change either.hConvert cur val to a lower level 429 i �begin if cur val level = glue val then cur val width (cur val)else if cur val level = mu val then mu error ;decr (cur val level);endThis code is used in section 413.430. If cur val points to a glue speci�cation at this point, the reference count for the glue does not yetinclude the reference by cur val . If negative is true , cur val level is known to be � mu val .hFix the reference count, if any, and negate cur val if negative 430 i �if negative thenif cur val level � glue val thenbegin cur val new spec (cur val); hNegate all three glue components of cur val 431 i;endelse negate (cur val)else if (cur val level � glue val) ^ (cur val level � mu val) then add glue ref (cur val)This code is used in section 413.431. hNegate all three glue components of cur val 431 i �begin negate (width (cur val)); negate (stretch (cur val)); negate (shrink (cur val));endThis code is used in section 430.432. Our next goal is to write the scan int procedure, which scans anything that TEX treats as an integer.But �rst we might as well look at some simple applications of scan int that have already been made insideof scan something internal .

x433 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 167433. hDeclare procedures that scan restricted classes of integers 433 i �procedure scan eight bit int ;begin scan int ;if (cur val < 0) _ (cur val > 255) thenbegin print err ("Bad register code");help2 ("A register number must be between 0 and 255.")("I changed this one to zero."); int error (cur val); cur val 0;end;end;See also sections 434, 435, 436, and 437.This code is used in section 409.434. hDeclare procedures that scan restricted classes of integers 433 i +�procedure scan char num ;begin scan int ;if (cur val < 0) _ (cur val > 255) thenbegin print err ("Bad character code");help2 ("A character number must be between 0 and 255.")("I changed this one to zero."); int error (cur val); cur val 0;end;end;435. While we're at it, we might as well deal with similar routines that will be needed later.hDeclare procedures that scan restricted classes of integers 433 i +�procedure scan four bit int ;begin scan int ;if (cur val < 0) _ (cur val > 15) thenbegin print err ("Bad number");help2 ("Since I expected to read a number between 0 and 15,")("I changed this one to zero."); int error (cur val); cur val 0;end;end;436. hDeclare procedures that scan restricted classes of integers 433 i +�procedure scan �fteen bit int ;begin scan int ;if (cur val < 0) _ (cur val > �77777) thenbegin print err ("Bad mathchar"); help2 ("A mathchar number must be between 0 and 32767.")("I changed this one to zero."); int error (cur val); cur val 0;end;end;437. hDeclare procedures that scan restricted classes of integers 433 i +�procedure scan twenty seven bit int ;begin scan int ;if (cur val < 0) _ (cur val > �777777777) thenbegin print err ("Bad delimiter code");help2 ("A numeric delimiter code must be between 0 and 2^{27}-1.")("I changed this one to zero."); int error (cur val); cur val 0;end;end;

168 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x438438. An integer number can be preceded by any number of spaces and `+' or `-' signs. Then comes eithera decimal constant (i.e., radix 10), an octal constant (i.e., radix 8, preceded by �), a hexadecimal constant(radix 16, preceded by "), an alphabetic constant (preceded by �), or an internal variable. After scanning iscomplete, cur val will contain the answer, which must be at most 231 � 1 = 2147483647 in absolute value.The value of radix is set to 10, 8, or 16 in the cases of decimal, octal, or hexadecimal constants, otherwiseradix is set to zero. An optional space follows a constant.de�ne octal token = other token + "�" f apostrophe, indicates an octal constant gde�ne hex token = other token + """" f double quote, indicates a hex constant gde�ne alpha token = other token + "�" f reverse apostrophe, precedes alpha constants gde�ne point token = other token + "." f decimal point gde�ne continental point token = other token + "," f decimal point, Eurostyle ghGlobal variables 13 i +�radix : small number ; f scan int sets this to 8, 10, 16, or zero g439. We initialize the following global variables just in case expand comes into action before any of thebasic scanning routines has assigned them a value.h Set initial values of key variables 21 i +�cur val 0; cur val level int val ; radix 0; cur order normal ;440. The scan int routine is used also to scan the integer part of a fraction; for example, the `3' in`3.14159' will be found by scan int . The scan dimen routine assumes that cur tok = point token after theinteger part of such a fraction has been scanned by scan int , and that the decimal point has been backedup to be scanned again.procedure scan int ; f sets cur val to an integer glabel done ;var negative : boolean ; f should the answer be negated? gm: integer ; f 231 div radix , the threshold of danger gd: small number ; f the digit just scanned gvacuous : boolean ; f have no digits appeared? gOK so far : boolean ; f has an error message been issued? gbegin radix 0; OK so far true ;hGet the next non-blank non-sign token; set negative appropriately 441 i;if cur tok = alpha token then h Scan an alphabetic character code into cur val 442 ielse if (cur cmd � min internal) ^ (cur cmd � max internal) thenscan something internal (int val ; false)else h Scan a numeric constant 444 i;if negative then negate (cur val);end;441. hGet the next non-blank non-sign token; set negative appropriately 441 i �negative false ;repeat hGet the next non-blank non-call token 406 i;if cur tok = other token + "-" thenbegin negative :negative ; cur tok other token + "+";end;until cur tok 6= other token + "+"This code is used in sections 440, 448, and 461.

x442 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 169442. A space is ignored after an alphabetic character constant, so that such constants behave like numericones.h Scan an alphabetic character code into cur val 442 i �begin get token ; f suppress macro expansion gif cur tok < cs token ag thenbegin cur val cur chr ;if cur cmd � right brace thenif cur cmd = right brace then incr (align state)else decr (align state);endelse if cur tok < cs token ag + single base then cur val cur tok � cs token ag � active baseelse cur val cur tok � cs token ag � single base ;if cur val > 255 thenbegin print err ("Improper alphabetic constant");help2 ("A one-character control sequence belongs after a � mark.")("So I�m essentially inserting \0 here."); cur val "0"; back error ;endelse h Scan an optional space 443 i;endThis code is used in section 440.443. h Scan an optional space 443 i �begin get x token ;if cur cmd 6= spacer then back input ;endThis code is used in sections 442, 448, 455, and 1200.444. h Scan a numeric constant 444 i �begin radix 10; m 214748364;if cur tok = octal token thenbegin radix 8; m �2000000000 ; get x token ;endelse if cur tok = hex token thenbegin radix 16; m �1000000000 ; get x token ;end;vacuous true ; cur val 0;hAccumulate the constant until cur tok is not a suitable digit 445 i;if vacuous then hExpress astonishment that no number was here 446 ielse if cur cmd 6= spacer then back input ;endThis code is used in section 440.

170 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x445445. de�ne in�nity � �17777777777 f the largest positive value that TEX knows gde�ne zero token = other token + "0" f zero, the smallest digit gde�ne A token = letter token + "A" f the smallest special hex digit gde�ne other A token = other token + "A" f special hex digit of type other char ghAccumulate the constant until cur tok is not a suitable digit 445 i �loop begin if (cur tok < zero token + radix) ^ (cur tok � zero token) ^ (cur tok � zero token + 9)then d cur tok � zero tokenelse if radix = 16 thenif (cur tok � A token + 5) ^ (cur tok � A token) then d cur tok �A token + 10else if (cur tok � other A token + 5) ^ (cur tok � other A token) thend cur tok � other A token + 10else goto doneelse goto done ;vacuous false ;if (cur val � m) ^ ((cur val > m) _ (d > 7) _ (radix 6= 10)) thenbegin if OK so far thenbegin print err ("Number too big");help2 ("I can only go up to 2147483647=�17777777777=""7FFFFFFF,")("so I�m using that number instead of yours."); error ; cur val in�nity ;OK so far false ;end;endelse cur val cur val � radix + d;get x token ;end;done :This code is used in section 444.446. hExpress astonishment that no number was here 446 i �begin print err ("Missing number, treated as zero");help3 ("A number should have been here; I inserted �0�.")("(If you can�t figure out why I needed to see a number,")("look up �weird error� in the index to The TeXbook.)"); back error ;endThis code is used in section 444.447. The scan dimen routine is similar to scan int , but it sets cur val to a scaled value, i.e., an integralnumber of sp. One of its main tasks is therefore to interpret the abbreviations for various kinds of units andto convert measurements to scaled points.There are three parameters: mu is true if the �nite units must be `mu', while mu is false if `mu' unitsare disallowed; inf is true if the in�nite units `fil', `fill', `filll' are permitted; and shortcut is true ifcur val already contains an integer and only the units need to be considered.The order of in�nity that was found in the case of in�nite glue is returned in the global variable cur order .hGlobal variables 13 i +�cur order : glue ord ; f order of in�nity found by scan dimen g

x448 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 171448. Constructions like `-�77 pt' are legal dimensions, so scan dimen may begin with scan int . Thisexplains why it is convenient to use scan int also for the integer part of a decimal fraction.Several branches of scan dimen work with cur val as an integer and with an auxiliary fraction f , so thatthe actual quantity of interest is cur val + f=216. At the end of the routine, this \unpacked" representationis put into the single word cur val , which suddenly switches signi�cance from integer to scaled .de�ne attach fraction = 88 f go here to pack cur val and f into cur val gde�ne attach sign = 89 f go here when cur val is correct except perhaps for sign gde�ne scan normal dimen � scan dimen (false ; false ; false)procedure scan dimen (mu ; inf ; shortcut : boolean); f sets cur val to a dimension glabel done ; done1 ; done2 ; found ;not found ; attach fraction ; attach sign ;var negative : boolean ; f should the answer be negated? gf : integer ; f numerator of a fraction whose denominator is 216 ghLocal variables for dimension calculations 450 ibegin f 0; arith error false ; cur order normal ; negative false ;if :shortcut thenbegin hGet the next non-blank non-sign token; set negative appropriately 441 i;if (cur cmd � min internal) ^ (cur cmd � max internal) thenhFetch an internal dimension and goto attach sign , or fetch an internal integer 449 ielse begin back input ;if cur tok = continental point token then cur tok point token ;if cur tok 6= point token then scan intelse begin radix 10; cur val 0;end;if cur tok = continental point token then cur tok point token ;if (radix = 10) ^ (cur tok = point token) then h Scan decimal fraction 452 i;end;end;if cur val < 0 then f in this case f = 0 gbegin negative :negative ; negate (cur val);end;h Scan units and set cur val to x � (cur val + f=216), where there are x sp per unit; goto attach sign ifthe units are internal 453 i;h Scan an optional space 443 i;attach sign : if arith error _ (abs (cur val) � �10000000000) thenhReport that this dimension is out of range 460 i;if negative then negate (cur val);end;449. hFetch an internal dimension and goto attach sign , or fetch an internal integer 449 i �if mu thenbegin scan something internal (mu val ; false); hCoerce glue to a dimension 451 i;if cur val level = mu val then goto attach sign ;if cur val level 6= int val then mu error ;endelse begin scan something internal (dimen val ; false);if cur val level = dimen val then goto attach sign ;endThis code is used in section 448.

172 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x450450. hLocal variables for dimension calculations 450 i �num ; denom : 1 : : 65536; f conversion ratio for the scanned units gk; kk : small number ; f number of digits in a decimal fraction gp; q: pointer ; f top of decimal digit stack gv: scaled ; f an internal dimension gsave cur val : integer ; f temporary storage of cur val gThis code is used in section 448.451. The following code is executed when scan something internal was called asking for mu val , when wereally wanted a \mudimen" instead of \muglue."hCoerce glue to a dimension 451 i �if cur val level � glue val thenbegin v width (cur val); delete glue ref (cur val); cur val v;endThis code is used in sections 449 and 455.452. When the following code is executed, we have cur tok = point token , but this token has been backedup using back input ; we must �rst discard it.It turns out that a decimal point all by itself is equivalent to `0.0'. Let's hope people don't use that fact.h Scan decimal fraction 452 i �begin k 0; p null ; get token ; f point token is being re-scanned gloop begin get x token ;if (cur tok > zero token + 9) _ (cur tok < zero token) then goto done1 ;if k < 17 then f digits for k � 17 cannot a�ect the result gbegin q get avail ; link (q) p; info (q) cur tok � zero token ; p q; incr (k);end;end;done1 : for kk k downto 1 dobegin dig [kk � 1] info (p); q p; p link (p); free avail (q);end;f round decimals (k);if cur cmd 6= spacer then back input ;endThis code is used in section 448.

x453 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 173453. Now comes the harder part: At this point in the program, cur val is a nonnegative integer and f=216is a nonnegative fraction less than 1; we want to multiply the sum of these two quantities by the appropriatefactor, based on the speci�ed units, in order to produce a scaled result, and we want to do the calculationwith �xed point arithmetic that does not overow.h Scan units and set cur val to x � (cur val + f=216), where there are x sp per unit; goto attach sign if theunits are internal 453 i �if inf then h Scan for fil units; goto attach fraction if found 454 i;h Scan for units that are internal dimensions; goto attach sign with cur val set if found 455 i;if mu then h Scan for mu units and goto attach fraction 456 i;if scan keyword ("true") then hAdjust for the magni�cation ratio 457 i;if scan keyword ("pt") then goto attach fraction ; f the easy case gh Scan for all other units and adjust cur val and f accordingly; goto done in the case of scaledpoints 458 i;attach fraction : if cur val � �40000 then arith error trueelse cur val cur val � unity + f ;done :This code is used in section 448.454. A speci�cation like `filllll' or `fill L L L' will lead to two error messages (one for each additionalkeyword "l").h Scan for fil units; goto attach fraction if found 454 i �if scan keyword ("fil") thenbegin cur order �l ;while scan keyword ("l") dobegin if cur order = �lll thenbegin print err ("Illegal unit of measure ("); print ("replaced by filll)");help1 ("I dddon�t go any higher than filll."); error ;endelse incr (cur order);end;goto attach fraction ;endThis code is used in section 453.

174 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x455455. h Scan for units that are internal dimensions; goto attach sign with cur val set if found 455 i �save cur val cur val ; hGet the next non-blank non-call token 406 i;if (cur cmd < min internal) _ (cur cmd > max internal) then back inputelse begin if mu thenbegin scan something internal (mu val ; false); hCoerce glue to a dimension 451 i;if cur val level 6= mu val then mu error ;endelse scan something internal (dimen val ; false);v cur val ; goto found ;end;if mu then goto not found ;if scan keyword ("em") then v (hThe em width for cur font 558 i)else if scan keyword ("ex") then v (hThe x-height for cur font 559 i)else goto not found ;h Scan an optional space 443 i;found : cur val nx plus y (save cur val ; v; xn over d (v; f ; �200000)); goto attach sign ;not found :This code is used in section 453.456. h Scan for mu units and goto attach fraction 456 i �if scan keyword ("mu") then goto attach fractionelse begin print err ("Illegal unit of measure ("); print ("mu inserted)");help4 ("The unit of measurement in math glue must be mu.")("To recover gracefully from this error, it�s best to")("delete the erroneous units; e.g., type �2� to delete")("two letters. (See Chapter 27 of The TeXbook.)"); error ; goto attach fraction ;endThis code is used in section 453.457. hAdjust for the magni�cation ratio 457 i �begin prepare mag ;if mag 6= 1000 thenbegin cur val xn over d (cur val ; 1000;mag); f (1000 � f + �200000 � remainder) divmag ;cur val cur val + (f div �200000); f f mod �200000 ;end;endThis code is used in section 453.

x458 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 175458. The necessary conversion factors can all be speci�ed exactly as fractions whose numerator anddenominator sum to 32768 or less. According to the de�nitions here, 2660 dd � 1000:33297mm; this agreeswell with the value 1000:333mm cited by Bosshard in Technische Grundlagen zur Satzherstellung (Bern,1980).de�ne set conversion end (#) � denom #;endde�ne set conversion (#) � begin num #; set conversion endh Scan for all other units and adjust cur val and f accordingly; goto done in the case of scaled points 458 i �if scan keyword ("in") then set conversion (7227)(100)else if scan keyword ("pc") then set conversion (12)(1)else if scan keyword ("cm") then set conversion (7227)(254)else if scan keyword ("mm") then set conversion (7227)(2540)else if scan keyword ("bp") then set conversion (7227)(7200)else if scan keyword ("dd") then set conversion (1238)(1157)else if scan keyword ("cc") then set conversion (14856)(1157)else if scan keyword ("sp") then goto doneelse hComplain about unknown unit and goto done2 459 i;cur val xn over d (cur val ;num ; denom); f (num � f + �200000 � remainder) div denom ;cur val cur val + (f div �200000); f f mod �200000 ;done2 :This code is used in section 453.459. hComplain about unknown unit and goto done2 459 i �begin print err ("Illegal unit of measure ("); print ("pt inserted)");help6 ("Dimensions can be in units of em, ex, in, pt, pc,")("cm, mm, dd, cc, bp, or sp; but yours is a new one!")("I�ll assume that you meant to say pt, for printer�s points.")("To recover gracefully from this error, it�s best to")("delete the erroneous units; e.g., type �2� to delete")("two letters. (See Chapter 27 of The TeXbook.)"); error ; goto done2 ;endThis code is used in section 458.460. hReport that this dimension is out of range 460 i �begin print err ("Dimension too large");help2 ("I can�t work with sizes bigger than about 19 feet.")("Continue and I�ll use the largest value I can.");error ; cur val max dimen ; arith error false ;endThis code is used in section 448.

176 PART 26: BASIC SCANNING SUBROUTINES TEXGPC x461461. The �nal member of TEX's value-scanning trio is scan glue , which makes cur val point to a gluespeci�cation. The reference count of that glue spec will take account of the fact that cur val is pointingto it.The level parameter should be either glue val or mu val .Since scan dimen was so much more complex than scan int , we might expect scan glue to be even worse.But fortunately, it is very simple, since most of the work has already been done.procedure scan glue (level : small number); f sets cur val to a glue spec pointer glabel exit ;var negative : boolean ; f should the answer be negated? gq: pointer ; f new glue speci�cation gmu : boolean ; f does level = mu val ? gbegin mu (level = mu val); hGet the next non-blank non-sign token; set negative appropriately 441 i;if (cur cmd � min internal) ^ (cur cmd � max internal) thenbegin scan something internal (level ;negative);if cur val level � glue val thenbegin if cur val level 6= level then mu error ;return;end;if cur val level = int val then scan dimen (mu ; false ; true)else if level = mu val then mu error ;endelse begin back input ; scan dimen (mu ; false ; false);if negative then negate (cur val);end;hCreate a new glue speci�cation whose width is cur val ; scan for its stretch and shrink components 462 i;exit : end;462. hCreate a new glue speci�cation whose width is cur val ; scan for its stretch and shrinkcomponents 462 i �q new spec(zero glue); width (q) cur val ;if scan keyword ("plus") thenbegin scan dimen (mu ; true ; false); stretch (q) cur val ; stretch order (q) cur order ;end;if scan keyword ("minus") thenbegin scan dimen (mu ; true ; false); shrink (q) cur val ; shrink order (q) cur order ;end;cur val qThis code is used in section 461.

x463 TEXGPC PART 26: BASIC SCANNING SUBROUTINES 177463. Here's a similar procedure that returns a pointer to a rule node. This routine is called just after TEXhas seen \hrule or \vrule; therefore cur cmd will be either hrule or vrule . The idea is to store the defaultrule dimensions in the node, then to override them if `height' or `width' or `depth' speci�cations are found(in any order).de�ne default rule = 26214 f 0.4pt gfunction scan rule spec : pointer ;label reswitch ;var q: pointer ; f the rule node being created gbegin q new rule ; fwidth , depth , and height all equal null ag now gif cur cmd = vrule then width (q) default ruleelse begin height (q) default rule ; depth (q) 0;end;reswitch : if scan keyword ("width") thenbegin scan normal dimen ; width (q) cur val ; goto reswitch ;end;if scan keyword ("height") thenbegin scan normal dimen ; height (q) cur val ; goto reswitch ;end;if scan keyword ("depth") thenbegin scan normal dimen ; depth (q) cur val ; goto reswitch ;end;scan rule spec q;end;

178 PART 27: BUILDING TOKEN LISTS TEXGPC x464464. Building token lists. The token lists for macros and for other things like \mark and \output and\write are produced by a procedure called scan toks .Before we get into the details of scan toks , let's consider a much simpler task, that of converting the currentstring into a token list. The str toks function does this; it classi�es spaces as type spacer and everythingelse as type other char .The token list created by str toks begins at link (temp head) and ends at the value p that is returned. (Ifp = temp head , the list is empty.)function str toks (b : pool pointer): pointer ; f changes the string str pool [b : : pool ptr] to a token list gvar p: pointer ; f tail of the token list gq: pointer ; f new node being added to the token list via store new token gt: halfword ; f token being appended gk: pool pointer ; f index into str pool gbegin str room (1); p temp head ; link (p) null ; k b;while k < pool ptr dobegin t so (str pool [k]);if t = " " then t space tokenelse t other token + t;fast store new token (t); incr (k);end;pool ptr b; str toks p;end;465. The main reason for wanting str toks is the next function, the toks , which has similar input/outputcharacteristics.This procedure is supposed to scan something like `\skip\count12', i.e., whatever can follow `\the', andit constructs a token list containing something like `-3.0pt minus 0.5fill'.function the toks : pointer ;var old setting : 0 : : max selector ; f holds selector setting gp; q; r: pointer ; f used for copying a token list gb: pool pointer ; f base of temporary string gbegin get x token ; scan something internal (tok val ; false);if cur val level � ident val then hCopy the token list 466 ielse begin old setting selector ; selector new string ; b pool ptr ;case cur val level ofint val : print int (cur val);dimen val : begin print scaled (cur val); print ("pt");end;glue val : begin print spec(cur val ; "pt"); delete glue ref (cur val);end;mu val : begin print spec(cur val ; "mu"); delete glue ref (cur val);end;end; f there are no other cases gselector old setting ; the toks str toks (b);end;end;

x466 TEXGPC PART 27: BUILDING TOKEN LISTS 179466. hCopy the token list 466 i �begin p temp head ; link (p) null ;if cur val level = ident val then store new token (cs token ag + cur val)else if cur val 6= null thenbegin r link (cur val); f do not copy the reference count gwhile r 6= null dobegin fast store new token (info (r)); r link (r);end;end;the toks p;endThis code is used in section 465.467. Here's part of the expand subroutine that we are now ready to complete:procedure ins the toks ;begin link (garbage) the toks ; ins list (link (temp head));end;468. The primitives \number, \romannumeral, \string, \meaning, \fontname, and \jobname are de�nedas follows.de�ne number code = 0 f command code for \numbergde�ne roman numeral code = 1 f command code for \romannumeralgde�ne string code = 2 f command code for \stringgde�ne meaning code = 3 f command code for \meaninggde�ne font name code = 4 f command code for \fontnamegde�ne job name code = 5 f command code for \jobnameghPut each of TEX's primitives into the hash table 226 i +�primitive ("number"; convert ;number code);primitive ("romannumeral"; convert ; roman numeral code);primitive ("string"; convert ; string code);primitive ("meaning"; convert ;meaning code);primitive ("fontname"; convert ; font name code);primitive ("jobname"; convert ; job name code);469. hCases of print cmd chr for symbolic printing of primitives 227 i +�convert : case chr code ofnumber code : print esc("number");roman numeral code : print esc("romannumeral");string code : print esc ("string");meaning code : print esc("meaning");font name code : print esc("fontname");othercases print esc ("jobname")endcases;

180 PART 27: BUILDING TOKEN LISTS TEXGPC x470470. The procedure conv toks uses str toks to insert the token list for convert functions into the scanner;`\outer' control sequences are allowed to follow `\string' and `\meaning'.procedure conv toks ;var old setting : 0 : : max selector ; f holds selector setting gc: number code : : job name code ; f desired type of conversion gsave scanner status : small number ; f scanner status upon entry gb: pool pointer ; f base of temporary string gbegin c cur chr ; h Scan the argument for command c 471 i;old setting selector ; selector new string ; b pool ptr ; hPrint the result of command c 472 i;selector old setting ; link (garbage) str toks (b); ins list (link (temp head));end;471. h Scan the argument for command c 471 i �case c ofnumber code ; roman numeral code : scan int ;string code ;meaning code : begin save scanner status scanner status ; scanner status normal ;get token ; scanner status save scanner status ;end;font name code : scan font ident ;job name code : if job name = 0 then open log �le ;end f there are no other cases gThis code is used in section 470.472. hPrint the result of command c 472 i �case c ofnumber code : print int (cur val);roman numeral code : print roman int (cur val);string code : if cur cs 6= 0 then sprint cs (cur cs)else print char (cur chr);meaning code : print meaning ;font name code : begin print (font name [cur val]);if font size [cur val] 6= font dsize [cur val] thenbegin print (" at "); print scaled (font size [cur val]); print ("pt");end;end;job name code : print (job name);end f there are no other cases gThis code is used in section 470.

x473 TEXGPC PART 27: BUILDING TOKEN LISTS 181473. Now we can't postpone the di�culties any longer; we must bravely tackle scan toks . This functionreturns a pointer to the tail of a new token list, and it also makes def ref point to the reference count at thehead of that list.There are two boolean parameters, macro def and xpand . If macro def is true, the goal is to create thetoken list for a macro de�nition; otherwise the goal is to create the token list for some other TEX primitive:\mark, \output, \everypar, \lowercase, \uppercase, \message, \errmessage, \write, or \special. Inthe latter cases a left brace must be scanned next; this left brace will not be part of the token list, nor willthe matching right brace that comes at the end. If xpand is false, the token list will simply be copied fromthe input using get token . Otherwise all expandable tokens will be expanded until unexpandable tokens areleft, except that the results of expanding `\the' are not expanded further. If both macro def and xpandare true, the expansion applies only to the macro body (i.e., to the material following the �rst left bracecharacter).The value of cur cs when scan toks begins should be the eqtb address of the control sequence to displayin \runaway" error messages.function scan toks (macro def ; xpand : boolean): pointer ;label found ; done ; done1 ; done2 ;var t: halfword ; f token representing the highest parameter number gs: halfword ; f saved token gp: pointer ; f tail of the token list being built gq: pointer ; f new node being added to the token list via store new token gunbalance : halfword ; f number of unmatched left braces ghash brace : halfword ; f possible `#{' token gbegin if macro def then scanner status de�ning else scanner status absorbing ;warning index cur cs ; def ref get avail ; token ref count (def ref) null ; p def ref ;hash brace 0; t zero token ;if macro def then h Scan and build the parameter part of the macro de�nition 474 ielse scan left brace ; f remove the compulsory left brace gh Scan and build the body of the token list; goto found when �nished 477 i;found : scanner status normal ;if hash brace 6= 0 then store new token (hash brace);scan toks p;end;474. h Scan and build the parameter part of the macro de�nition 474 i �begin loopbegin get token ; f set cur cmd , cur chr , cur tok gif cur tok < right brace limit then goto done1 ;if cur cmd = mac param then h If the next character is a parameter number, make cur tok a matchtoken; but if it is a left brace, store `left brace , end match ', set hash brace , and goto done 476 i;store new token (cur tok);end;done1 : store new token (end match token);if cur cmd = right brace then hExpress shock at the missing left brace; goto found 475 i;done : endThis code is used in section 473.475. hExpress shock at the missing left brace; goto found 475 i �begin print err ("Missing { inserted"); incr (align state);help2 ("Where was the left brace? You said something like �\def\a}�,")("which I�m going to interpret as �\def\a{}�."); error ; goto found ;endThis code is used in section 474.

182 PART 27: BUILDING TOKEN LISTS TEXGPC x476476. h If the next character is a parameter number, make cur tok a match token; but if it is a left brace,store `left brace , end match ', set hash brace , and goto done 476 i �begin s match token + cur chr ; get token ;if cur cmd = left brace thenbegin hash brace cur tok ; store new token (cur tok); store new token (end match token);goto done ;end;if t = zero token + 9 thenbegin print err ("You already have nine parameters");help1 ("I�m going to ignore the # sign you just used."); error ;endelse begin incr (t);if cur tok 6= t thenbegin print err ("Parameters must be numbered consecutively");help2 ("I�ve inserted the digit you should have used after the #.")("Type �1� to delete what you did use."); back error ;end;cur tok s;end;endThis code is used in section 474.477. h Scan and build the body of the token list; goto found when �nished 477 i �unbalance 1;loop begin if xpand then hExpand the next part of the input 478 ielse get token ;if cur tok < right brace limit thenif cur cmd < right brace then incr (unbalance)else begin decr (unbalance);if unbalance = 0 then goto found ;endelse if cur cmd = mac param thenif macro def then hLook for parameter number or ## 479 i;store new token (cur tok);endThis code is used in section 473.478. Here we insert an entire token list created by the toks without expanding it further.hExpand the next part of the input 478 i �begin loopbegin get next ;if cur cmd � max command then goto done2 ;if cur cmd 6= the then expandelse begin q the toks ;if link (temp head) 6= null thenbegin link (p) link (temp head); p q;end;end;end;done2 : x tokenendThis code is used in section 477.

x479 TEXGPC PART 27: BUILDING TOKEN LISTS 183479. hLook for parameter number or ## 479 i �begin s cur tok ;if xpand then get x tokenelse get token ;if cur cmd 6= mac param thenif (cur tok � zero token) _ (cur tok > t) thenbegin print err ("Illegal parameter number in definition of "); sprint cs (warning index);help3 ("You meant to type ## instead of #, right?")("Or maybe a } was forgotten somewhere earlier, and things")("are all screwed up? I�m going to assume that you meant ##."); back error ; cur tok s;endelse cur tok out param token � "0"+ cur chr ;endThis code is used in section 477.480. Another way to create a token list is via the \read command. The sixteen �les potentially usable forreading appear in the following global variables. The value of read open [n] will be closed if stream numbern has not been opened or if it has been fully read; just open if an \openin but not a \read has been done;and normal if it is open and ready to read the next line.de�ne closed = 2 f not open, or at end of �le gde�ne just open = 1 f newly opened, �rst line not yet read ghGlobal variables 13 i +�read �le : array [0 : : 15] of alpha �le ; f used for \readgread open : array [0 : : 16] of normal : : closed ; f state of read �le [n] g481. h Set initial values of key variables 21 i +�for k 0 to 16 do read open [k] closed ;482. The read toks procedure constructs a token list like that for any macro de�nition, and makes cur valpoint to it. Parameter r points to the control sequence that will receive this token list.procedure read toks (n : integer ; r : pointer);label done ;var p: pointer ; f tail of the token list gq: pointer ; f new node being added to the token list via store new token gs: integer ; f saved value of align state gm: small number ; f stream number gbegin scanner status de�ning ; warning index r; def ref get avail ;token ref count (def ref) null ; p def ref ; f the reference count gstore new token (end match token);if (n < 0) _ (n > 15) then m 16 else m n;s align state ; align state 1000000; f disable tab marks, etc. grepeat h Input and store tokens from the next line of the �le 483 i;until align state = 1000000;cur val def ref ; scanner status normal ; align state s;end;

184 PART 27: BUILDING TOKEN LISTS TEXGPC x483483. h Input and store tokens from the next line of the �le 483 i �begin �le reading ; name m+ 1;if read open [m] = closed then h Input for \read from the terminal 484 ielse if read open [m] = just open then h Input the �rst line of read �le [m] 485 ielse h Input the next line of read �le [m] 486 i;limit last ;if end line char inactive then decr (limit)else bu�er [limit] end line char ;�rst limit + 1; loc start ; state new line ;loop begin get token ;if cur tok = 0 then goto done ; f cur cmd = cur chr = 0 will occur at the end of the line gif align state < 1000000 then f unmatched `}' aborts the line gbegin repeat get token ;until cur tok = 0;align state 1000000; goto done ;end;store new token (cur tok);end;done : end �le readingThis code is used in section 482.484. Here we input on-line into the bu�er array, prompting the user explicitly if n � 0. The value of n isset negative so that additional prompts will not be given in the case of multi-line input.h Input for \read from the terminal 484 i �if interaction > nonstop mode thenif n < 0 then prompt input ("")else begin wake up terminal ; print ln ; sprint cs (r); prompt input ("="); n �1;endelse fatal error ("*** (cannot \read from terminal in nonstop modes)")This code is used in section 483.485. The �rst line of a �le must be treated specially, since input ln must be told not to start with get .h Input the �rst line of read �le [m] 485 i �if input ln (read �le [m]; false) then read open [m] normalelse begin a close (read �le [m]); read open [m] closed ;endThis code is used in section 483.486. An empty line is appended at the end of a read �le .h Input the next line of read �le [m] 486 i �begin if :input ln (read �le [m]; true) thenbegin a close (read �le [m]); read open [m] closed ;if align state 6= 1000000 thenbegin runaway ; print err ("File ended within "); print esc("read");help1 ("This \read has unbalanced braces."); align state 1000000; error ;end;end;endThis code is used in section 483.

x487 TEXGPC PART 28: CONDITIONAL PROCESSING 185487. Conditional processing. We consider now the way TEX handles various kinds of \if commands.de�ne if char code = 0 f `\if' gde�ne if cat code = 1 f `\ifcat' gde�ne if int code = 2 f `\ifnum' gde�ne if dim code = 3 f `\ifdim' gde�ne if odd code = 4 f `\ifodd' gde�ne if vmode code = 5 f `\ifvmode' gde�ne if hmode code = 6 f `\ifhmode' gde�ne if mmode code = 7 f `\ifmmode' gde�ne if inner code = 8 f `\ifinner' gde�ne if void code = 9 f `\ifvoid' gde�ne if hbox code = 10 f `\ifhbox' gde�ne if vbox code = 11 f `\ifvbox' gde�ne ifx code = 12 f `\ifx' gde�ne if eof code = 13 f `\ifeof' gde�ne if true code = 14 f `\iftrue' gde�ne if false code = 15 f `\iffalse' gde�ne if case code = 16 f `\ifcase' ghPut each of TEX's primitives into the hash table 226 i +�primitive ("if"; if test ; if char code); primitive ("ifcat"; if test ; if cat code);primitive ("ifnum"; if test ; if int code); primitive ("ifdim"; if test ; if dim code);primitive ("ifodd"; if test ; if odd code); primitive ("ifvmode"; if test ; if vmode code);primitive ("ifhmode"; if test ; if hmode code); primitive ("ifmmode"; if test ; if mmode code);primitive ("ifinner"; if test ; if inner code); primitive ("ifvoid"; if test ; if void code);primitive ("ifhbox"; if test ; if hbox code); primitive ("ifvbox"; if test ; if vbox code);primitive ("ifx"; if test ; ifx code); primitive ("ifeof"; if test ; if eof code);primitive ("iftrue"; if test ; if true code); primitive ("iffalse"; if test ; if false code);primitive ("ifcase"; if test ; if case code);488. hCases of print cmd chr for symbolic printing of primitives 227 i +�if test : case chr code ofif cat code : print esc("ifcat");if int code : print esc("ifnum");if dim code : print esc("ifdim");if odd code : print esc("ifodd");if vmode code : print esc("ifvmode");if hmode code : print esc("ifhmode");if mmode code : print esc("ifmmode");if inner code : print esc("ifinner");if void code : print esc("ifvoid");if hbox code : print esc ("ifhbox");if vbox code : print esc("ifvbox");ifx code : print esc("ifx");if eof code : print esc("ifeof");if true code : print esc ("iftrue");if false code : print esc ("iffalse");if case code : print esc("ifcase");othercases print esc ("if")endcases;

186 PART 28: CONDITIONAL PROCESSING TEXGPC x489489. Conditions can be inside conditions, and this nesting has a stack that is independent of the save stack .Four global variables represent the top of the condition stack: cond ptr points to pushed-down entries, ifany; if limit speci�es the largest code of a � or else command that is syntactically legal; cur if is the nameof the current type of conditional; and if line is the line number at which it began.If no conditions are currently in progress, the condition stack has the special state cond ptr = null ,if limit = normal , cur if = 0, if line = 0. Otherwise cond ptr points to a two-word node; the type , subtype ,and link �elds of the �rst word contain if limit , cur if , and cond ptr at the next level, and the second wordcontains the corresponding if line .de�ne if node size = 2 f number of words in stack entry for conditionals gde�ne if line �eld (#) � mem [#+ 1]:intde�ne if code = 1 f code for \if... being evaluated gde�ne � code = 2 f code for \fi gde�ne else code = 3 f code for \elsegde�ne or code = 4 f code for \or ghGlobal variables 13 i +�cond ptr : pointer ; f top of the condition stack gif limit : normal : : or code ; f upper bound on � or else codes gcur if : small number ; f type of conditional being worked on gif line : integer ; f line where that conditional began g490. h Set initial values of key variables 21 i +�cond ptr null ; if limit normal ; cur if 0; if line 0;491. hPut each of TEX's primitives into the hash table 226 i +�primitive ("fi";� or else ;� code); text (frozen �) "fi"; eqtb [frozen �] eqtb [cur val];primitive ("or";� or else ; or code); primitive ("else";� or else ; else code);492. hCases of print cmd chr for symbolic printing of primitives 227 i +�� or else : if chr code = � code then print esc("fi")else if chr code = or code then print esc("or")else print esc ("else");493. When we skip conditional text, we keep track of the line number where skipping began, for use inerror messages.hGlobal variables 13 i +�skip line : integer ; f skipping began here g

x494 TEXGPC PART 28: CONDITIONAL PROCESSING 187494. Here is a procedure that ignores text until coming to an \or, \else, or \fi at level zero of \if : : :\finesting. After it has acted, cur chr will indicate the token that was found, but cur tok will not be set (becausethis makes the procedure run faster).procedure pass text ;label done ;var l: integer ; f level of \if : : : \fi nesting gsave scanner status : small number ; f scanner status upon entry gbegin save scanner status scanner status ; scanner status skipping ; l 0; skip line line ;loop begin get next ;if cur cmd = � or else thenbegin if l = 0 then goto done ;if cur chr = � code then decr (l);endelse if cur cmd = if test then incr (l);end;done : scanner status save scanner status ;end;495. When we begin to process a new \if, we set if limit if code ; then if \or or \else or \fi occursbefore the current \if condition has been evaluated, \relax will be inserted. For example, a sequence ofcommands like `\ifvoid1\else...\fi' would otherwise require something after the `1'.hPush the condition stack 495 i �begin p get node (if node size); link (p) cond ptr ; type (p) if limit ; subtype (p) cur if ;if line �eld (p) if line ; cond ptr p; cur if cur chr ; if limit if code ; if line line ;endThis code is used in section 498.496. hPop the condition stack 496 i �begin p cond ptr ; if line if line �eld (p); cur if subtype (p); if limit type (p);cond ptr link (p); free node (p; if node size);endThis code is used in sections 498, 500, 509, and 510.497. Here's a procedure that changes the if limit code corresponding to a given value of cond ptr .procedure change if limit (l : small number ; p : pointer);label exit ;var q: pointer ;begin if p = cond ptr then if limit l f that's the easy case gelse begin q cond ptr ;loop begin if q = null then confusion ("if");if link (q) = p thenbegin type (q) l; return;end;q link (q);end;end;exit : end;

188 PART 28: CONDITIONAL PROCESSING TEXGPC x498498. A condition is started when the expand procedure encounters an if test command; in that case expandreduces to conditional , which is a recursive procedure.procedure conditional ;label exit ; common ending ;var b: boolean ; f is the condition true? gr: "<" : : ">"; f relation to be evaluated gm;n: integer ; f to be tested against the second operand gp; q: pointer ; f for traversing token lists in \ifx tests gsave scanner status : small number ; f scanner status upon entry gsave cond ptr : pointer ; f cond ptr corresponding to this conditional gthis if : small number ; f type of this conditional gbegin hPush the condition stack 495 i; save cond ptr cond ptr ; this if cur chr ;hEither process \ifcase or set b to the value of a boolean condition 501 i;if tracing commands > 1 then hDisplay the value of b 502 i;if b thenbegin change if limit (else code ; save cond ptr); return; fwait for \else or \fi gend;h Skip to \else or \fi, then goto common ending 500 i;common ending : if cur chr = � code then hPop the condition stack 496 ielse if limit � code ; fwait for \fi gexit : end;499. In a construction like `\if\iftrue abc\else d\fi', the �rst \else that we come to after learningthat the \if is false is not the \else we're looking for. Hence the following curious logic is needed.500. h Skip to \else or \fi, then goto common ending 500 i �loop begin pass text ;if cond ptr = save cond ptr thenbegin if cur chr 6= or code then goto common ending ;print err ("Extra "); print esc("or");help1 ("I�m ignoring this; it doesn�t match any \if."); error ;endelse if cur chr = � code then hPop the condition stack 496 i;endThis code is used in section 498.

x501 TEXGPC PART 28: CONDITIONAL PROCESSING 189501. hEither process \ifcase or set b to the value of a boolean condition 501 i �case this if ofif char code ; if cat code : hTest if two characters match 506 i;if int code ; if dim code : hTest relation between integers or dimensions 503 i;if odd code : hTest if an integer is odd 504 i;if vmode code : b (abs (mode) = vmode);if hmode code : b (abs (mode) = hmode);if mmode code : b (abs (mode) = mmode);if inner code : b (mode < 0);if void code ; if hbox code ; if vbox code : hTest box register status 505 i;ifx code : hTest if two tokens match 507 i;if eof code : begin scan four bit int ; b (read open [cur val] = closed);end;if true code : b true ;if false code : b false ;if case code : h Select the appropriate case and return or goto common ending 509 i;end f there are no other cases gThis code is used in section 498.502. hDisplay the value of b 502 i �begin begin diagnostic ;if b then print ("{true}") else print ("{false}");end diagnostic (false);endThis code is used in section 498.503. Here we use the fact that "<", "=", and ">" are consecutive ASCII codes.hTest relation between integers or dimensions 503 i �begin if this if = if int code then scan int else scan normal dimen ;n cur val ; hGet the next non-blank non-call token 406 i;if (cur tok � other token + "<") ^ (cur tok � other token + ">") then r cur tok � other tokenelse begin print err ("Missing = inserted for "); print cmd chr (if test ; this if);help1 ("I was expecting to see �<�, �=�, or �>�. Didn�t."); back error ; r "=";end;if this if = if int code then scan int else scan normal dimen ;case r of"<": b (n < cur val);"=": b (n = cur val);">": b (n > cur val);end;endThis code is used in section 501.504. hTest if an integer is odd 504 i �begin scan int ; b odd (cur val);endThis code is used in section 501.

190 PART 28: CONDITIONAL PROCESSING TEXGPC x505505. hTest box register status 505 i �begin scan eight bit int ; p box (cur val);if this if = if void code then b (p = null)else if p = null then b falseelse if this if = if hbox code then b (type (p) = hlist node)else b (type (p) = vlist node);endThis code is used in section 501.506. An active character will be treated as category 13 following \if\noexpand or following\ifcat\noexpand. We use the fact that active characters have the smallest tokens, among all controlsequences.de�ne get x token or active char �begin get x token ;if cur cmd = relax thenif cur chr = no expand ag thenbegin cur cmd active char ; cur chr cur tok � cs token ag � active base ;end;endhTest if two characters match 506 i �begin get x token or active char ;if (cur cmd > active char) _ (cur chr > 255) then f not a character gbegin m relax ; n 256;endelse begin m cur cmd ; n cur chr ;end;get x token or active char ;if (cur cmd > active char) _ (cur chr > 255) thenbegin cur cmd relax ; cur chr 256;end;if this if = if char code then b (n = cur chr) else b (m = cur cmd);endThis code is used in section 501.507. Note that `\ifx' will declare two macros di�erent if one is long or outer and the other isn't, eventhough the texts of the macros are the same.We need to reset scanner status , since \outer control sequences are allowed, but we might be scanning amacro de�nition or preamble.hTest if two tokens match 507 i �begin save scanner status scanner status ; scanner status normal ; get next ; n cur cs ;p cur cmd ; q cur chr ; get next ;if cur cmd 6= p then b falseelse if cur cmd < call then b (cur chr = q)else hTest if two macro texts match 508 i;scanner status save scanner status ;endThis code is used in section 501.

x508 TEXGPC PART 28: CONDITIONAL PROCESSING 191508. Note also that `\ifx' decides that macros \a and \b are di�erent in examples like this:\def\a{\c} \def\c{}\def\b{\d} \def\d{}hTest if two macro texts match 508 i �begin p link (cur chr); q link (equiv (n)); f omit reference counts gif p = q then b trueelse begin while (p 6= null) ^ (q 6= null) doif info (p) 6= info (q) then p nullelse begin p link (p); q link (q);end;b ((p = null) ^ (q = null));end;endThis code is used in section 507.509. h Select the appropriate case and return or goto common ending 509 i �begin scan int ; n cur val ; fn is the number of cases to pass gif tracing commands > 1 thenbegin begin diagnostic ; print ("{case "); print int (n); print char ("}"); end diagnostic (false);end;while n 6= 0 dobegin pass text ;if cond ptr = save cond ptr thenif cur chr = or code then decr (n)else goto common endingelse if cur chr = � code then hPop the condition stack 496 i;end;change if limit (or code ; save cond ptr); return; fwait for \or, \else, or \fi gendThis code is used in section 501.510. The processing of conditionals is complete except for the following code, which is actually part ofexpand . It comes into play when \or, \else, or \fi is scanned.hTerminate the current conditional and skip to \fi 510 i �if cur chr > if limit thenif if limit = if code then insert relax f condition not yet evaluated gelse begin print err ("Extra "); print cmd chr (� or else ; cur chr);help1 ("I�m ignoring this; it doesn�t match any \if."); error ;endelse begin while cur chr 6= � code do pass text ; f skip to \fi ghPop the condition stack 496 i;endThis code is used in section 367.

192 PART 29: FILE NAMES TEXGPC x511511. File names. It's time now to fret about �le names. Besides the fact that di�erent operating systemstreat �les in di�erent ways, we must cope with the fact that completely di�erent naming conventions are usedby di�erent groups of people. The following programs show what is required for one particular operatingsystem; similar routines for other systems are not di�cult to devise.TEX assumes that a �le name has three parts: the name proper; its \extension"; and a \�le area" whereit is found in an external �le system. The extension of an input �le or a write �le is assumed to be `.tex'unless otherwise speci�ed; it is `.log' on the transcript �le that records each run of TEX; it is `.tfm' on thefont metric �les that describe characters in the fonts TEX uses; it is `.dvi' on the output �les that specifytypesetting information; and it is `.fmt' on the format �les written by INITEX to initialize TEX. The �le areacan be arbitrary on input �les, but �les are usually output to the user's current area. If an input �le cannotbe found on the speci�ed area, TEX will look for it on a special system area; this special area is intended forcommonly used input �les like webmac.tex.Simple uses of TEX refer only to �le names that have no explicit extension or area. For example, a personusually says `\input paper' or `\font\tenrm = helvetica' instead of `\input paper.new' or `\font\tenrm= <csd.knuth>test'. Simple �le names are best, because they make the TEX source �les portable; whenevera �le name consists entirely of letters and digits, it should be treated in the same way by all implementationsof TEX. However, users need the ability to refer to other �les in their environment, especially when respondingto error messages concerning unopenable �les; therefore we want to let them use the syntax that appears intheir favorite operating system.The following procedures don't allow spaces to be part of �le names; but some users seem to like names thatare spaced-out. System-dependent changes to allow such things should probably be made with reluctance,and only when an entire �le name that includes spaces is \quoted" somehow.512. In order to isolate the system-dependent aspects of �le names, the system-independent parts of TEXare expressed in terms of three system-dependent procedures called begin name , more name , and end name .In essence, if the user-speci�ed characters of the �le name are c1 : : : cn, the system-independent driver programdoes the operations begin name ; more name (c1); : : : ; more name (cn); end name :These three procedures communicate with each other via global variables. Afterwards the �le name willappear in the string pool as three strings called cur name , cur area , and cur ext ; the latter two are null(i.e., ""), unless they were explicitly speci�ed by the user.Actually the situation is slightly more complicated, because TEX needs to know when the �le name ends.The more name routine is a function (with side e�ects) that returns true on the calls more name (c1), : : : ,more name (cn�1). The �nal call more name (cn) returns false ; or, it returns true and the token followingcn is something like `\hbox' (i.e., not a character). In other words, more name is supposed to return trueunless it is sure that the �le name has been completely scanned; and end name is supposed to be able to�nish the assembly of cur name , cur area , and cur ext regardless of whether more name (cn) returned trueor false .hGlobal variables 13 i +�cur name : str number ; f name of �le just scanned gcur area : str number ; f �le area just scanned, or "" gcur ext : str number ; f �le extension just scanned, or "" g

x513 TEXGPC PART 29: FILE NAMES 193513. The �le names we shall deal with for illustrative purposes have the following structure: If the namecontains `>' or `:', the �le area consists of all characters up to and including the �nal such character; otherwisethe �le area is null. If the remaining �le name contains `.', the �le extension consists of all such charactersfrom the �rst remaining `.' to the end, otherwise the �le extension is null.We can scan such �le names easily by using two global variables that keep track of the occurrences of areaand extension delimiters:hGlobal variables 13 i +�area delimiter : pool pointer ; f the most recent `>' or `:', if any gext delimiter : pool pointer ; f the relevant `.', if any g514*. Input �les that can't be found in the user's area may appear in a standard system area calledTEX area . Font metric �les whose areas are not given explicitly are assumed to appear in a standard systemarea called TEX font area . These system area names will, of course, vary from place to place.Use the Unix �le separator.U de�ne TEX area � "TeXinputs/" f i.e., a subdirectory of the working directory gde�ne TEX font area � "TeXfonts/" f dito g515. Here now is the �rst of the system-dependent routines for �le name scanning.procedure begin name ;begin area delimiter 0; ext delimiter 0;end;516*. And here's the second. The string pool might change as the �le name is being scanned, since a new\csname might be entered; therefore we keep area delimiter and ext delimiter relative to the beginning ofthe current string, instead of assigning an absolute address like pool ptr to them.function more name (c : ASCII code): boolean ;begin if c = " " then more name falseelse begin str room (1); append char (c); f contribute c to the current string gif c = "/" then f use \/" as a �le name separator gU begin area delimiter cur length ; ext delimiter 0;endelse if (c = ".") ^ (ext delimiter = 0) then ext delimiter cur length ;more name true ;end;end;517. The third.procedure end name ;begin if str ptr + 3 > max strings then overow ("number of strings";max strings � init str ptr);if area delimiter = 0 then cur area ""else begin cur area str ptr ; str start [str ptr + 1] str start [str ptr] + area delimiter ; incr (str ptr);end;if ext delimiter = 0 thenbegin cur ext ""; cur name make string ;endelse begin cur name str ptr ;str start [str ptr + 1] str start [str ptr] + ext delimiter � area delimiter � 1; incr (str ptr);cur ext make string ;end;end;

194 PART 29: FILE NAMES TEXGPC x518518. Conversely, here is a routine that takes three strings and prints a �le name that might have producedthem. (The routine is system dependent, because some operating systems put the �le area last instead of�rst.)hBasic printing procedures 57 i +�procedure print �le name (n; a; e : integer);begin slow print (a); slow print (n); slow print (e);end;519. Another system-dependent routine is needed to convert three internal TEX strings into thename of �le value that is used to open �les. The present code allows both lowercase and uppercase lettersin the �le name.de�ne append to name (#) �begin c #; incr (k);if k � �le name size then name of �le [k] xchr [c];endprocedure pack �le name (n; a; e : str number);var k: integer ; f number of positions �lled in name of �le gc: ASCII code ; f character being packed gj: pool pointer ; f index into str pool gbegin k 0;for j str start [a] to str start [a+ 1]� 1 do append to name (so (str pool [j]));for j str start [n] to str start [n+ 1]� 1 do append to name (so (str pool [j]));for j str start [e] to str start [e+ 1]� 1 do append to name (so (str pool [j]));if k � �le name size then name length k else name length �le name size ;for k name length + 1 to �le name size do name of �le [k] � �;end;520. A messier routine is also needed, since format �le names must be scanned before TEX's stringmechanism has been initialized. We shall use the global variable TEX format default to supply the textfor default system areas and extensions related to format �les.de�ne format default length = 20 f length of the TEX format default string gde�ne format area length = 11 f length of its area part gde�ne format ext length = 4 f length of its `.fmt' part gde�ne format extension = ".fmt" f the extension, as a WEB constant ghGlobal variables 13 i +�TEX format default : packed array [1 : : format default length] of char ;521*. h Set initial values of key variables 21 i +�TEX format default �TeXformats/plain.fmt�; f \/" is the Unix �le name separator gU 522. hCheck the \constant" values for consistency 14 i +�if format default length > �le name size then bad 31;

x523 TEXGPC PART 29: FILE NAMES 195523. Here is the messy routine that was just mentioned. It sets name of �le from the �rst n charactersof TEX format default , followed by bu�er [a : : b], followed by the last format ext length characters ofTEX format default .We dare not give error messages here, since TEX calls this routine before the error routine is ready to roll.Instead, we simply drop excess characters, since the error will be detected in another way when a strange�le name isn't found.procedure pack bu�ered name (n : small number ; a; b : integer);var k: integer ; f number of positions �lled in name of �le gc: ASCII code ; f character being packed gj: integer ; f index into bu�er or TEX format default gbegin if n+ b� a+ 1 + format ext length > �le name size thenb a+ �le name size � n� 1� format ext length ;k 0;for j 1 to n do append to name (xord [TEX format default [j]]);for j a to b do append to name (bu�er [j]);for j format default length � format ext length + 1 to format default length doappend to name (xord [TEX format default [j]]);if k � �le name size then name length k else name length �le name size ;for k name length + 1 to �le name size do name of �le [k] � �;end;524. Here is the only place we use pack bu�ered name . This part of the program becomes active when a\virgin" TEX is trying to get going, just after the preliminary initialization, or when the user is substitutinganother format �le by typing `&' after the initial `**' prompt. The bu�er contains the �rst line of input inbu�er [loc : : (last � 1)], where loc < last and bu�er [loc] 6= " ".hDeclare the function called open fmt �le 524 i �function open fmt �le : boolean ;label found ; exit ;var j: 0 : : buf size ; f the �rst space after the format �le name gbegin j loc ;if bu�er [loc] = "&" thenbegin incr (loc); j loc ; bu�er [last] " ";while bu�er [j] 6= " " do incr (j);pack bu�ered name (0; loc ; j � 1); f try �rst without the system �le area gif w open in (fmt �le) then goto found ;pack bu�ered name (format area length ; loc ; j � 1); f now try the system format �le area gif w open in (fmt �le) then goto found ;wake up terminal ; wterm ln (�Sorry, I can��t find that format;�; � will try PLAIN.�);update terminal ;end; f now pull out all the stops: try for the system plain �le gpack bu�ered name (format default length � format ext length ; 1; 0);if :w open in (fmt �le) thenbegin wake up terminal ; wterm ln (�I can��t find the PLAIN format file!�);open fmt �le false ; return;end;found : loc j; open fmt �le true ;exit : end;This code is used in section 1303.

196 PART 29: FILE NAMES TEXGPC x525525. Operating systems often make it possible to determine the exact name (and possible version number)of a �le that has been opened. The following routine, which simply makes a TEX string from the value ofname of �le , should ideally be changed to deduce the full name of �le f , which is the �le most recentlyopened, if it is possible to do this in a Pascal program.This routine might be called after string memory has overowed, hence we dare not use `str room '.function make name string : str number ;var k: 1 : : �le name size ; f index into name of �le gbegin if (pool ptr + name length > pool size) _ (str ptr = max strings) _ (cur length > 0) thenmake name string "?"else begin for k 1 to name length do append char (xord [name of �le [k]]);make name string make string ;end;end;function a make name string (var f : alpha �le): str number ;begin a make name string make name string ;end;function b make name string (var f : byte �le): str number ;begin b make name string make name string ;end;function w make name string (var f : word �le): str number ;begin w make name string make name string ;end;526. Now let's consider the \driver" routines by which TEX deals with �le names in a system-independentmanner. First comes a procedure that looks for a �le name in the input by calling get x token for theinformation.procedure scan �le name ;label done ;begin name in progress true ; begin name ; hGet the next non-blank non-call token 406 i;loop begin if (cur cmd > other char) _ (cur chr > 255) then f not a character gbegin back input ; goto done ;end;if :more name (cur chr) then goto done ;get x token ;end;done : end name ; name in progress false ;end;527. The global variable name in progress is used to prevent recursive use of scan �le name , since thebegin name and other procedures communicate via global variables. Recursion would arise only by devioustricks like `\input\input f'; such attempts at sabotage must be thwarted. Furthermore, name in progressprevents \input from being initiated when a font size speci�cation is being scanned.Another global variable, job name , contains the �le name that was �rst \input by the user. This nameis extended by `.log' and `.dvi' and `.fmt' in the names of TEX's output �les.hGlobal variables 13 i +�name in progress : boolean ; f is a �le name being scanned? gjob name : str number ; f principal �le name glog opened : boolean ; f has the transcript �le been opened? g

x528 TEXGPC PART 29: FILE NAMES 197528. Initially job name = 0; it becomes nonzero as soon as the true name is known. We have job name = 0if and only if the `log' �le has not been opened, except of course for a short time just after job name hasbecome nonzero.h Initialize the output routines 55 i +�job name 0; name in progress false ; log opened false ;529. Here is a routine that manufactures the output �le names, assuming that job name 6= 0. It ignoresand changes the current settings of cur area and cur ext .de�ne pack cur name � pack �le name (cur name ; cur area ; cur ext)procedure pack job name (s : str number); f s = ".log", ".dvi", or format extension gbegin cur area ""; cur ext s; cur name job name ; pack cur name ;end;530. If some trouble arises when TEX tries to open a �le, the following routine calls upon the user tosupply another �le name. Parameter s is used in the error message to identify the type of �le; parameter eis the default extension if none is given. Upon exit from the routine, variables cur name , cur area , cur ext ,and name of �le are ready for another attempt at �le opening.procedure prompt �le name (s; e : str number);label done ;var k: 0 : : buf size ; f index into bu�er gbegin if interaction = scroll mode then wake up terminal ;if s = "input file name" then print err ("I can�t find file �")else print err ("I can�t write on file �");print �le name (cur name ; cur area ; cur ext); print ("�.");if e = ".tex" then show context ;print nl ("Please type another "); print (s);if interaction < scroll mode then fatal error ("*** (job aborted, file error in nonstop mode)");clear terminal ; prompt input (": "); h Scan �le name in the bu�er 531 i;if cur ext = "" then cur ext e;pack cur name ;end;531. h Scan �le name in the bu�er 531 i �begin begin name ; k �rst ;while (bu�er [k] = " ") ^ (k < last) do incr (k);loop begin if k = last then goto done ;if :more name (bu�er [k]) then goto done ;incr (k);end;done : end name ;endThis code is used in section 530.

198 PART 29: FILE NAMES TEXGPC x532532*. Here's an example of how these conventions are used. Whenever it is time to ship out a box of stu�,we shall use the macro ensure dvi open .To get bu�ered output, the �le needs to be a gpc untyped �le .G de�ne gpc untyped �le � f@&i@&l@&ede�ne ensure dvi open �if output �le name = 0 thenbegin if job name = 0 then open log �le ;pack job name (".dvi");while :b open out (dvi �le) do prompt �le name ("file name for output"; ".dvi");output �le name make name string ;endhGlobal variables 13 i +�dvi �le : gpc untyped �le ; f the device-independent output goes here goutput �le name : str number ; f full name of the output �le glog name : str number ; f full name of the log �le g533. h Initialize the output routines 55 i +�output �le name 0;534. The open log �le routine is used to open the transcript �le and to help it catch up to what haspreviously been printed on the terminal.procedure open log �le ;var old setting : 0 : : max selector ; f previous selector setting gk: 0 : : buf size ; f index into months and bu�er gl: 0 : : buf size ; f end of �rst input line gmonths : packed array [1 : : 36] of char ; f abbreviations of month names gbegin old setting selector ;if job name = 0 then job name "texput";pack job name (".log");while :a open out (log �le) do hTry to get a di�erent log �le name 535 i;log name a make name string (log �le); selector log only ; log opened true ;hPrint the banner line, including the date and time 536 i;input stack [input ptr] cur input ; fmake sure bottom level is in memory gprint nl ("**"); l input stack [0]:limit �eld ; f last position of �rst line gif bu�er [l] = end line char then decr (l);for k 1 to l do print (bu�er [k]);print ln ; f now the transcript �le contains the �rst line of input gselector old setting + 2; f log only or term and log gend;

x535 TEXGPC PART 29: FILE NAMES 199535. Sometimes open log �le is called at awkward moments when TEX is unable to print error messagesor even to show context . The prompt �le name routine can result in a fatal error , but the error routine willnot be invoked because log opened will be false.The normal idea of batch mode is that nothing at all should be written on the terminal. However, in theunusual case that no log �le could be opened, we make an exception and allow an explanatory message tobe seen.Incidentally, the program always refers to the log �le as a `transcript file', because some systemscannot use the extension `.log' for this �le.hTry to get a di�erent log �le name 535 i �begin selector term only ; prompt �le name ("transcript file name"; ".log");endThis code is used in section 534.536. hPrint the banner line, including the date and time 536 i �begin wlog (banner); slow print (format ident); print (" "); print int (day); print char (" ");months �JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC�;for k 3 �month � 2 to 3 �month do wlog (months [k]);print char (" "); print int (year); print char (" "); print two (time div 60); print char (":");print two (time mod 60);endThis code is used in section 534.537*. Let's turn now to the procedure that is used to initiate �le reading when an `\input' command isbeing processed.Keep the complete �le name since it might be needed to be passed to the system editor. (TEX82 strips o�e area and extension to conserve string pool space.)procedure start input ; fTEX will \input something glabel done ;begin scan �le name ; f set cur name to desired �le name gif cur ext = "" then cur ext ".tex";pack cur name ;loop begin begin �le reading ; f set up cur �le and new level of input gif a open in (cur �le) then goto done ;if cur area = "" thenbegin pack �le name (cur name ;TEX area ; cur ext);if a open in (cur �le) then goto done ;end;end �le reading ; f remove the level that didn't work gprompt �le name ("input file name"; ".tex");end;done : name a make name string (cur �le);if job name = 0 thenbegin job name cur name ; open log �le ;end; f open log �le doesn't show context , so limit and loc needn't be set to meaningful values yet gif term o�set + length (name) > max print line � 2 then print lnelse if (term o�set > 0) _ (�le o�set > 0) then print char (" ");print char ("("); incr (open parens); slow print (name); update terminal ; state new line ;hRead the �rst line of the new �le 538 i;end;

200 PART 29: FILE NAMES TEXGPC x538538. Here we have to remember to tell the input ln routine not to start with a get . If the �le is empty, itis considered to contain a single blank line.hRead the �rst line of the new �le 538 i �begin line 1;if input ln (cur �le ; false) then do nothing ;�rm up the line ;if end line char inactive then decr (limit)else bu�er [limit] end line char ;�rst limit + 1; loc start ;endThis code is used in section 537*.

x539 TEXGPC PART 30: FONT METRIC DATA 201539. Font metric data. TEX gets its knowledge about fonts from font metric �les, also called TFM �les;the `T' in `TFM' stands for TEX, but other programs know about them too.The information in a TFM �le appears in a sequence of 8-bit bytes. Since the number of bytes is always amultiple of 4, we could also regard the �le as a sequence of 32-bit words, but TEX uses the byte interpretation.The format of TFM �les was designed by Lyle Ramshaw in 1980. The intent is to convey a lot of di�erentkinds of information in a compact but useful form.hGlobal variables 13 i +�tfm �le : byte �le ;540. The �rst 24 bytes (6 words) of a TFM �le contain twelve 16-bit integers that give the lengths of thevarious subsequent portions of the �le. These twelve integers are, in order:lf = length of the entire �le, in words;lh = length of the header data, in words;bc = smallest character code in the font;ec = largest character code in the font;nw = number of words in the width table;nh = number of words in the height table;nd = number of words in the depth table;ni = number of words in the italic correction table;nl = number of words in the lig/kern table;nk = number of words in the kern table;ne = number of words in the extensible character table;np = number of font parameter words.They are all nonnegative and less than 215. We must have bc � 1 � ec � 255, andlf = 6 + lh + (ec � bc + 1) + nw + nh + nd + ni + nl + nk + ne + np .Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters(if bc = ec + 1).Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the mostsigni�cant bytes appear �rst in the �le. This is called BigEndian order.541. The rest of the TFM �le may be regarded as a sequence of ten data arrays having the informalspeci�cation header : array [0 : : lh � 1] of stu�char info : array [bc : : ec] of char info wordwidth : array [0 : : nw � 1] of �x wordheight : array [0 : : nh � 1] of �x worddepth : array [0 : : nd � 1] of �x worditalic : array [0 : : ni � 1] of �x wordlig kern : array [0 : : nl � 1] of lig kern commandkern : array [0 : : nk � 1] of �x wordexten : array [0 : : ne � 1] of extensible recipeparam : array [1 : : np] of �x wordThe most important data type used here is a �x word , which is a 32-bit representation of a binary fraction.A �x word is a signed quantity, with the two's complement of the entire word used to represent negation.Of the 32 bits in a �x word , exactly 12 are to the left of the binary point; thus, the largest �x word value is2048� 2�20, and the smallest is �2048. We will see below, however, that all but two of the �x word valuesmust lie between �16 and +16.

202 PART 30: FONT METRIC DATA TEXGPC x542542. The �rst data array is a block of header information, which contains general facts about the font.The header must contain at least two words, header [0] and header [1], whose meaning is explained below.Additional header information of use to other software routines might also be included, but TEX82 does notneed to know about such details. For example, 16 more words of header information are in use at the XeroxPalo Alto Research Center; the �rst ten specify the character coding scheme used (e.g., `XEROX text' or`TeX math symbols'), the next �ve give the font identi�er (e.g., `HELVETICA' or `CMSY'), and the last givesthe \face byte." The program that converts DVI �les to Xerox printing format gets this information bylooking at the TFM �le, which it needs to read anyway because of other information that is not explicitlyrepeated in DVI format.header [0] is a 32-bit check sum that TEX will copy into the DVI output �le. Later on when the DVI �le isprinted, possibly on another computer, the actual font that gets used is supposed to have a check sumthat agrees with the one in the TFM �le used by TEX. In this way, users will be warned about potentialincompatibilities. (However, if the check sum is zero in either the font �le or the TFM �le, no checkis made.) The actual relation between this check sum and the rest of the TFM �le is not important;the check sum is simply an identi�cation number with the property that incompatible fonts almostalways have distinct check sums.header [1] is a �x word containing the design size of the font, in units of TEX points. This number must beat least 1.0; it is fairly arbitrary, but usually the design size is 10.0 for a \10 point" font, i.e., a fontthat was designed to look best at a 10-point size, whatever that really means. When a TEX user asksfor a font `at � pt', the e�ect is to override the design size and replace it by �, and to multiply the xand y coordinates of the points in the font image by a factor of � divided by the design size. All otherdimensions in the TFM �le are �x word numbers in design-size units, with the exception of param [1](which denotes the slant ratio). Thus, for example, the value of param [6], which de�nes the em unit,is often the �x word value 220 = 1:0, since many fonts have a design size equal to one em. The otherdimensions must be less than 16 design-size units in absolute value; thus, header [1] and param [1] arethe only �x word entries in the whole TFM �le whose �rst byte might be something besides 0 or 255.543. Next comes the char info array, which contains one char info word per character. Each word in thispart of the �le contains six �elds packed into four bytes as follows.�rst byte: width index (8 bits)second byte: height index (4 bits) times 16, plus depth index (4 bits)third byte: italic index (6 bits) times 4, plus tag (2 bits)fourth byte: remainder (8 bits)The actual width of a character is width [width index], in design-size units; this is a device for compressinginformation, since many characters have the same width. Since it is quite common for many characters tohave the same height, depth, or italic correction, the TFM format imposes a limit of 16 di�erent heights, 16di�erent depths, and 64 di�erent italic corrections.The italic correction of a character has two di�erent uses. (a) In ordinary text, the italic correction isadded to the width only if the TEX user speci�es `\/' after the character. (b) In math formulas, the italiccorrection is always added to the width, except with respect to the positioning of subscripts.Incidentally, the relation width [0] = height [0] = depth [0] = italic [0] = 0 should always hold, so that anindex of zero implies a value of zero. The width index should never be zero unless the character does not existin the font, since a character is valid if and only if it lies between bc and ec and has a nonzero width index .

x544 TEXGPC PART 30: FONT METRIC DATA 203544. The tag �eld in a char info word has four values that explain how to interpret the remainder �eld.tag = 0 (no tag) means that remainder is unused.tag = 1 (lig tag) means that this character has a ligature/kerning program starting at position remainderin the lig kern array.tag = 2 (list tag) means that this character is part of a chain of characters of ascending sizes, and not thelargest in the chain. The remainder �eld gives the character code of the next larger character.tag = 3 (ext tag) means that this character code represents an extensible character, i.e., a character thatis built up of smaller pieces so that it can be made arbitrarily large. The pieces are speci�ed inexten [remainder].Characters with tag = 2 and tag = 3 are treated as characters with tag = 0 unless they are used inspecial circumstances in math formulas. For example, the \sum operation looks for a list tag , and the \leftoperation looks for both list tag and ext tag .de�ne no tag = 0 f vanilla character gde�ne lig tag = 1 f character has a ligature/kerning program gde�ne list tag = 2 f character has a successor in a charlist gde�ne ext tag = 3 f character is extensible g

204 PART 30: FONT METRIC DATA TEXGPC x545545. The lig kern array contains instructions in a simple programming language that explains what to dofor special letter pairs. Each word in this array is a lig kern command of four bytes.�rst byte: skip byte , indicates that this is the �nal program step if the byte is 128 or more, otherwise thenext step is obtained by skipping this number of intervening steps.second byte: next char , \if next char follows the current character, then perform the operation and stop,otherwise continue."third byte: op byte , indicates a ligature step if less than 128, a kern step otherwise.fourth byte: remainder .In a kern step, an additional space equal to kern [256 � (op byte � 128)+ remainder] is inserted between thecurrent character and next char . This amount is often negative, so that the characters are brought closertogether by kerning; but it might be positive.There are eight kinds of ligature steps, having op byte codes 4a+2b+c where 0 � a � b+c and 0 � b; c � 1.The character whose code is remainder is inserted between the current character and next char ; then thecurrent character is deleted if b = 0, and next char is deleted if c = 0; then we pass over a characters toreach the next current character (which may have a ligature/kerning program of its own).If the very �rst instruction of the lig kern array has skip byte = 255, the next char byte is the so-calledright boundary character of this font; the value of next char need not lie between bc and ec . If the verylast instruction of the lig kern array has skip byte = 255, there is a special ligature/kerning program for aleft boundary character, beginning at location 256 � op byte + remainder . The interpretation is that TEXputs implicit boundary characters before and after each consecutive string of characters from the same font.These implicit characters do not appear in the output, but they can a�ect ligatures and kerning.If the very �rst instruction of a character's lig kern program has skip byte > 128, the program actuallybegins in location 256 � op byte + remainder . This feature allows access to large lig kern arrays, because the�rst instruction must otherwise appear in a location � 255.Any instruction with skip byte > 128 in the lig kern array must satisfy the condition256 � op byte + remainder < nl .If such an instruction is encountered during normal program execution, it denotes an unconditional halt; noligature or kerning command is performed.de�ne stop ag � qi (128) f value indicating `STOP' in a lig/kern program gde�ne kern ag � qi (128) f op code for a kern step gde�ne skip byte (#) � #:b0de�ne next char (#) � #:b1de�ne op byte (#) � #:b2de�ne rem byte (#) � #:b3546. Extensible characters are speci�ed by an extensible recipe , which consists of four bytes called top ,mid , bot , and rep (in this order). These bytes are the character codes of individual pieces used to build upa large symbol. If top , mid , or bot are zero, they are not present in the built-up result. For example, anextensible vertical line is like an extensible bracket, except that the top and bottom pieces are missing.Let T , M , B, and R denote the respective pieces, or an empty box if the piece isn't present. Then theextensible characters have the form TRkMRkB from top to bottom, for some k � 0, unless M is absent; inthe latter case we can have TRkB for both even and odd values of k. The width of the extensible character isthe width of R; and the height-plus-depth is the sum of the individual height-plus-depths of the componentsused, since the pieces are butted together in a vertical list.de�ne ext top (#) � #:b0 f top piece in a recipe gde�ne ext mid (#) � #:b1 fmid piece in a recipe gde�ne ext bot (#) � #:b2 f bot piece in a recipe gde�ne ext rep (#) � #:b3 f rep piece in a recipe g

x547 TEXGPC PART 30: FONT METRIC DATA 205547. The �nal portion of a TFM �le is the param array, which is another sequence of �x word values.param [1] = slant is the amount of italic slant, which is used to help position accents. For example, slant = :25means that when you go up one unit, you also go .25 units to the right. The slant is a pure number;it's the only �x word other than the design size itself that is not scaled by the design size.param [2] = space is the normal spacing between words in text. Note that character " " in the font need nothave anything to do with blank spaces.param [3] = space stretch is the amount of glue stretching between words.param [4] = space shrink is the amount of glue shrinking between words.param [5] = x height is the size of one ex in the font; it is also the height of letters for which accents don'thave to be raised or lowered.param [6] = quad is the size of one em in the font.param [7] = extra space is the amount added to param [2] at the ends of sentences.If fewer than seven parameters are present, TEX sets the missing parameters to zero. Fonts used for mathsymbols are required to have additional parameter information, which is explained later.de�ne slant code = 1de�ne space code = 2de�ne space stretch code = 3de�ne space shrink code = 4de�ne x height code = 5de�ne quad code = 6de�ne extra space code = 7548. So that is what TFM �les hold. Since TEX has to absorb such information about lots of fonts, it storesmost of the data in a large array called font info . Each item of font info is a memory word ; the �x worddata gets converted into scaled entries, while everything else goes into words of type four quarters .When the user de�nes \font\f, say, TEX assigns an internal number to the user's font \f. Adding thisnumber to font id base gives the eqtb location of a \frozen" control sequence that will always select the font.hTypes in the outer block 18 i +�internal font number = font base : : font max ; f font in a char node gfont index = 0 : : font mem size ; f index into font info g

206 PART 30: FONT METRIC DATA TEXGPC x549549. Here now is the (rather formidable) array of font arrays.de�ne non char � qi (256) f a halfword code that can't match a real character gde�ne non address = 0 f a spurious bchar label ghGlobal variables 13 i +�font info : array [font index] of memory word ; f the big collection of font data gfmem ptr : font index ; f �rst unused word of font info gfont ptr : internal font number ; f largest internal font number in use gfont check : array [internal font number] of four quarters ; f check sum gfont size : array [internal font number] of scaled ; f \at" size gfont dsize : array [internal font number] of scaled ; f \design" size gfont params : array [internal font number] of font index ; f how many font parameters are present gfont name : array [internal font number] of str number ; f name of the font gfont area : array [internal font number] of str number ; f area of the font gfont bc : array [internal font number] of eight bits ; f beginning (smallest) character code gfont ec : array [internal font number] of eight bits ; f ending (largest) character code gfont glue : array [internal font number] of pointer ;f glue speci�cation for interword space, null if not allocated gfont used : array [internal font number] of boolean ;f has a character from this font actually appeared in the output? ghyphen char : array [internal font number] of integer ; f current \hyphenchar values gskew char : array [internal font number] of integer ; f current \skewchar values gbchar label : array [internal font number] of font index ;f start of lig kern program for left boundary character, non address if there is none gfont bchar : array [internal font number] of min quarterword : : non char ;f right boundary character, non char if there is none gfont false bchar : array [internal font number] of min quarterword : : non char ;f font bchar if it doesn't exist in the font, otherwise non char g550. Besides the arrays just enumerated, we have directory arrays that make it easy to get at theindividual entries in font info . For example, the char info data for character c in font f will be infont info [char base [f] + c]:qqqq ; and if w is the width index part of this word (the b0 �eld), the width ofthe character is font info [width base [f] + w]:sc . (These formulas assume that min quarterword has alreadybeen added to c and to w, since TEX stores its quarterwords that way.)hGlobal variables 13 i +�char base : array [internal font number] of integer ; f base addresses for char info gwidth base : array [internal font number] of integer ; f base addresses for widths gheight base : array [internal font number] of integer ; f base addresses for heights gdepth base : array [internal font number] of integer ; f base addresses for depths gitalic base : array [internal font number] of integer ; f base addresses for italic corrections glig kern base : array [internal font number] of integer ; f base addresses for ligature/kerning programs gkern base : array [internal font number] of integer ; f base addresses for kerns gexten base : array [internal font number] of integer ; f base addresses for extensible recipes gparam base : array [internal font number] of integer ; f base addresses for font parameters g551. h Set initial values of key variables 21 i +�for k font base to font max do font used [k] false ;

x552 TEXGPC PART 30: FONT METRIC DATA 207552. TEX always knows at least one font, namely the null font. It has no characters, and its sevenparameters are all equal to zero.h Initialize table entries (done by INITEX only) 164 i +�font ptr null font ; fmem ptr 7; font name [null font] "nullfont"; font area [null font] "";hyphen char [null font] "-"; skew char [null font] �1; bchar label [null font] non address ;font bchar [null font] non char ; font false bchar [null font] non char ; font bc [null font] 1;font ec [null font] 0; font size [null font] 0; font dsize [null font] 0; char base [null font] 0;width base [null font] 0; height base [null font] 0; depth base [null font] 0;italic base [null font] 0; lig kern base [null font] 0; kern base [null font] 0;exten base [null font] 0; font glue [null font] null ; font params [null font] 7;param base [null font] �1;for k 0 to 6 do font info [k]:sc 0;553. hPut each of TEX's primitives into the hash table 226 i +�primitive ("nullfont"; set font ;null font); text (frozen null font) "nullfont";eqtb [frozen null font] eqtb [cur val];

208 PART 30: FONT METRIC DATA TEXGPC x554554. Of course we want to de�ne macros that suppress the detail of how font information is actuallypacked, so that we don't have to write things likefont info [width base [f] + font info [char base [f] + c]:qqqq :b0]:sctoo often. The WEB de�nitions here make char info (f)(c) the four quarters word of font informationcorresponding to character c of font f . If q is such a word, char width (f)(q) will be the character's width;hence the long formula above is at least abbreviated tochar width (f)(char info (f)(c)).Usually, of course, we will fetch q �rst and look at several of its �elds at the same time.The italic correction of a character will be denoted by char italic (f)(q), so it is analogous to char width .But we will get at the height and depth in a slightly di�erent way, since we usually want to compute bothheight and depth if we want either one. The value of height depth (q) will be the 8-bit quantityb = height index � 16 + depth index ;and if b is such a byte we will write char height (f)(b) and char depth (f)(b) for the height and depth of thecharacter c for which q = char info (f)(c). Got that?The tag �eld will be called char tag (q); the remainder byte will be called rem byte (q), using a macro thatwe have already de�ned above.Access to a character's width , height , depth , and tag �elds is part of TEX's inner loop, so we want thesemacros to produce code that is as fast as possible under the circumstances.de�ne char info end (#) � #] .qqqqde�ne char info (#) � font info [char base [#] + char info endde�ne char width end (#) � #:b0] .scde�ne char width (#) � font info [width base [#] + char width endde�ne char exists (#) � (#:b0 > min quarterword)de�ne char italic end (#) � (qo (#:b2)) div 4] .scde�ne char italic (#) � font info [italic base [#] + char italic endde�ne height depth (#) � qo (#:b1)de�ne char height end (#) � (#) div 16] .scde�ne char height (#) � font info [height base [#] + char height endde�ne char depth end (#) � (#)mod 16] .scde�ne char depth (#) � font info [depth base [#] + char depth endde�ne char tag (#) � ((qo (#:b2))mod 4)555. The global variable null character is set up to be a word of char info for a character that doesn'texist. Such a word provides a convenient way to deal with erroneous situations.hGlobal variables 13 i +�null character : four quarters ; f nonexistent character information g556. h Set initial values of key variables 21 i +�null character :b0 min quarterword ; null character :b1 min quarterword ;null character :b2 min quarterword ; null character :b3 min quarterword ;

x557 TEXGPC PART 30: FONT METRIC DATA 209557. Here are some macros that help process ligatures and kerns. We write char kern (f)(j) to �nd theamount of kerning speci�ed by kerning command j in font f . If j is the char info for a character with aligature/kern program, the �rst instruction of that program is either i = font info [lig kern start (f)(j)] orfont info [lig kern restart (f)(i)], depending on whether or not skip byte (i) � stop ag .The constant kern base o�set should be simpli�ed, for Pascal compilers that do not do local optimization.de�ne char kern end (#) � 256 � op byte (#) + rem byte (#)] .scde�ne char kern (#) � font info [kern base [#] + char kern endde�ne kern base o�set � 256 � (128 +min quarterword)de�ne lig kern start (#) � lig kern base [#] + rem byte f beginning of lig/kern program gde�ne lig kern restart end (#) � 256 � op byte (#) + rem byte (#) + 32768� kern base o�setde�ne lig kern restart (#) � lig kern base [#] + lig kern restart end558. Font parameters are referred to as slant (f), space (f), etc.de�ne param end (#) � param base [#]] .scde�ne param (#) � font info [#+ param endde�ne slant � param (slant code) f slant to the right, per unit distance upward gde�ne space � param (space code) f normal space between words gde�ne space stretch � param (space stretch code) f stretch between words gde�ne space shrink � param (space shrink code) f shrink between words gde�ne x height � param (x height code) f one ex gde�ne quad � param (quad code) f one em gde�ne extra space � param (extra space code) f additional space at end of sentence ghThe em width for cur font 558 i �quad (cur font)This code is used in section 455.559. hThe x-height for cur font 559 i �x height (cur font)This code is used in section 455.

210 PART 30: FONT METRIC DATA TEXGPC x560560. TEX checks the information of a TFM �le for validity as the �le is being read in, so that no furtherchecks will be needed when typesetting is going on. The somewhat tedious subroutine that does this is calledread font info . It has four parameters: the user font identi�er u, the �le name and area strings nom andaire , and the \at" size s. If s is negative, it's the negative of a scale factor to be applied to the design size;s = �1000 is the normal case. Otherwise s will be substituted for the design size; in this case, s must bepositive and less than 2048 pt (i.e., it must be less than 227 when considered as an integer).The subroutine opens and closes a global �le variable called tfm �le . It returns the value of the internalfont number that was just loaded. If an error is detected, an error message is issued and no font informationis stored; null font is returned in this case.de�ne bad tfm = 11 f label for read font info gde�ne abort � goto bad tfm f do this when the TFM data is wrong gfunction read font info (u : pointer ; nom ; aire : str number ; s : scaled): internal font number ;f input a TFM �le glabel done ; bad tfm ;not found ;var k: font index ; f index into font info g�le opened : boolean ; fwas tfm �le successfully opened? glf ; lh ; bc ; ec ;nw ;nh ;nd ;ni ;nl ;nk ;ne ;np : halfword ; f sizes of sub�les gf : internal font number ; f the new font's number gg: internal font number ; f the number to return ga; b; c; d: eight bits ; f byte variables gqw : four quarters ; sw : scaled ; f accumulators gbch label : integer ; f left boundary start location, or in�nity gbchar : 0 : : 256; f right boundary character, or 256 gz: scaled ; f the design size or the \at" size galpha : integer ; beta : 1 : : 16; f auxiliary quantities used in �xed-point multiplication gbegin g null font ;hRead and check the font data; abort if the TFM �le is malformed; if there's no room for this font, say soand goto done ; otherwise incr (font ptr) and goto done 562 i;bad tfm : hReport that the font won't be loaded 561 i;done : if �le opened then b close (tfm �le);read font info g;end;

x561 TEXGPC PART 30: FONT METRIC DATA 211561. There are programs called TFtoPL and PLtoTF that convert between the TFM format and a symbolicproperty-list format that can be easily edited. These programs contain extensive diagnostic information, soTEX does not have to bother giving precise details about why it rejects a particular TFM �le.de�ne start font error message � print err ("Font "); sprint cs (u); print char ("=");print �le name (nom ; aire ; "");if s � 0 thenbegin print (" at "); print scaled (s); print ("pt");endelse if s 6= �1000 thenbegin print (" scaled "); print int (�s);endhReport that the font won't be loaded 561 i �start font error message ;if �le opened then print (" not loadable: Bad metric (TFM) file")else print (" not loadable: Metric (TFM) file not found");help5 ("I wasn�t able to read the size data for this font,")("so I will ignore the font specification.")("[Wizards can fix TFM files using TFtoPL/PLtoTF.]")("You might try inserting a different font spec;")("e.g., type �I\font<same font id>=<substitute font name>�."); errorThis code is used in section 560.562. hRead and check the font data; abort if the TFM �le is malformed; if there's no room for this font,say so and goto done ; otherwise incr (font ptr) and goto done 562 i �hOpen tfm �le for input 563 i;hRead the TFM size �elds 565 i;hUse size �elds to allocate font information 566 i;hRead the TFM header 568 i;hRead character data 569 i;hRead box dimensions 571 i;hRead ligature/kern program 573 i;hRead extensible character recipes 574 i;hRead font parameters 575 i;hMake �nal adjustments and goto done 576 iThis code is used in section 560.563. hOpen tfm �le for input 563 i ��le opened false ;if aire = "" then pack �le name (nom ;TEX font area ; ".tfm")else pack �le name (nom ; aire ; ".tfm");if :b open in (tfm �le) then abort ;�le opened trueThis code is used in section 562.

212 PART 30: FONT METRIC DATA TEXGPC x564564. Note: A malformed TFM �le might be shorter than it claims to be; thus eof (tfm �le) might be truewhen read font info refers to tfm �le" or when it says get (tfm �le). If such circumstances cause system errormessages, you will have to defeat them somehow, for example by de�ning fget to be `begin get (tfm �le); ifeof (tfm �le) then abort ; end'.de�ne fget � get (tfm �le)de�ne fbyte � tfm �le"de�ne read sixteen (#) �begin # fbyte ;if # > 127 then abort ;fget ; # # � �400 + fbyte ;endde�ne store four quarters (#) �begin fget ; a fbyte ; qw :b0 qi (a); fget ; b fbyte ; qw :b1 qi (b); fget ; c fbyte ;qw :b2 qi (c); fget ; d fbyte ; qw :b3 qi (d); # qw ;end565. hRead the TFM size �elds 565 i �begin read sixteen (lf); fget ; read sixteen(lh); fget ; read sixteen (bc); fget ; read sixteen(ec);if (bc > ec + 1) _ (ec > 255) then abort ;if bc > 255 then f bc = 256 and ec = 255 gbegin bc 1; ec 0;end;fget ; read sixteen (nw); fget ; read sixteen (nh); fget ; read sixteen (nd); fget ; read sixteen (ni); fget ;read sixteen (nl); fget ; read sixteen (nk); fget ; read sixteen (ne); fget ; read sixteen (np);if lf 6= 6 + lh + (ec � bc + 1) + nw + nh + nd + ni + nl + nk + ne + np then abort ;if (nw = 0) _ (nh = 0) _ (nd = 0) _ (ni = 0) then abort ;endThis code is used in section 562.566. The preliminary settings of the index-o�set variables char base , width base , lig kern base , kern base ,and exten base will be corrected later by subtracting min quarterword from them; and we will subtract 1from param base too. It's best to forget about such anomalies until later.hUse size �elds to allocate font information 566 i �lf lf � 6� lh ; f lf words should be loaded into font info gif np < 7 then lf lf + 7� np ; f at least seven parameters will appear gif (font ptr = font max) _ (fmem ptr + lf > font mem size) thenhApologize for not loading the font, goto done 567 i;f font ptr + 1; char base [f] fmem ptr � bc ; width base [f] char base [f] + ec + 1;height base [f] width base [f] + nw ; depth base [f] height base [f] + nh ;italic base [f] depth base [f] + nd ; lig kern base [f] italic base [f] + ni ;kern base [f] lig kern base [f] + nl � kern base o�set ;exten base [f] kern base [f] + kern base o�set + nk ; param base [f] exten base [f] + neThis code is used in section 562.567. hApologize for not loading the font, goto done 567 i �begin start font error message ; print (" not loaded: Not enough room left");help4 ("I�m afraid I won�t be able to make use of this font,")("because my memory for character-size data is too small.")("If you�re really stuck, ask a wizard to enlarge me.")("Or maybe try �I\font<same font id>=<name of loaded font>�."); error ; goto done ;endThis code is used in section 566.

x568 TEXGPC PART 30: FONT METRIC DATA 213568. Only the �rst two words of the header are needed by TEX82.hRead the TFM header 568 i �begin if lh < 2 then abort ;store four quarters (font check [f]); fget ; read sixteen(z); f this rejects a negative design size gfget ; z z � �400 + fbyte ; fget ; z (z � �20) + (fbyte div �20);if z < unity then abort ;while lh > 2 dobegin fget ; fget ; fget ; fget ; decr (lh); f ignore the rest of the header gend;font dsize [f] z;if s 6= �1000 thenif s � 0 then z selse z xn over d (z;�s; 1000);font size [f] z;endThis code is used in section 562.569. hRead character data 569 i �for k fmem ptr to width base [f]� 1 dobegin store four quarters (font info [k]:qqqq);if (a � nw) _ (b div �20 � nh) _ (bmod �20 � nd) _ (c div 4 � ni) then abort ;case cmod 4 oflig tag : if d � nl then abort ;ext tag : if d � ne then abort ;list tag : hCheck for charlist cycle 570 i;othercases do nothing fno tag gendcases;endThis code is used in section 562.570. We want to make sure that there is no cycle of characters linked together by list tag entries, sincesuch a cycle would get TEX into an endless loop. If such a cycle exists, the routine here detects it whenprocessing the largest character code in the cycle.de�ne check byte range (#) �begin if (# < bc) _ (# > ec) then abortendde�ne current character being worked on � k + bc � fmem ptrhCheck for charlist cycle 570 i �begin check byte range (d);while d < current character being worked on dobegin qw char info (f)(d); fN.B.: not qi (d), since char base [f] hasn't been adjusted yet gif char tag (qw) 6= list tag then goto not found ;d qo (rem byte (qw)); f next character on the list gend;if d = current character being worked on then abort ; f yes, there's a cycle gnot found : endThis code is used in section 569.

214 PART 30: FONT METRIC DATA TEXGPC x571571. A �x word whose four bytes are (a; b; c; d) from left to right represents the numberx = �b � 2�4 + c � 2�12 + d � 2�20, if a = 0;�16 + b � 2�4 + c � 2�12 + d � 2�20, if a = 255:(No other choices of a are allowed, since the magnitude of a number in design-size units must be less than16.) We want to multiply this quantity by the integer z, which is known to be less than 227. If z < 223, theindividual multiplications b � z, c � z, d � z cannot overow; otherwise we will divide z by 2, 4, 8, or 16, toobtain a multiplier less than 223, and we can compensate for this later. If z has thereby been replaced byz0 = z=2e, let � = 24�e; we shall computeb(b+ c � 2�8 + d � 2�16) z0=�cif a = 0, or the same quantity minus � = 24+ez0 if a = 255. This calculation must be done exactly, in orderto guarantee portability of TEX between computers.de�ne store scaled (#) �begin fget ; a fbyte ; fget ; b fbyte ; fget ; c fbyte ; fget ; d fbyte ;sw (((((d � z) div �400) + (c � z)) div �400) + (b � z)) div beta ;if a = 0 then # sw else if a = 255 then # sw � alpha else abort ;endhRead box dimensions 571 i �begin hReplace z by z0 and compute �; � 572 i;for k width base [f] to lig kern base [f]� 1 do store scaled (font info [k]:sc);if font info [width base [f]]:sc 6= 0 then abort ; fwidth [0] must be zero gif font info [height base [f]]:sc 6= 0 then abort ; f height [0] must be zero gif font info [depth base [f]]:sc 6= 0 then abort ; f depth [0] must be zero gif font info [italic base [f]]:sc 6= 0 then abort ; f italic [0] must be zero gendThis code is used in section 562.572. hReplace z by z0 and compute �; � 572 i �begin alpha 16;while z � �40000000 dobegin z z div 2; alpha alpha + alpha ;end;beta 256 div alpha ; alpha alpha � z;endThis code is used in section 571.

x573 TEXGPC PART 30: FONT METRIC DATA 215573. de�ne check existence (#) �begin check byte range (#); qw char info (f)(#); fN.B.: not qi (#) gif :char exists (qw) then abort ;endhRead ligature/kern program 573 i �bch label �77777 ; bchar 256;if nl > 0 thenbegin for k lig kern base [f] to kern base [f] + kern base o�set � 1 dobegin store four quarters (font info [k]:qqqq);if a > 128 thenbegin if 256 � c+ d � nl then abort ;if a = 255 thenif k = lig kern base [f] then bchar b;endelse begin if b 6= bchar then check existence (b);if c < 128 then check existence (d) f check ligature gelse if 256 � (c� 128) + d � nk then abort ; f check kern gif a < 128 thenif k � lig kern base [f] + a+ 1 � nl then abort ;end;end;if a = 255 then bch label 256 � c+ d;end;for k kern base [f] + kern base o�set to exten base [f]� 1 do store scaled (font info [k]:sc);This code is used in section 562.574. hRead extensible character recipes 574 i �for k exten base [f] to param base [f]� 1 dobegin store four quarters (font info [k]:qqqq);if a 6= 0 then check existence (a);if b 6= 0 then check existence (b);if c 6= 0 then check existence (c);check existence (d);endThis code is used in section 562.575. We check to see that the TFM �le doesn't end prematurely; but no error message is given for �leshaving more than lf words.hRead font parameters 575 i �begin for k 1 to np doif k = 1 then f the slant parameter is a pure number gbegin fget ; sw fbyte ;if sw > 127 then sw sw � 256;fget ; sw sw � �400 + fbyte ; fget ; sw sw � �400 + fbyte ; fget ;font info [param base [f]]:sc (sw � �20) + (fbyte div �20);endelse store scaled (font info [param base [f] + k � 1]:sc);if eof (tfm �le) then abort ;for k np + 1 to 7 do font info [param base [f] + k � 1]:sc 0;endThis code is used in section 562.

216 PART 30: FONT METRIC DATA TEXGPC x576576. Now to wrap it up, we have checked all the necessary things about the TFM �le, and all we need todo is put the �nishing touches on the data for the new font.de�ne adjust (#) � #[f] qo (#[f]) f correct for the excess min quarterword that was added ghMake �nal adjustments and goto done 576 i �if np � 7 then font params [f] np else font params [f] 7;hyphen char [f] default hyphen char ; skew char [f] default skew char ;if bch label < nl then bchar label [f] bch label + lig kern base [f]else bchar label [f] non address ;font bchar [f] qi (bchar); font false bchar [f] qi (bchar);if bchar � ec thenif bchar � bc thenbegin qw char info (f)(bchar); fN.B.: not qi (bchar) gif char exists (qw) then font false bchar [f] non char ;end;font name [f] nom ; font area [f] aire ; font bc [f] bc ; font ec [f] ec ; font glue [f] null ;adjust (char base); adjust (width base); adjust (lig kern base); adjust (kern base); adjust (exten base);decr (param base [f]); fmem ptr fmem ptr + lf ; font ptr f ; g f ; goto doneThis code is used in section 562.577. Before we forget about the format of these tables, let's deal with two of TEX's basic scanning routinesrelated to font information.hDeclare procedures that scan font-related stu� 577 i �procedure scan font ident ;var f : internal font number ; m: halfword ;begin hGet the next non-blank non-call token 406 i;if cur cmd = def font then f cur fontelse if cur cmd = set font then f cur chrelse if cur cmd = def family thenbegin m cur chr ; scan four bit int ; f equiv (m+ cur val);endelse begin print err ("Missing font identifier");help2 ("I was looking for a control sequence whose")("current meaning has been defined by \font."); back error ; f null font ;end;cur val f ;end;See also section 578.This code is used in section 409.

x578 TEXGPC PART 30: FONT METRIC DATA 217578. The following routine is used to implement `\fontdimen n f '. The boolean parameter writing is settrue if the calling program intends to change the parameter value.hDeclare procedures that scan font-related stu� 577 i +�procedure �nd font dimen (writing : boolean); f sets cur val to font info location gvar f : internal font number ; n: integer ; f the parameter number gbegin scan int ; n cur val ; scan font ident ; f cur val ;if n � 0 then cur val fmem ptrelse begin if writing ^ (n � space shrink code) ^ (n � space code) ^ (font glue [f] 6= null) thenbegin delete glue ref (font glue [f]); font glue [f] null ;end;if n > font params [f] thenif f < font ptr then cur val fmem ptrelse h Increase the number of parameters in the last font 580 ielse cur val n+ param base [f];end;h Issue an error message if cur val = fmem ptr 579 i;end;579. h Issue an error message if cur val = fmem ptr 579 i �if cur val = fmem ptr thenbegin print err ("Font "); print esc(font id text (f)); print (" has only ");print int (font params [f]); print (" fontdimen parameters");help2 ("To increase the number of font parameters, you must")("use \fontdimen immediately after the \font is loaded."); error ;endThis code is used in section 578.580. h Increase the number of parameters in the last font 580 i �begin repeat if fmem ptr = font mem size then overow ("font memory"; font mem size);font info [fmem ptr]:sc 0; incr (fmem ptr); incr (font params [f]);until n = font params [f];cur val fmem ptr � 1; f this equals param base [f] + font params [f] gendThis code is used in section 578.581. When TEX wants to typeset a character that doesn't exist, the character node is not created; thusthe output routine can assume that characters exist when it sees them. The following procedure prints awarning message unless the user has suppressed it.procedure char warning (f : internal font number ; c : eight bits);begin if tracing lost chars > 0 thenbegin begin diagnostic ; print nl ("Missing character: There is no "); print ASCII (c);print (" in font "); slow print (font name [f]); print char ("!"); end diagnostic (false);end;end;

218 PART 30: FONT METRIC DATA TEXGPC x582582. Here is a function that returns a pointer to a character node for a given character in a given font. Ifthat character doesn't exist, null is returned instead.function new character (f : internal font number ; c : eight bits): pointer ;label exit ;var p: pointer ; f newly allocated node gbegin if font bc [f] � c thenif font ec [f] � c thenif char exists (char info (f)(qi (c))) thenbegin p get avail ; font (p) f ; character (p) qi (c); new character p; return;end;char warning (f; c); new character null ;exit : end;

x583 TEXGPC PART 31: DEVICE-INDEPENDENT FILE FORMAT 219583. Device-independent �le format. The most important output produced by a run of TEX is the\device independent" (DVI) �le that speci�es where characters and rules are to appear on printed pages.The form of these �les was designed by David R. Fuchs in 1979. Almost any reasonable typesetting devicecan be driven by a program that takes DVI �les as input, and dozens of such DVI-to-whatever programs havebeen written. Thus, it is possible to print the output of TEX on many di�erent kinds of equipment, usingTEX as a device-independent \front end."A DVI �le is a stream of 8-bit bytes, which may be regarded as a series of commands in a machine-likelanguage. The �rst byte of each command is the operation code, and this code is followed by zero ormore bytes that provide parameters to the command. The parameters themselves may consist of severalconsecutive bytes; for example, the `set rule ' command has two parameters, each of which is four byteslong. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters, and shorterparameters that denote distances, can be either positive or negative. Such parameters are given in two'scomplement notation. For example, a two-byte-long distance parameter has a value between �215 and215 � 1. As in TFM �les, numbers that occupy more than one byte position appear in BigEndian order.A DVI �le consists of a \preamble," followed by a sequence of one or more \pages," followed by a\postamble." The preamble is simply a pre command, with its parameters that de�ne the dimensionsused in the �le; this must come �rst. Each \page" consists of a bop command, followed by any number ofother commands that tell where characters are to be placed on a physical page, followed by an eop command.The pages appear in the order that TEX generated them. If we ignore nop commands and fnt def commands(which are allowed between any two commands in the �le), each eop command is immediately followed bya bop command, or by a post command; in the latter case, there are no more pages in the �le, and theremaining bytes form the postamble. Further details about the postamble will be explained later.Some parameters in DVI commands are \pointers." These are four-byte quantities that give the locationnumber of some other byte in the �le; the �rst byte is number 0, then comes number 1, and so on. Forexample, one of the parameters of a bop command points to the previous bop ; this makes it feasible to readthe pages in backwards order, in case the results are being directed to a device that stacks its output faceup. Suppose the preamble of a DVI �le occupies bytes 0 to 99. Now if the �rst page occupies bytes 100 to999, say, and if the second page occupies bytes 1000 to 1999, then the bop that starts in byte 1000 pointsto 100 and the bop that starts in byte 2000 points to 1000. (The very �rst bop , i.e., the one starting in byte100, has a pointer of �1.)584. The DVI format is intended to be both compact and easily interpreted by a machine. Compactnessis achieved by making most of the information implicit instead of explicit. When a DVI-reading programreads the commands for a page, it keeps track of several quantities: (a) The current font f is an integer;this value is changed only by fnt and fnt num commands. (b) The current position on the page is given bytwo numbers called the horizontal and vertical coordinates, h and v. Both coordinates are zero at the upperleft corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and movingdown corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,except that vertical directions are ipped; the Cartesian version of (h; v) would be (h;�v). (c) The currentspacing amounts are given by four numbers w, x, y, and z, where w and x are used for horizontal spacingand where y and z are used for vertical spacing. (d) There is a stack containing (h; v; w; x; y; z) values; theDVI commands push and pop are used to change the current level of operation. Note that the current font fis not pushed and popped; the stack contains only information about positioning.The values of h, v, w, x, y, and z are signed integers having up to 32 bits, including the sign. Since theyrepresent physical distances, there is a small unit of measurement such that increasing h by 1 means movinga certain tiny distance to the right. The actual unit of measurement is variable, as explained below; TEX setsthings up so that its DVI output is in sp units, i.e., scaled points, in agreement with all the scaled dimensionsin TEX's data structures.

220 PART 31: DEVICE-INDEPENDENT FILE FORMAT TEXGPC x585585. Here is a list of all the commands that may appear in a DVI �le. Each command is speci�ed byits symbolic name (e.g., bop), its opcode byte (e.g., 139), and its parameters (if any). The parametersare followed by a bracketed number telling how many bytes they occupy; for example, `p[4]' means thatparameter p is four bytes long.set char 0 0. Typeset character number 0 from font f such that the reference point of the character isat (h; v). Then increase h by the width of that character. Note that a character may have zero ornegative width, so one cannot be sure that h will advance after this command; but h usually doesincrease.set char 1 through set char 127 (opcodes 1 to 127). Do the operations of set char 0 ; but use the characterwhose number matches the opcode, instead of character 0.set1 128 c[1]. Same as set char 0 , except that character number c is typeset. TEX82 uses this command forcharacters in the range 128 � c < 256.set2 129 c[2]. Same as set1 , except that c is two bytes long, so it is in the range 0 � c < 65536. TEX82never uses this command, but it should come in handy for extensions of TEX that deal with orientallanguages.set3 130 c[3]. Same as set1 , except that c is three bytes long, so it can be as large as 224 � 1. Not eventhe Chinese language has this many characters, but this command might prove useful in some yetunforeseen extension.set4 131 c[4]. Same as set1 , except that c is four bytes long. Imagine that.set rule 132 a[4] b[4]. Typeset a solid black rectangle of height a and width b, with its bottom left corner at(h; v). Then set h h+ b. If either a � 0 or b � 0, nothing should be typeset. Note that if b < 0,the value of h will decrease even though nothing else happens. See below for details about how totypeset rules so that consistency with METAFONT is guaranteed.put1 133 c[1]. Typeset character number c from font f such that the reference point of the character is at(h; v). (The `put' commands are exactly like the `set' commands, except that they simply put out acharacter or a rule without moving the reference point afterwards.)put2 134 c[2]. Same as set2 , except that h is not changed.put3 135 c[3]. Same as set3 , except that h is not changed.put4 136 c[4]. Same as set4 , except that h is not changed.put rule 137 a[4] b[4]. Same as set rule , except that h is not changed.nop 138. No operation, do nothing. Any number of nop 's may occur between DVI commands, but a nopcannot be inserted between a command and its parameters or between two parameters.bop 139 c0[4] c1[4] : : : c9[4] p[4]. Beginning of a page: Set (h; v; w; x; y; z) (0; 0; 0; 0; 0; 0) and set thestack empty. Set the current font f to an unde�ned value. The ten ci parameters hold the values of\count0 : : : \count9 in TEX at the time \shipout was invoked for this page; they can be used toidentify pages, if a user wants to print only part of a DVI �le. The parameter p points to the previousbop in the �le; the �rst bop has p = �1.eop 140. End of page: Print what you have read since the previous bop . At this point the stack shouldbe empty. (The DVI-reading programs that drive most output devices will have kept a bu�er of thematerial that appears on the page that has just ended. This material is largely, but not entirely, inorder by v coordinate and (for �xed v) by h coordinate; so it usually needs to be sorted into someorder that is appropriate for the device in question.)push 141. Push the current values of (h; v; w; x; y; z) onto the top of the stack; do not change any of thesevalues. Note that f is not pushed.pop 142. Pop the top six values o� of the stack and assign them respectively to (h; v; w; x; y; z). The numberof pops should never exceed the number of pushes, since it would be highly embarrassing if the stackwere empty at the time of a pop command.right1 143 b[1]. Set h h+b, i.e., move right b units. The parameter is a signed number in two's complementnotation, �128 � b < 128; if b < 0, the reference point moves left.

x585 TEXGPC PART 31: DEVICE-INDEPENDENT FILE FORMAT 221right2 144 b[2]. Same as right1 , except that b is a two-byte quantity in the range �32768 � b < 32768.right3 145 b[3]. Same as right1 , except that b is a three-byte quantity in the range �223 � b < 223.right4 146 b[4]. Same as right1 , except that b is a four-byte quantity in the range �231 � b < 231.w0 147. Set h h+w; i.e., move right w units. With luck, this parameterless command will usually su�ce,because the same kind of motion will occur several times in succession; the following commandsexplain how w gets particular values.w1 148 b[1]. Set w b and h h+ b. The value of b is a signed quantity in two's complement notation,�128 � b < 128. This command changes the current w spacing and moves right by b.w2 149 b[2]. Same as w1 , but b is two bytes long, �32768 � b < 32768.w3 150 b[3]. Same as w1 , but b is three bytes long, �223 � b < 223.w4 151 b[4]. Same as w1 , but b is four bytes long, �231 � b < 231.x0 152. Set h h+ x; i.e., move right x units. The `x' commands are like the `w' commands except thatthey involve x instead of w.x1 153 b[1]. Set x b and h h + b. The value of b is a signed quantity in two's complement notation,�128 � b < 128. This command changes the current x spacing and moves right by b.x2 154 b[2]. Same as x1 , but b is two bytes long, �32768 � b < 32768.x3 155 b[3]. Same as x1 , but b is three bytes long, �223 � b < 223.x4 156 b[4]. Same as x1 , but b is four bytes long, �231 � b < 231.down1 157 a[1]. Set v v + a, i.e., move down a units. The parameter is a signed number in two'scomplement notation, �128 � a < 128; if a < 0, the reference point moves up.down2 158 a[2]. Same as down1 , except that a is a two-byte quantity in the range �32768 � a < 32768.down3 159 a[3]. Same as down1 , except that a is a three-byte quantity in the range �223 � a < 223.down4 160 a[4]. Same as down1 , except that a is a four-byte quantity in the range �231 � a < 231.y0 161. Set v v+ y; i.e., move down y units. With luck, this parameterless command will usually su�ce,because the same kind of motion will occur several times in succession; the following commandsexplain how y gets particular values.y1 162 a[1]. Set y a and v v + a. The value of a is a signed quantity in two's complement notation,�128 � a < 128. This command changes the current y spacing and moves down by a.y2 163 a[2]. Same as y1 , but a is two bytes long, �32768 � a < 32768.y3 164 a[3]. Same as y1 , but a is three bytes long, �223 � a < 223.y4 165 a[4]. Same as y1 , but a is four bytes long, �231 � a < 231.z0 166. Set v v + z; i.e., move down z units. The `z' commands are like the `y' commands except thatthey involve z instead of y.z1 167 a[1]. Set z a and v v + a. The value of a is a signed quantity in two's complement notation,�128 � a < 128. This command changes the current z spacing and moves down by a.z2 168 a[2]. Same as z1 , but a is two bytes long, �32768 � a < 32768.z3 169 a[3]. Same as z1 , but a is three bytes long, �223 � a < 223.z4 170 a[4]. Same as z1 , but a is four bytes long, �231 � a < 231.fnt num 0 171. Set f 0. Font 0 must previously have been de�ned by a fnt def instruction, as explainedbelow.fnt num 1 through fnt num 63 (opcodes 172 to 234). Set f 1, : : : , f 63, respectively.fnt1 235 k[1]. Set f k. TEX82 uses this command for font numbers in the range 64 � k < 256.fnt2 236 k[2]. Same as fnt1 , except that k is two bytes long, so it is in the range 0 � k < 65536. TEX82never generates this command, but large font numbers may prove useful for speci�cations of coloror texture, or they may be used for special fonts that have �xed numbers in some external codingscheme.

222 PART 31: DEVICE-INDEPENDENT FILE FORMAT TEXGPC x585fnt3 237 k[3]. Same as fnt1 , except that k is three bytes long, so it can be as large as 224 � 1.fnt4 238 k[4]. Same as fnt1 , except that k is four bytes long; this is for the really big font numbers (and forthe negative ones).xxx1 239 k[1] x[k]. This command is unde�ned in general; it functions as a (k + 2)-byte nop unless specialDVI-reading programs are being used. TEX82 generates xxx1 when a short enough \special appears,setting k to the number of bytes being sent. It is recommended that x be a string having the form ofa keyword followed by possible parameters relevant to that keyword.xxx2 240 k[2] x[k]. Like xxx1 , but 0 � k < 65536.xxx3 241 k[3] x[k]. Like xxx1 , but 0 � k < 224.xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large. TEX82 uses xxx4 when sending a string oflength 256 or more.fnt def1 243 k[1] c[4] s[4] d[4] a[1] l[1] n[a + l]. De�ne font k, where 0 � k < 256; font de�nitions will beexplained shortly.fnt def2 244 k[2] c[4] s[4] d[4] a[1] l[1] n[a+ l]. De�ne font k, where 0 � k < 65536.fnt def3 245 k[3] c[4] s[4] d[4] a[1] l[1] n[a+ l]. De�ne font k, where 0 � k < 224.fnt def4 246 k[4] c[4] s[4] d[4] a[1] l[1] n[a+ l]. De�ne font k, where �231 � k < 231.pre 247 i[1] num [4] den [4] mag [4] k[1] x[k]. Beginning of the preamble; this must come at the very beginningof the �le. Parameters i, num , den , mag , k, and x are explained below.post 248. Beginning of the postamble, see below.post post 249. Ending of the postamble, see below.Commands 250{255 are unde�ned at the present time.586. de�ne set char 0 = 0 f typeset character 0 and move right gde�ne set1 = 128 f typeset a character and move right gde�ne set rule = 132 f typeset a rule and move right gde�ne put rule = 137 f typeset a rule gde�ne nop = 138 f no operation gde�ne bop = 139 f beginning of page gde�ne eop = 140 f ending of page gde�ne push = 141 f save the current positions gde�ne pop = 142 f restore previous positions gde�ne right1 = 143 fmove right gde�ne w0 = 147 fmove right by w gde�ne w1 = 148 fmove right and set w gde�ne x0 = 152 fmove right by x gde�ne x1 = 153 fmove right and set x gde�ne down1 = 157 fmove down gde�ne y0 = 161 fmove down by y gde�ne y1 = 162 fmove down and set y gde�ne z0 = 166 fmove down by z gde�ne z1 = 167 fmove down and set z gde�ne fnt num 0 = 171 f set current font to 0 gde�ne fnt1 = 235 f set current font gde�ne xxx1 = 239 f extension to DVI primitives gde�ne xxx4 = 242 f potentially long extension to DVI primitives gde�ne fnt def1 = 243 f de�ne the meaning of a font number gde�ne pre = 247 f preamble gde�ne post = 248 f postamble beginning gde�ne post post = 249 f postamble ending g

x587 TEXGPC PART 31: DEVICE-INDEPENDENT FILE FORMAT 223587. The preamble contains basic information about the �le as a whole. As stated above, there are sixparameters: i[1] num [4] den [4] mag [4] k[1] x[k].The i byte identi�es DVI format; currently this byte is always set to 2. (The value i = 3 is currently usedfor an extended format that allows a mixture of right-to-left and left-to-right typesetting. Some day we willset i = 4, when DVI format makes another incompatible change|perhaps in the year 2048.)The next two parameters, num and den , are positive integers that de�ne the units of measurement; theyare the numerator and denominator of a fraction by which all dimensions in the DVI �le could be multipliedin order to get lengths in units of 10�7 meters. Since 7227pt = 254cm, and since TEX works with scaledpoints where there are 216 sp in a point, TEX sets num=den = (254 �105)=(7227 �216) = 25400000=473628672.The mag parameter is what TEX calls \mag, i.e., 1000 times the desired magni�cation. The actual fractionby which dimensions are multiplied is therefore mag � num=1000den . Note that if a TEX source documentdoes not call for any `true' dimensions, and if you change it only by specifying a di�erent \mag setting, theDVI �le that TEX creates will be completely unchanged except for the value of mag in the preamble andpostamble. (Fancy DVI-reading programs allow users to override the mag setting when a DVI �le is beingprinted.)Finally, k and x allow the DVI writer to include a comment, which is not interpreted further. The lengthof comment x is k, where 0 � k < 256.de�ne id byte = 2 f identi�es the kind of DVI �les described here g588. Font de�nitions for a given font number k contain further parametersc[4] s[4] d[4] a[1] l[1] n[a+ l].The four-byte value c is the check sum that TEX found in the TFM �le for this font; c should match the checksum of the font found by programs that read this DVI �le.Parameter s contains a �xed-point scale factor that is applied to the character widths in font k; fontdimensions in TFM �les and other font �les are relative to this quantity, which is called the \at size" elsewherein this documentation. The value of s is always positive and less than 227. It is given in the same units asthe other DVI dimensions, i.e., in sp when TEX82 has made the �le. Parameter d is similar to s; it is the\design size," and (like s) it is given in DVI units. Thus, font k is to be used at mag � s=1000d times itsnormal size.The remaining part of a font de�nition gives the external name of the font, which is an ASCII string oflength a + l. The number a is the length of the \area" or directory, and l is the length of the font nameitself; the standard local system font area is supposed to be used when a = 0. The n �eld contains the areain its �rst a bytes.Font de�nitions must appear before the �rst use of a particular font number. Once font k is de�ned, itmust not be de�ned again; however, we shall see below that font de�nitions appear in the postamble as wellas in the pages, so in this sense each font number is de�ned exactly twice, if at all. Like nop commands,font de�nitions can appear before the �rst bop , or between an eop and a bop .589. Sometimes it is desirable to make horizontal or vertical rules line up precisely with certain features incharacters of a font. It is possible to guarantee the correct matching between DVI output and the charactersgenerated by METAFONT by adhering to the following principles: (1) The METAFONT characters should bepositioned so that a bottom edge or left edge that is supposed to line up with the bottom or left edge ofa rule appears at the reference point, i.e., in row 0 and column 0 of the METAFONT raster. This ensuresthat the position of the rule will not be rounded di�erently when the pixel size is not a perfect multiple ofthe units of measurement in the DVI �le. (2) A typeset rule of height a > 0 and width b > 0 should beequivalent to a METAFONT-generated character having black pixels in precisely those raster positions whoseMETAFONT coordinates satisfy 0 � x < �b and 0 � y < �a, where � is the number of pixels per DVI unit.

224 PART 31: DEVICE-INDEPENDENT FILE FORMAT TEXGPC x590590. The last page in a DVI �le is followed by `post '; this command introduces the postamble, whichsummarizes important facts that TEX has accumulated about the �le, making it possible to print subsets ofthe data with reasonable e�ciency. The postamble has the formpost p[4] num [4] den [4] mag [4] l[4] u[4] s[2] t[2]h font de�nitions ipost post q[4] i[1] 223's[�4]Here p is a pointer to the �nal bop in the �le. The next three parameters, num , den , and mag , are duplicatesof the quantities that appeared in the preamble.Parameters l and u give respectively the height-plus-depth of the tallest page and the width of the widestpage, in the same units as other dimensions of the �le. These numbers might be used by a DVI-readingprogram to position individual \pages" on large sheets of �lm or paper; however, the standard conventionfor output on normal size paper is to position each page so that the upper left-hand corner is exactly oneinch from the left and the top. Experience has shown that it is unwise to design DVI-to-printer softwarethat attempts cleverly to center the output; a �xed position of the upper left corner is easiest for users tounderstand and to work with. Therefore l and u are often ignored.Parameter s is the maximum stack depth (i.e., the largest excess of push commands over pop commands)needed to process this �le. Then comes t, the total number of pages (bop commands) present.The postamble continues with font de�nitions, which are any number of fnt def commands as describedabove, possibly interspersed with nop commands. Each font number that is used in the DVI �le must bede�ned exactly twice: Once before it is �rst selected by a fnt command, and once in the postamble.591. The last part of the postamble, following the post post byte that signi�es the end of the fontde�nitions, contains q, a pointer to the post command that started the postamble. An identi�cation byte, i,comes next; this currently equals 2, as in the preamble.The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., �337 inoctal). TEX puts out four to seven of these trailing bytes, until the total length of the �le is a multiple offour bytes, since this works out best on machines that pack four bytes per word; but any number of 223's isallowed, as long as there are at least four of them. In e�ect, 223 is a sort of signature that is added at thevery end.This curious way to �nish o� a DVI �le makes it feasible for DVI-reading programs to �nd the postamble�rst, on most computers, even though TEX wants to write the postamble last. Most operating systemspermit random access to individual words or bytes of a �le, so the DVI reader can start at the end and skipbackwards over the 223's until �nding the identi�cation byte. Then it can back up four bytes, read q, andmove to byte q of the �le. This byte should, of course, contain the value 248 (post); now the postamble canbe read, so the DVI reader can discover all the information needed for typesetting the pages. Note that it isalso possible to skip through the DVI �le at reasonably high speed to locate a particular page, if that provesdesirable. This saves a lot of time, since DVI �les used in production jobs tend to be large.Unfortunately, however, standard Pascal does not include the ability to access a random position in a �le,or even to determine the length of a �le. Almost all systems nowadays provide the necessary capabilities,so DVI format has been designed to work most e�ciently with modern operating systems. But if DVI �leshave to be processed under the restrictions of standard Pascal, one can simply read them from front to back,since the necessary header information is present in the preamble and in the font de�nitions. (The l and uand s and t parameters, which appear only in the postamble, are \frills" that are handy but not absolutelynecessary.)

x592 TEXGPC PART 32: SHIPPING PAGES OUT 225592. Shipping pages out. After considering TEX's eyes and stomach, we come now to the bowels.The ship out procedure is given a pointer to a box; its mission is to describe that box in DVI form,outputting a \page" to dvi �le . The DVI coordinates (h; v) = (0; 0) should correspond to the upper leftcorner of the box being shipped.Since boxes can be inside of boxes inside of boxes, the main work of ship out is done by two mutuallyrecursive routines, hlist out and vlist out , which traverse the hlists and vlists inside of horizontal and verticalboxes.As individual pages are being processed, we need to accumulate information about the entire set of pages,since such statistics must be reported in the postamble. The global variables total pages , max v , max h ,max push , and last bop are used to record this information.The variable doing leaders is true while leaders are being output. The variable dead cycles contains thenumber of times an output routine has been initiated since the last ship out .A few additional global variables are also de�ned here for use in vlist out and hlist out . They could havebeen local variables, but that would waste stack space when boxes are deeply nested, since the values ofthese variables are not needed during recursive calls.hGlobal variables 13 i +�total pages : integer ; f the number of pages that have been shipped out gmax v : scaled ; fmaximum height-plus-depth of pages shipped so far gmax h : scaled ; fmaximum width of pages shipped so far gmax push : integer ; f deepest nesting of push commands encountered so far glast bop : integer ; f location of previous bop in the DVI output gdead cycles : integer ; f recent outputs that didn't ship anything out gdoing leaders : boolean ; f are we inside a leader box? gc; f : quarterword ; f character and font in current char node grule ht ; rule dp ; rule wd : scaled ; f size of current rule being output gg: pointer ; f current glue speci�cation glq ; lr : integer ; f quantities used in calculations for leaders g593. h Set initial values of key variables 21 i +�total pages 0; max v 0; max h 0; max push 0; last bop �1; doing leaders false ;dead cycles 0; cur s �1;594. The DVI bytes are output to a bu�er instead of being written directly to the output �le. This makes itpossible to reduce the overhead of subroutine calls, thereby measurably speeding up the computation, sinceoutput of DVI bytes is part of TEX's inner loop. And it has another advantage as well, since we can changeinstructions in the bu�er in order to make the output more compact. For example, a `down2 ' command canbe changed to a `y2 ', thereby making a subsequent `y0 ' command possible, saving two bytes.The output bu�er is divided into two parts of equal size; the bytes found in dvi buf [0 : : half buf � 1]constitute the �rst half, and those in dvi buf [half buf : : dvi buf size � 1] constitute the second. The globalvariable dvi ptr points to the position that will receive the next output byte. When dvi ptr reaches dvi limit ,which is always equal to one of the two values half buf or dvi buf size , the half bu�er that is about to beinvaded next is sent to the output and dvi limit is changed to its other value. Thus, there is always at leasta half bu�er's worth of information present, except at the very beginning of the job.Bytes of the DVI �le are numbered sequentially starting with 0; the next byte to be generated will benumber dvi o�set + dvi ptr . A byte is present in the bu�er only if its number is � dvi gone .hTypes in the outer block 18 i +�dvi index = 0 : : dvi buf size ; f an index into the output bu�er g

226 PART 32: SHIPPING PAGES OUT TEXGPC x595595. Some systems may �nd it more e�cient to make dvi buf a packed array, since output of four bytesat once may be facilitated.hGlobal variables 13 i +�dvi buf : array [dvi index] of eight bits ; f bu�er for DVI output ghalf buf : dvi index ; f half of dvi buf size gdvi limit : dvi index ; f end of the current half bu�er gdvi ptr : dvi index ; f the next available bu�er address gdvi o�set : integer ; f dvi buf size times the number of times the output bu�er has been fully emptied gdvi gone : integer ; f the number of bytes already output to dvi �le g596. Initially the bu�er is all in one piece; we will output half of it only after it �rst �lls up.h Set initial values of key variables 21 i +�half buf dvi buf size div 2; dvi limit dvi buf size ; dvi ptr 0; dvi o�set 0; dvi gone 0;597*. The actual output of dvi buf [a : : b] to dvi �le is performed by calling write dvi (a; b). For best results,this procedure should be optimized to run as fast as possible on each particular system, since it is part ofTEX's inner loop. It is safe to assume that a and b + 1 will both be multiples of 4 when write dvi (a; b) iscalled; therefore it is possible on many machines to use e�cient methods to pack four bytes per word andto output an array of words with one system call.In fact, bu�ering dramatically cuts down system overhead. To compile this document, a program withoutG bu�ering spent 48:45 s in the kernel but with bu�ering only 0:57 s. The total times were 64:45 s vs. 11:40 s.GNU Pascal's gpc block write procedure takes an untyped �le , an array and the number of bytes to bewritten. The array here is given as a `slice', another extension of GNU Pascal. It should be clear, whatbu�er [a : : b] means. This simple change was suggested by Emil Jerabek.de�ne gpc block write � b@&l@&o@&c@&k@&w@&r@&i@&t@&eprocedure write dvi (a; b : dvi index);begin gpc block write (dvi �le ; dvi buf [a : : b]; b� a+ 1);end;598. To put a byte in the bu�er without paying the cost of invoking a procedure each time, we use themacro dvi out .de�ne dvi out (#) � begin dvi buf [dvi ptr] #; incr (dvi ptr);if dvi ptr = dvi limit then dvi swap ;endprocedure dvi swap ; f outputs half of the bu�er gbegin if dvi limit = dvi buf size thenbegin write dvi (0; half buf � 1); dvi limit half buf ; dvi o�set dvi o�set + dvi buf size ;dvi ptr 0;endelse begin write dvi (half buf ; dvi buf size � 1); dvi limit dvi buf size ;end;dvi gone dvi gone + half buf ;end;599. Here is how we clean out the bu�er when TEX is all through; dvi ptr will be a multiple of 4.hEmpty the last bytes out of dvi buf 599 i �if dvi limit = half buf then write dvi (half buf ; dvi buf size � 1);if dvi ptr > 0 then write dvi (0; dvi ptr � 1)This code is used in section 642*.

x600 TEXGPC PART 32: SHIPPING PAGES OUT 227600. The dvi four procedure outputs four bytes in two's complement notation, without risking arithmeticoverow.procedure dvi four (x : integer);begin if x � 0 then dvi out (x div �100000000)else begin x x+ �10000000000 ; x x+ �10000000000 ; dvi out ((x div �100000000) + 128);end;x xmod �100000000 ; dvi out (x div �200000); x xmod �200000 ; dvi out (x div �400);dvi out (xmod �400);end;601. A mild optimization of the output is performed by the dvi pop routine, which issues a pop unless itis possible to cancel a `push pop ' pair. The parameter to dvi pop is the byte address following the old pushthat matches the new pop .procedure dvi pop (l : integer);begin if (l = dvi o�set + dvi ptr) ^ (dvi ptr > 0) then decr (dvi ptr)else dvi out (pop);end;602. Here's a procedure that outputs a font de�nition. Since TEX82 uses at most 256 di�erent fonts perjob, fnt def1 is always used as the command code.procedure dvi font def (f : internal font number);var k: pool pointer ; f index into str pool gbegin dvi out (fnt def1); dvi out (f � font base � 1);dvi out (qo (font check [f]:b0)); dvi out (qo (font check [f]:b1)); dvi out (qo (font check [f]:b2));dvi out (qo (font check [f]:b3));dvi four (font size [f]); dvi four (font dsize [f]);dvi out (length (font area [f])); dvi out (length (font name [f]));hOutput the font name whose internal number is f 603 i;end;603. hOutput the font name whose internal number is f 603 i �for k str start [font area [f]] to str start [font area [f] + 1]� 1 do dvi out (so (str pool [k]));for k str start [font name [f]] to str start [font name [f] + 1]� 1 do dvi out (so (str pool [k]))This code is used in section 602.

228 PART 32: SHIPPING PAGES OUT TEXGPC x604604. Versions of TEX intended for small computers might well choose to omit the ideas in the next fewparts of this program, since it is not really necessary to optimize the DVI code by making use of the w0 , x0 ,y0 , and z0 commands. Furthermore, the algorithm that we are about to describe does not pretend to givean optimum reduction in the length of the DVI code; after all, speed is more important than compactness.But the method is surprisingly e�ective, and it takes comparatively little time.We can best understand the basic idea by �rst considering a simpler problem that has the same essentialcharacteristics. Given a sequence of digits, say 3 1 4 1 5 9 2 6 5 3 5 8 9, we want to assign subscripts d, y, or z toeach digit so as to maximize the number of \y-hits" and \z-hits"; a y-hit is an instance of two appearancesof the same digit with the subscript y, where no y's intervene between the two appearances, and a z-hit isde�ned similarly. For example, the sequence above could be decorated with subscripts as follows:3z 1y 4d 1y 5y 9d 2d 6d 5y 3z 5y 8d 9d:There are three y-hits (1y : : : 1y and 5y : : : 5y : : : 5y) and one z-hit (3z : : : 3z); there are no d-hits, since thetwo appearances of 9d have d's between them, but we don't count d-hits so it doesn't matter how manythere are. These subscripts are analogous to the DVI commands called down , y, and z, and the digits areanalogous to di�erent amounts of vertical motion; a y-hit or z-hit corresponds to the opportunity to use theone-byte commands y0 or z0 in a DVI �le.TEX's method of assigning subscripts works like this: Append a new digit, say �, to the right of thesequence. Now look back through the sequence until one of the following things happens: (a) You see �y or�z, and this was the �rst time you encountered a y or z subscript, respectively. Then assign y or z to thenew �; you have scored a hit. (b) You see �d, and no y subscripts have been encountered so far during thissearch. Then change the previous �d to �y (this corresponds to changing a command in the output bu�er),and assign y to the new �; it's another hit. (c) You see �d, and a y subscript has been seen but not a z.Change the previous �d to �z and assign z to the new �. (d) You encounter both y and z subscripts beforeencountering a suitable �, or you scan all the way to the front of the sequence. Assign d to the new �; thisassignment may be changed later.The subscripts 3z 1y 4d : : : in the example above were, in fact, produced by this procedure, as the readercan verify. (Go ahead and try it.)605. In order to implement such an idea, TEX maintains a stack of pointers to the down , y, and z commandsthat have been generated for the current page. And there is a similar stack for right , w, and x commands.These stacks are called the down stack and right stack, and their top elements are maintained in the variablesdown ptr and right ptr .Each entry in these stacks contains four �elds: The width �eld is the amount of motion down or to theright; the location �eld is the byte number of the DVI command in question (including the appropriatedvi o�set); the link �eld points to the next item below this one on the stack; and the info �eld encodes theoptions for possible change in the DVI command.de�ne movement node size = 3 f number of words per entry in the down and right stacks gde�ne location (#) � mem [#+ 2]:int f DVI byte number for a movement command ghGlobal variables 13 i +�down ptr ; right ptr : pointer ; f heads of the down and right stacks g606. h Set initial values of key variables 21 i +�down ptr null ; right ptr null ;

x607 TEXGPC PART 32: SHIPPING PAGES OUT 229607. Here is a subroutine that produces a DVI command for some speci�ed downward or rightwardmotion. It has two parameters: w is the amount of motion, and o is either down1 or right1 . We usethe fact that the command codes have convenient arithmetic properties: y1 � down1 = w1 � right1 andz1 � down1 = x1 � right1 .procedure movement (w : scaled ; o : eight bits);label exit ; found ;not found ; 2; 1;var mstate : small number ; f have we seen a y or z? gp; q: pointer ; f current and top nodes on the stack gk: integer ; f index into dvi buf , modulo dvi buf size gbegin q get node (movement node size); f new node for the top of the stack gwidth (q) w; location (q) dvi o�set + dvi ptr ;if o = down1 thenbegin link (q) down ptr ; down ptr q;endelse begin link (q) right ptr ; right ptr q;end;hLook at the other stack entries until deciding what sort of DVI command to generate; goto found ifnode p is a \hit" 611 i;hGenerate a down or right command for w and return 610 i;found : hGenerate a y0 or z0 command in order to reuse a previous appearance of w 609 i;exit : end;608. The info �elds in the entries of the down stack or the right stack have six possible settings: y hereor z here mean that the DVI command refers to y or z, respectively (or to w or x, in the case of horizontalmotion); yz OK means that the DVI command is down (or right) but can be changed to either y or z (or toeither w or x); y OK means that it is down and can be changed to y but not z; z OK is similar; and d �xedmeans it must stay down .The four settings yz OK , y OK , z OK , d �xed would not need to be distinguished from each otherif we were simply solving the digit-subscripting problem mentioned above. But in TEX's case there is acomplication because of the nested structure of push and pop commands. Suppose we add parentheses tothe digit-subscripting problem, rede�ning hits so that �y : : : �y is a hit if all y's between the �'s are enclosedin properly nested parentheses, and if the parenthesis level of the right-hand �y is deeper than or equal tothat of the left-hand one. Thus, `(' and `)' correspond to `push ' and `pop '. Now if we want to assign asubscript to the �nal 1 in the sequence 2y 7d 1d (8z 2y 8z) 1we cannot change the previous 1d to 1y, since that would invalidate the 2y : : : 2y hit. But we can change itto 1z, scoring a hit since the intervening 8z's are enclosed in parentheses.The program below removes movement nodes that are introduced after a push , before it outputs thecorresponding pop .de�ne y here = 1 f info when the movement entry points to a y command gde�ne z here = 2 f info when the movement entry points to a z command gde�ne yz OK = 3 f info corresponding to an unconstrained down command gde�ne y OK = 4 f info corresponding to a down that can't become a z gde�ne z OK = 5 f info corresponding to a down that can't become a y gde�ne d �xed = 6 f info corresponding to a down that can't change g

230 PART 32: SHIPPING PAGES OUT TEXGPC x609609. When the movement procedure gets to the label found , the value of info (p) will be either y here orz here . If it is, say, y here , the procedure generates a y0 command (or a w0 command), and marks all info�elds between q and p so that y is not OK in that range.hGenerate a y0 or z0 command in order to reuse a previous appearance of w 609 i �info (q) info (p);if info (q) = y here thenbegin dvi out (o+ y0 � down1); f y0 or w0 gwhile link (q) 6= p dobegin q link (q);case info (q) ofyz OK : info (q) z OK ;y OK : info (q) d �xed ;othercases do nothingendcases;end;endelse begin dvi out (o+ z0 � down1); f z0 or x0 gwhile link (q) 6= p dobegin q link (q);case info (q) ofyz OK : info (q) y OK ;z OK : info (q) d �xed ;othercases do nothingendcases;end;endThis code is used in section 607.610. hGenerate a down or right command for w and return 610 i �info (q) yz OK ;if abs (w) � �40000000 thenbegin dvi out (o+ 3); f down4 or right4 gdvi four (w); return;end;if abs (w) � �100000 thenbegin dvi out (o+ 2); f down3 or right3 gif w < 0 then w w + �100000000 ;dvi out (w div �200000); w wmod �200000 ; goto 2;end;if abs (w) � �200 thenbegin dvi out (o+ 1); f down2 or right2 gif w < 0 then w w + �200000 ;goto 2;end;dvi out (o); f down1 or right1 gif w < 0 then w w + �400 ;goto 1;2: dvi out (w div �400);1: dvi out (wmod �400); returnThis code is used in section 607.

x611 TEXGPC PART 32: SHIPPING PAGES OUT 231611. As we search through the stack, we are in one of three states, y seen , z seen , or none seen , dependingon whether we have encountered y here or z here nodes. These states are encoded as multiples of 6, so thatthey can be added to the info �elds for quick decision-making.de�ne none seen = 0 f no y here or z here nodes have been encountered yet gde�ne y seen = 6 fwe have seen y here but not z here gde�ne z seen = 12 fwe have seen z here but not y here ghLook at the other stack entries until deciding what sort of DVI command to generate; goto found if nodep is a \hit" 611 i �p link (q); mstate none seen ;while p 6= null dobegin if width (p) = w then hConsider a node with matching width; goto found if it's a hit 612 ielse case mstate + info (p) ofnone seen + y here : mstate y seen ;none seen + z here : mstate z seen ;y seen + z here ; z seen + y here : goto not found ;othercases do nothingendcases;p link (p);end;not found :This code is used in section 607.612. We might �nd a valid hit in a y or z byte that is already gone from the bu�er. But we can't changebytes that are gone forever; \the moving �nger writes, : : : ."hConsider a node with matching width; goto found if it's a hit 612 i �case mstate + info (p) ofnone seen + yz OK ;none seen + y OK ; z seen + yz OK ; z seen + y OK :if location (p) < dvi gone then goto not foundelse hChange bu�ered instruction to y or w and goto found 613 i;none seen + z OK ; y seen + yz OK ; y seen + z OK :if location (p) < dvi gone then goto not foundelse hChange bu�ered instruction to z or x and goto found 614 i;none seen + y here ;none seen + z here ; y seen + z here ; z seen + y here : goto found ;othercases do nothingendcasesThis code is used in section 611.613. hChange bu�ered instruction to y or w and goto found 613 i �begin k location (p)� dvi o�set ;if k < 0 then k k + dvi buf size ;dvi buf [k] dvi buf [k] + y1 � down1 ; info (p) y here ; goto found ;endThis code is used in section 612.614. hChange bu�ered instruction to z or x and goto found 614 i �begin k location (p)� dvi o�set ;if k < 0 then k k + dvi buf size ;dvi buf [k] dvi buf [k] + z1 � down1 ; info (p) z here ; goto found ;endThis code is used in section 612.

232 PART 32: SHIPPING PAGES OUT TEXGPC x615615. In case you are wondering when all the movement nodes are removed from TEX's memory, the answeris that they are recycled just before hlist out and vlist out �nish outputting a box. This restores the downand right stacks to the state they were in before the box was output, except that some info 's may havebecome more restrictive.procedure prune movements (l : integer); f delete movement nodes with location � l glabel done ; exit ;var p: pointer ; f node being deleted gbegin while down ptr 6= null dobegin if location (down ptr) < l then goto done ;p down ptr ; down ptr link (p); free node (p;movement node size);end;done : while right ptr 6= null dobegin if location (right ptr) < l then return;p right ptr ; right ptr link (p); free node (p;movement node size);end;exit : end;616. The actual distances by which we want to move might be computed as the sum of several separatemovements. For example, there might be several glue nodes in succession, or we might want to move right bythe width of some box plus some amount of glue. More importantly, the baselineskip distances are computedin terms of glue together with the depth and height of adjacent boxes, and we want the DVI �le to lumpthese three quantities together into a single motion.Therefore, TEX maintains two pairs of global variables: dvi h and dvi v are the h and v coordinatescorresponding to the commands actually output to the DVI �le, while cur h and cur v are the coordinatescorresponding to the current state of the output routines. Coordinate changes will accumulate in cur h andcur v without being reected in the output, until such a change becomes necessary or desirable; we can callthe movement procedure whenever we want to make dvi h = cur h or dvi v = cur v .The current font reected in the DVI output is called dvi f ; there is no need for a `cur f ' variable.The depth of nesting of hlist out and vlist out is called cur s ; this is essentially the depth of push commandsin the DVI output.de�ne synch h �if cur h 6= dvi h thenbegin movement (cur h � dvi h ; right1); dvi h cur h ;endde�ne synch v �if cur v 6= dvi v thenbegin movement (cur v � dvi v ; down1); dvi v cur v ;endhGlobal variables 13 i +�dvi h ; dvi v : scaled ; f a DVI reader program thinks we are here gcur h ; cur v : scaled ; fTEX thinks we are here gdvi f : internal font number ; f the current font gcur s : integer ; f current depth of output box nesting, initially �1 g

x617 TEXGPC PART 32: SHIPPING PAGES OUT 233617. h Initialize variables as ship out begins 617 i �dvi h 0; dvi v 0; cur h h o�set ; dvi f null font ; ensure dvi open ;if total pages = 0 thenbegin dvi out (pre); dvi out (id byte); f output the preamble gdvi four (25400000); dvi four (473628672); f conversion ratio for sp gprepare mag ; dvi four (mag); fmagni�cation factor is frozen gold setting selector ; selector new string ; print (" TeX output "); print int (year);print char ("."); print two(month); print char ("."); print two(day); print char (":");print two (time div 60); print two (time mod 60); selector old setting ; dvi out (cur length);for s str start [str ptr] to pool ptr � 1 do dvi out (so (str pool [s]));pool ptr str start [str ptr]; f ush the current string gendThis code is used in section 640.618. When hlist out is called, its duty is to output the box represented by the hlist node pointed to bytemp ptr . The reference point of that box has coordinates (cur h ; cur v).Similarly, when vlist out is called, its duty is to output the box represented by the vlist node pointed toby temp ptr . The reference point of that box has coordinates (cur h ; cur v).procedure vlist out ; forward ; f hlist out and vlist out are mutually recursive g

234 PART 32: SHIPPING PAGES OUT TEXGPC x619619. The recursive procedures hlist out and vlist out each have local variables save h and save v to holdthe values of dvi h and dvi v just before entering a new level of recursion. In e�ect, the values of save h andsave v on TEX's run-time stack correspond to the values of h and v that a DVI-reading program will pushonto its coordinate stack.de�ne move past = 13 f go to this label when advancing past glue or a rule gde�ne �n rule = 14 f go to this label to �nish processing a rule gde�ne next p = 15 f go to this label when �nished with node p ghDeclare procedures needed in hlist out , vlist out 1368 iprocedure hlist out ; f output an hlist node box glabel reswitch ;move past ;�n rule ;next p ;var base line : scaled ; f the baseline coordinate for this box gleft edge : scaled ; f the left coordinate for this box gsave h ; save v : scaled ; fwhat dvi h and dvi v should pop to gthis box : pointer ; f pointer to containing box gg order : glue ord ; f applicable order of in�nity for glue gg sign : normal : : shrinking ; f selects type of glue gp: pointer ; f current position in the hlist gsave loc : integer ; f DVI byte location upon entry gleader box : pointer ; f the leader box being replicated gleader wd : scaled ; fwidth of leader box being replicated glx : scaled ; f extra space between leader boxes gouter doing leaders : boolean ; fwere we doing leaders? gedge : scaled ; f left edge of sub-box, or right edge of leader space gglue temp : real ; f glue value before rounding gcur glue : real ; f glue seen so far gcur g : scaled ; f rounded equivalent of cur glue times the glue ratio gbegin cur g 0; cur glue oat constant (0); this box temp ptr ; g order glue order (this box);g sign glue sign (this box); p list ptr (this box); incr (cur s);if cur s > 0 then dvi out (push);if cur s > max push then max push cur s ;save loc dvi o�set + dvi ptr ; base line cur v ; left edge cur h ;while p 6= null do hOutput node p for hlist out and move to the next node, maintaining the conditioncur v = base line 620 i;prune movements (save loc);if cur s > 0 then dvi pop (save loc);decr (cur s);end;

x620 TEXGPC PART 32: SHIPPING PAGES OUT 235620. We ought to give special care to the e�ciency of one part of hlist out , since it belongs to TEX's innerloop. When a char node is encountered, we save a little time by processing several nodes in succession untilreaching a non-char node . The program uses the fact that set char 0 = 0.hOutput node p for hlist out and move to the next node, maintaining the condition cur v = base line 620 i �reswitch : if is char node (p) thenbegin synch h ; synch v ;repeat f font (p); c character (p);if f 6= dvi f then hChange font dvi f to f 621 i;if c � qi (128) then dvi out (set1);dvi out (qo (c));cur h cur h + char width (f)(char info (f)(c)); p link (p);until :is char node (p);dvi h cur h ;endelse hOutput the non-char node p for hlist out and move to the next node 622 iThis code is used in section 619.621. hChange font dvi f to f 621 i �begin if :font used [f] thenbegin dvi font def (f); font used [f] true ;end;if f � 64 + font base then dvi out (f � font base � 1 + fnt num 0)else begin dvi out (fnt1); dvi out (f � font base � 1);end;dvi f f ;endThis code is used in section 620.622. hOutput the non-char node p for hlist out and move to the next node 622 i �begin case type (p) ofhlist node ; vlist node : hOutput a box in an hlist 623 i;rule node : begin rule ht height (p); rule dp depth (p); rule wd width (p); goto �n rule ;end;whatsit node : hOutput the whatsit node p in an hlist 1367 i;glue node : hMove right or output leaders 625 i;kern node ;math node : cur h cur h + width (p);ligature node : hMake node p look like a char node and goto reswitch 652 i;othercases do nothingendcases;goto next p ;�n rule : hOutput a rule in an hlist 624 i;move past : cur h cur h + rule wd ;next p : p link (p);endThis code is used in section 620.

236 PART 32: SHIPPING PAGES OUT TEXGPC x623623. hOutput a box in an hlist 623 i �if list ptr (p) = null then cur h cur h + width (p)else begin save h dvi h ; save v dvi v ; cur v base line + shift amount (p);f shift the box down gtemp ptr p; edge cur h ;if type (p) = vlist node then vlist out else hlist out ;dvi h save h ; dvi v save v ; cur h edge + width (p); cur v base line ;endThis code is used in section 622.624. hOutput a rule in an hlist 624 i �if is running (rule ht) then rule ht height (this box);if is running (rule dp) then rule dp depth (this box);rule ht rule ht + rule dp ; f this is the rule thickness gif (rule ht > 0) ^ (rule wd > 0) then fwe don't output empty rules gbegin synch h ; cur v base line + rule dp ; synch v ; dvi out (set rule); dvi four (rule ht);dvi four (rule wd); cur v base line ; dvi h dvi h + rule wd ;endThis code is used in section 622.625. de�ne billion � oat constant (1000000000)de�ne vet glue (#) � glue temp #;if glue temp > billion then glue temp billionelse if glue temp < �billion then glue temp �billionhMove right or output leaders 625 i �begin g glue ptr (p); rule wd width (g)� cur g ;if g sign 6= normal thenbegin if g sign = stretching thenbegin if stretch order (g) = g order thenbegin cur glue cur glue + stretch (g); vet glue (oat (glue set (this box)) � cur glue);cur g round (glue temp);end;endelse if shrink order (g) = g order thenbegin cur glue cur glue � shrink (g); vet glue (oat (glue set (this box)) � cur glue);cur g round (glue temp);end;end;rule wd rule wd + cur g ;if subtype (p) � a leaders thenhOutput leaders in an hlist, goto �n rule if a rule or to next p if done 626 i;goto move past ;endThis code is used in section 622.

x626 TEXGPC PART 32: SHIPPING PAGES OUT 237626. hOutput leaders in an hlist, goto �n rule if a rule or to next p if done 626 i �begin leader box leader ptr (p);if type (leader box) = rule node thenbegin rule ht height (leader box); rule dp depth (leader box); goto �n rule ;end;leader wd width (leader box);if (leader wd > 0) ^ (rule wd > 0) thenbegin rule wd rule wd + 10; f compensate for oating-point rounding gedge cur h + rule wd ; lx 0; hLet cur h be the position of the �rst box, and set leader wd + lx tothe spacing between corresponding parts of boxes 627 i;while cur h + leader wd � edge dohOutput a leader box at cur h , then advance cur h by leader wd + lx 628 i;cur h edge � 10; goto next p ;end;endThis code is used in section 625.627. The calculations related to leaders require a bit of care. First, in the case of a leaders (aligned leaders),we want to move cur h to left edge plus the smallest multiple of leader wd for which the result is not less thanthe current value of cur h ; i.e., cur h should become left edge + leader wd �d(cur h � left edge)=leader wd e.The program here should work in all cases even though some implementations of Pascal give nonstandardresults for the div operation when cur h is less than left edge .In the case of c leaders (centered leaders), we want to increase cur h by half of the excess space notoccupied by the leaders; and in the case of x leaders (expanded leaders) we increase cur h by 1=(q + 1) ofthis excess space, where q is the number of times the leader box will be replicated. Slight inaccuracies in thedivision might accumulate; half of this rounding error is placed at each end of the leaders.hLet cur h be the position of the �rst box, and set leader wd + lx to the spacing between correspondingparts of boxes 627 i �if subtype (p) = a leaders thenbegin save h cur h ; cur h left edge + leader wd � ((cur h � left edge) div leader wd);if cur h < save h then cur h cur h + leader wd ;endelse begin lq rule wd div leader wd ; f the number of box copies glr rule wd mod leader wd ; f the remaining space gif subtype (p) = c leaders then cur h cur h + (lr div 2)else begin lx lr div (lq + 1); cur h cur h + ((lr � (lq � 1) � lx) div 2);end;endThis code is used in section 626.628. The `synch ' operations here are intended to decrease the number of bytes needed to specify horizontaland vertical motion in the DVI output.hOutput a leader box at cur h , then advance cur h by leader wd + lx 628 i �begin cur v base line + shift amount (leader box); synch v ; save v dvi v ;synch h ; save h dvi h ; temp ptr leader box ; outer doing leaders doing leaders ;doing leaders true ;if type (leader box) = vlist node then vlist out else hlist out ;doing leaders outer doing leaders ; dvi v save v ; dvi h save h ; cur v base line ;cur h save h + leader wd + lx ;endThis code is used in section 626.

238 PART 32: SHIPPING PAGES OUT TEXGPC x629629. The vlist out routine is similar to hlist out , but a bit simpler.procedure vlist out ; f output a vlist node box glabel move past ;�n rule ;next p ;var left edge : scaled ; f the left coordinate for this box gtop edge : scaled ; f the top coordinate for this box gsave h ; save v : scaled ; fwhat dvi h and dvi v should pop to gthis box : pointer ; f pointer to containing box gg order : glue ord ; f applicable order of in�nity for glue gg sign : normal : : shrinking ; f selects type of glue gp: pointer ; f current position in the vlist gsave loc : integer ; f DVI byte location upon entry gleader box : pointer ; f the leader box being replicated gleader ht : scaled ; f height of leader box being replicated glx : scaled ; f extra space between leader boxes gouter doing leaders : boolean ; fwere we doing leaders? gedge : scaled ; f bottom boundary of leader space gglue temp : real ; f glue value before rounding gcur glue : real ; f glue seen so far gcur g : scaled ; f rounded equivalent of cur glue times the glue ratio gbegin cur g 0; cur glue oat constant (0); this box temp ptr ; g order glue order (this box);g sign glue sign (this box); p list ptr (this box); incr (cur s);if cur s > 0 then dvi out (push);if cur s > max push then max push cur s ;save loc dvi o�set + dvi ptr ; left edge cur h ; cur v cur v � height (this box); top edge cur v ;while p 6= null do hOutput node p for vlist out and move to the next node, maintaining the conditioncur h = left edge 630 i;prune movements (save loc);if cur s > 0 then dvi pop (save loc);decr (cur s);end;630. hOutput node p for vlist out and move to the next node, maintaining the conditioncur h = left edge 630 i �begin if is char node (p) then confusion ("vlistout")else hOutput the non-char node p for vlist out 631 i;next p : p link (p);endThis code is used in section 629.

x631 TEXGPC PART 32: SHIPPING PAGES OUT 239631. hOutput the non-char node p for vlist out 631 i �begin case type (p) ofhlist node ; vlist node : hOutput a box in a vlist 632 i;rule node : begin rule ht height (p); rule dp depth (p); rule wd width (p); goto �n rule ;end;whatsit node : hOutput the whatsit node p in a vlist 1366 i;glue node : hMove down or output leaders 634 i;kern node : cur v cur v + width (p);othercases do nothingendcases;goto next p ;�n rule : hOutput a rule in a vlist, goto next p 633 i;move past : cur v cur v + rule ht ;endThis code is used in section 630.632. The synch v here allows the DVI output to use one-byte commands for adjusting v in most cases,since the baselineskip distance will usually be constant.hOutput a box in a vlist 632 i �if list ptr (p) = null then cur v cur v + height (p) + depth (p)else begin cur v cur v + height (p); synch v ; save h dvi h ; save v dvi v ;cur h left edge + shift amount (p); f shift the box right gtemp ptr p;if type (p) = vlist node then vlist out else hlist out ;dvi h save h ; dvi v save v ; cur v save v + depth (p); cur h left edge ;endThis code is used in section 631.633. hOutput a rule in a vlist, goto next p 633 i �if is running (rule wd) then rule wd width (this box);rule ht rule ht + rule dp ; f this is the rule thickness gcur v cur v + rule ht ;if (rule ht > 0) ^ (rule wd > 0) then fwe don't output empty rules gbegin synch h ; synch v ; dvi out (put rule); dvi four (rule ht); dvi four (rule wd);end;goto next pThis code is used in section 631.

240 PART 32: SHIPPING PAGES OUT TEXGPC x634634. hMove down or output leaders 634 i �begin g glue ptr (p); rule ht width (g)� cur g ;if g sign 6= normal thenbegin if g sign = stretching thenbegin if stretch order (g) = g order thenbegin cur glue cur glue + stretch (g); vet glue (oat (glue set (this box)) � cur glue);cur g round (glue temp);end;endelse if shrink order (g) = g order thenbegin cur glue cur glue � shrink (g); vet glue (oat (glue set (this box)) � cur glue);cur g round (glue temp);end;end;rule ht rule ht + cur g ;if subtype (p) � a leaders thenhOutput leaders in a vlist, goto �n rule if a rule or to next p if done 635 i;goto move past ;endThis code is used in section 631.635. hOutput leaders in a vlist, goto �n rule if a rule or to next p if done 635 i �begin leader box leader ptr (p);if type (leader box) = rule node thenbegin rule wd width (leader box); rule dp 0; goto �n rule ;end;leader ht height (leader box) + depth (leader box);if (leader ht > 0) ^ (rule ht > 0) thenbegin rule ht rule ht + 10; f compensate for oating-point rounding gedge cur v + rule ht ; lx 0; hLet cur v be the position of the �rst box, and set leader ht + lx tothe spacing between corresponding parts of boxes 636 i;while cur v + leader ht � edge dohOutput a leader box at cur v , then advance cur v by leader ht + lx 637 i;cur v edge � 10; goto next p ;end;endThis code is used in section 634.636. hLet cur v be the position of the �rst box, and set leader ht + lx to the spacing betweencorresponding parts of boxes 636 i �if subtype (p) = a leaders thenbegin save v cur v ; cur v top edge + leader ht � ((cur v � top edge) div leader ht);if cur v < save v then cur v cur v + leader ht ;endelse begin lq rule ht div leader ht ; f the number of box copies glr rule ht mod leader ht ; f the remaining space gif subtype (p) = c leaders then cur v cur v + (lr div 2)else begin lx lr div (lq + 1); cur v cur v + ((lr � (lq � 1) � lx) div 2);end;endThis code is used in section 635.

x637 TEXGPC PART 32: SHIPPING PAGES OUT 241637. When we reach this part of the program, cur v indicates the top of a leader box, not its baseline.hOutput a leader box at cur v , then advance cur v by leader ht + lx 637 i �begin cur h left edge + shift amount (leader box); synch h ; save h dvi h ;cur v cur v + height (leader box); synch v ; save v dvi v ; temp ptr leader box ;outer doing leaders doing leaders ; doing leaders true ;if type (leader box) = vlist node then vlist out else hlist out ;doing leaders outer doing leaders ; dvi v save v ; dvi h save h ; cur h left edge ;cur v save v � height (leader box) + leader ht + lx ;endThis code is used in section 635.638. The hlist out and vlist out procedures are now complete, so we are ready for the ship out routinethat gets them started in the �rst place.procedure ship out (p : pointer); f output the box p glabel done ;var page loc : integer ; f location of the current bop gj; k: 0 : : 9; f indices to �rst ten count registers gs: pool pointer ; f index into str pool gold setting : 0 : : max selector ; f saved selector setting gbegin if tracing output > 0 thenbegin print nl (""); print ln ; print ("Completed box being shipped out");end;if term o�set > max print line � 9 then print lnelse if (term o�set > 0) _ (�le o�set > 0) then print char (" ");print char ("["); j 9;while (count (j) = 0) ^ (j > 0) do decr (j);for k 0 to j dobegin print int (count (k));if k < j then print char (".");end;update terminal ;if tracing output > 0 thenbegin print char ("]"); begin diagnostic ; show box (p); end diagnostic (true);end;h Ship box p out 640 i;if tracing output � 0 then print char ("]");dead cycles 0; update terminal ; f progress report ghFlush the box from memory, showing statistics if requested 639 i;end;

242 PART 32: SHIPPING PAGES OUT TEXGPC x639639. hFlush the box from memory, showing statistics if requested 639 i �stat if tracing stats > 1 thenbegin print nl ("Memory usage before: "); print int (var used); print char ("&");print int (dyn used); print char (";");end;tatsush node list (p);stat if tracing stats > 1 thenbegin print (" after: "); print int (var used); print char ("&"); print int (dyn used);print ("; still untouched: "); print int (hi mem min � lo mem max � 1); print ln ;end;tatsThis code is used in section 638.640. h Ship box p out 640 i �hUpdate the values of max h and max v ; but if the page is too large, goto done 641 i;h Initialize variables as ship out begins 617 i;page loc dvi o�set + dvi ptr ; dvi out (bop);for k 0 to 9 do dvi four (count (k));dvi four (last bop); last bop page loc ; cur v height (p) + v o�set ; temp ptr p;if type (p) = vlist node then vlist out else hlist out ;dvi out (eop); incr (total pages); cur s �1;done :This code is used in section 638.641. Sometimes the user will generate a huge page because other error messages are being ignored. Suchpages are not output to the dvi �le, since they may confuse the printing software.hUpdate the values of max h and max v ; but if the page is too large, goto done 641 i �if (height (p) > max dimen) _ (depth (p) > max dimen) _(height (p) + depth (p) + v o�set > max dimen) _ (width (p) + h o�set > max dimen) thenbegin print err ("Huge page cannot be shipped out");help2 ("The page just created is more than 18 feet tall or")("more than 18 feet wide, so I suspect something went wrong."); error ;if tracing output � 0 thenbegin begin diagnostic ; print nl ("The following box has been deleted:"); show box (p);end diagnostic (true);end;goto done ;end;if height (p) + depth (p) + v o�set > max v then max v height (p) + depth (p) + v o�set ;if width (p) + h o�set > max h then max h width (p) + h o�setThis code is used in section 640.

x642 TEXGPC PART 32: SHIPPING PAGES OUT 243642*. At the end of the program, we must �nish things o� by writing the postamble. If total pages = 0,the DVI �le was never opened. If total pages � 65536, the DVI �le will lie. And if max push � 65536, theuser deserves whatever chaos might ensue.An integer variable k will be declared for use by this routine.hFinish the DVI �le 642* i �while cur s > �1 dobegin if cur s > 0 then dvi out (pop)else begin dvi out (eop); incr (total pages);end;decr (cur s);end;if total pages = 0 then print nl ("No pages of output.")else begin dvi out (post); f beginning of the postamble gdvi four (last bop); last bop dvi o�set + dvi ptr � 5; f post location gdvi four (25400000); dvi four (473628672); f conversion ratio for sp gprepare mag ; dvi four (mag); fmagni�cation factor gdvi four (max v); dvi four (max h);dvi out (max push div 256); dvi out (max push mod 256);dvi out ((total pages div 256)mod 256); dvi out (total pages mod 256);hOutput the font de�nitions for all fonts that were used 643 i;dvi out (post post); dvi four (last bop); dvi out (id byte);k 4 + ((dvi buf size � dvi ptr)mod 4); f the number of 223's gwhile k > 0 dobegin dvi out (223); decr (k);end;hEmpty the last bytes out of dvi buf 599 i;print nl ("Output written on "); slow print (output �le name); print (" ("); print int (total pages);print (" page");if total pages 6= 1 then print char ("s");print (", "); print int (dvi o�set + dvi ptr); print (" bytes)."); u close (dvi �le);f dvi �le is an untyped �le gG endThis code is used in section 1333*.643. hOutput the font de�nitions for all fonts that were used 643 i �while font ptr > font base dobegin if font used [font ptr] then dvi font def (font ptr);decr (font ptr);endThis code is used in section 642*.

244 PART 33: PACKAGING TEXGPC x644644. Packaging. We're essentially done with the parts of TEX that are concerned with the input(get next) and the output (ship out). So it's time to get heavily into the remaining part, which doesthe real work of typesetting.After lists are constructed, TEX wraps them up and puts them into boxes. Two major subroutines aregiven the responsibility for this task: hpack applies to horizontal lists (hlists) and vpack applies to verticallists (vlists). The main duty of hpack and vpack is to compute the dimensions of the resulting boxes, andto adjust the glue if one of those dimensions is pre-speci�ed. The computed sizes normally enclose all of thematerial inside the new box; but some items may stick out if negative glue is used, if the box is overfull, orif a \vbox includes other boxes that have been shifted left.The subroutine call hpack (p; w;m) returns a pointer to an hlist node for a box containing the hlist thatstarts at p. Parameter w speci�es a width; and parameter m is either `exactly ' or `additional '. Thus,hpack (p; w; exactly) produces a box whose width is exactly w, while hpack (p; w; additional) yields a boxwhose width is the natural width plus w. It is convenient to de�ne a macro called `natural ' to cover themost common case, so that we can say hpack (p;natural) to get a box that has the natural width of list p.Similarly, vpack (p; w;m) returns a pointer to a vlist node for a box containing the vlist that starts at p.In this case w represents a height instead of a width; the parameter m is interpreted as in hpack .de�ne exactly = 0 f a box dimension is pre-speci�ed gde�ne additional = 1 f a box dimension is increased from the natural one gde�ne natural � 0; additional f shorthand for parameters to hpack and vpack g645. The parameters to hpack and vpack correspond to TEX's primitives like `\hbox to 300pt', `\hboxspread 10pt'; note that `\hbox' with no dimension following it is equivalent to `\hbox spread 0pt'. Thescan spec subroutine scans such constructions in the user's input, including the mandatory left brace thatfollows them, and it puts the speci�cation onto save stack so that the desired box can later be obtained byexecuting the following code: save ptr save ptr � 2;hpack (p; saved (1); saved (0)):Special care is necessary to ensure that the special save stack codes are placed just below the new groupcode, because scanning can change save stack when \csname appears.procedure scan spec (c : group code ; three codes : boolean); f scans a box speci�cation and left brace glabel found ;var s: integer ; f temporarily saved value gspec code : exactly : : additional ;begin if three codes then s saved (0);if scan keyword ("to") then spec code exactlyelse if scan keyword ("spread") then spec code additionalelse begin spec code additional ; cur val 0; goto found ;end;scan normal dimen ;found : if three codes thenbegin saved (0) s; incr (save ptr);end;saved (0) spec code ; saved (1) cur val ; save ptr save ptr + 2; new save level (c); scan left brace ;end;

x646 TEXGPC PART 33: PACKAGING 245646. To �gure out the glue setting, hpack and vpack determine how much stretchability and shrinkabilityare present, considering all four orders of in�nity. The highest order of in�nity that has a nonzero coe�cientis then used as if no other orders were present.For example, suppose that the given list contains six glue nodes with the respective stretchabilities 3pt,8�ll, 5�l, 6pt, �3�l, �8�ll. Then the total is essentially 2�l; and if a total additional space of 6pt is to beachieved by stretching, the actual amounts of stretch will be 0pt, 0pt, 15pt, 0pt, �9pt, and 0pt, since only`�l' glue will be considered. (The `�ll' glue is therefore not really stretching in�nitely with respect to `�l';nobody would actually want that to happen.)The arrays total stretch and total shrink are used to determine how much glue of each kind is present. Aglobal variable last badness is used to implement \badness.hGlobal variables 13 i +�total stretch ; total shrink : array [glue ord] of scaled ; f glue found by hpack or vpack glast badness : integer ; f badness of the most recently packaged box g647. If the global variable adjust tail is non-null, the hpack routine also removes all occurrences of ins node ,mark node , and adjust node items and appends the resulting material onto the list that ends at locationadjust tail .hGlobal variables 13 i +�adjust tail : pointer ; f tail of adjustment list g648. h Set initial values of key variables 21 i +�adjust tail null ; last badness 0;649. Here now is hpack , which contains few if any surprises.function hpack (p : pointer ; w : scaled ; m : small number): pointer ;label reswitch ; common ending ; exit ;var r: pointer ; f the box node that will be returned gq: pointer ; f trails behind p gh; d; x: scaled ; f height, depth, and natural width gs: scaled ; f shift amount gg: pointer ; f points to a glue speci�cation go: glue ord ; f order of in�nity gf : internal font number ; f the font in a char node gi: four quarters ; f font information about a char node ghd : eight bits ; f height and depth indices for a character gbegin last badness 0; r get node (box node size); type (r) hlist node ;subtype (r) min quarterword ; shift amount (r) 0; q r + list o�set ; link (q) p;h 0; hClear dimensions to zero 650 i;while p 6= null do hExamine node p in the hlist, taking account of its e�ect on the dimensions of thenew box, or moving it to the adjustment list; then advance p to the next node 651 i;if adjust tail 6= null then link (adjust tail) null ;height (r) h; depth (r) d;hDetermine the value of width (r) and the appropriate glue setting; then return or gotocommon ending 657 i;common ending : hFinish issuing a diagnostic message for an overfull or underfull hbox 663 i;exit : hpack r;end;

246 PART 33: PACKAGING TEXGPC x650650. hClear dimensions to zero 650 i �d 0; x 0; total stretch [normal] 0; total shrink [normal] 0; total stretch [�l] 0;total shrink [�l] 0; total stretch [�ll] 0; total shrink [�ll] 0; total stretch [�lll] 0;total shrink [�lll] 0This code is used in sections 649 and 668.651. hExamine node p in the hlist, taking account of its e�ect on the dimensions of the new box, ormoving it to the adjustment list; then advance p to the next node 651 i �begin reswitch : while is char node (p) do h Incorporate character dimensions into the dimensions of thehbox that will contain it, then move to the next node 654 i;if p 6= null thenbegin case type (p) ofhlist node ; vlist node ; rule node ; unset node : h Incorporate box dimensions into the dimensions of thehbox that will contain it 653 i;ins node ;mark node ; adjust node : if adjust tail 6= null thenhTransfer node p to the adjustment list 655 i;whatsit node : h Incorporate a whatsit node into an hbox 1360 i;glue node : h Incorporate glue into the horizontal totals 656 i;kern node ;math node : x x+ width (p);ligature node : hMake node p look like a char node and goto reswitch 652 i;othercases do nothingendcases;p link (p);end;endThis code is used in section 649.652. hMake node p look like a char node and goto reswitch 652 i �begin mem [lig trick] mem [lig char (p)]; link (lig trick) link (p); p lig trick ; goto reswitch ;endThis code is used in sections 622, 651, and 1147.653. The code here implicitly uses the fact that running dimensions are indicated by null ag , which willbe ignored in the calculations because it is a highly negative number.h Incorporate box dimensions into the dimensions of the hbox that will contain it 653 i �begin x x+ width (p);if type (p) � rule node then s 0 else s shift amount (p);if height (p)� s > h then h height (p)� s;if depth (p) + s > d then d depth (p) + s;endThis code is used in section 651.

x654 TEXGPC PART 33: PACKAGING 247654. The following code is part of TEX's inner loop; i.e., adding another character of text to the user'sinput will cause each of these instructions to be exercised one more time.h Incorporate character dimensions into the dimensions of the hbox that will contain it, then move to thenext node 654 i �begin f font (p); i char info (f)(character (p)); hd height depth (i); x x+ char width (f)(i);s char height (f)(hd); if s > h then h s;s char depth (f)(hd); if s > d then d s;p link (p);endThis code is used in section 651.655. Although node q is not necessarily the immediate predecessor of node p, it always points to somenode in the list preceding p. Thus, we can delete nodes by moving q when necessary. The algorithm takeslinear time, and the extra computation does not intrude on the inner loop unless it is necessary to make adeletion.hTransfer node p to the adjustment list 655 i �begin while link (q) 6= p do q link (q);if type (p) = adjust node thenbegin link (adjust tail) adjust ptr (p);while link (adjust tail) 6= null do adjust tail link (adjust tail);p link (p); free node (link (q); small node size);endelse begin link (adjust tail) p; adjust tail p; p link (p);end;link (q) p; p q;endThis code is used in section 651.656. h Incorporate glue into the horizontal totals 656 i �begin g glue ptr (p); x x+ width (g);o stretch order (g); total stretch [o] total stretch [o] + stretch (g); o shrink order (g);total shrink [o] total shrink [o] + shrink (g);if subtype (p) � a leaders thenbegin g leader ptr (p);if height (g) > h then h height (g);if depth (g) > d then d depth (g);end;endThis code is used in section 651.657. When we get to the present part of the program, x is the natural width of the box being packaged.hDetermine the value of width (r) and the appropriate glue setting; then return or gotocommon ending 657 i �if m = additional then w x+ w;width (r) w; x w � x; f now x is the excess to be made up gif x = 0 thenbegin glue sign (r) normal ; glue order (r) normal ; set glue ratio zero (glue set (r)); return;endelse if x > 0 then hDetermine horizontal glue stretch setting, then return or goto common ending 658 ielse hDetermine horizontal glue shrink setting, then return or goto common ending 664 iThis code is used in section 649.

248 PART 33: PACKAGING TEXGPC x658658. hDetermine horizontal glue stretch setting, then return or goto common ending 658 i �begin hDetermine the stretch order 659 i;glue order (r) o; glue sign (r) stretching ;if total stretch [o] 6= 0 then glue set (r) unoat (x=total stretch [o])else begin glue sign (r) normal ; set glue ratio zero (glue set (r)); f there's nothing to stretch gend;if o = normal thenif list ptr (r) 6= null thenhReport an underfull hbox and goto common ending , if this box is su�ciently bad 660 i;return;endThis code is used in section 657.659. hDetermine the stretch order 659 i �if total stretch [�lll] 6= 0 then o �lllelse if total stretch [�ll] 6= 0 then o �llelse if total stretch [�l] 6= 0 then o �lelse o normalThis code is used in sections 658, 673, and 796.660. hReport an underfull hbox and goto common ending , if this box is su�ciently bad 660 i �begin last badness badness (x; total stretch [normal]);if last badness > hbadness thenbegin print ln ;if last badness > 100 then print nl ("Underfull") else print nl ("Loose");print (" \hbox (badness "); print int (last badness); goto common ending ;end;endThis code is used in section 658.661. In order to provide a decent indication of where an overfull or underfull box originated, we use aglobal variable pack begin line that is set nonzero only when hpack is being called by the paragraph builderor the alignment �nishing routine.hGlobal variables 13 i +�pack begin line : integer ; f source �le line where the current paragraph or alignment began; a negativevalue denotes alignment g662. h Set initial values of key variables 21 i +�pack begin line 0;

x663 TEXGPC PART 33: PACKAGING 249663. hFinish issuing a diagnostic message for an overfull or underfull hbox 663 i �if output active then print (") has occurred while \output is active")else begin if pack begin line 6= 0 thenbegin if pack begin line > 0 then print (") in paragraph at lines ")else print (") in alignment at lines ");print int (abs (pack begin line)); print ("--");endelse print (") detected at line ");print int (line);end;print ln ;font in short display null font ; short display (list ptr (r)); print ln ;begin diagnostic ; show box (r); end diagnostic (true)This code is used in section 649.664. hDetermine horizontal glue shrink setting, then return or goto common ending 664 i �begin hDetermine the shrink order 665 i;glue order (r) o; glue sign (r) shrinking ;if total shrink [o] 6= 0 then glue set (r) unoat ((�x)=total shrink [o])else begin glue sign (r) normal ; set glue ratio zero (glue set (r)); f there's nothing to shrink gend;if (total shrink [o] < �x) ^ (o = normal) ^ (list ptr (r) 6= null) thenbegin last badness 1000000; set glue ratio one (glue set (r)); f use the maximum shrinkage ghReport an overfull hbox and goto common ending , if this box is su�ciently bad 666 i;endelse if o = normal thenif list ptr (r) 6= null thenhReport a tight hbox and goto common ending , if this box is su�ciently bad 667 i;return;endThis code is used in section 657.665. hDetermine the shrink order 665 i �if total shrink [�lll] 6= 0 then o �lllelse if total shrink [�ll] 6= 0 then o �llelse if total shrink [�l] 6= 0 then o �lelse o normalThis code is used in sections 664, 676, and 796.666. hReport an overfull hbox and goto common ending , if this box is su�ciently bad 666 i �if (�x� total shrink [normal] > hfuzz) _ (hbadness < 100) thenbegin if (overfull rule > 0) ^ (�x� total shrink [normal] > hfuzz) thenbegin while link (q) 6= null do q link (q);link (q) new rule ; width (link (q)) overfull rule ;end;print ln ; print nl ("Overfull \hbox ("); print scaled (�x� total shrink [normal]);print ("pt too wide"); goto common ending ;endThis code is used in section 664.

250 PART 33: PACKAGING TEXGPC x667667. hReport a tight hbox and goto common ending , if this box is su�ciently bad 667 i �begin last badness badness (�x; total shrink [normal]);if last badness > hbadness thenbegin print ln ; print nl ("Tight \hbox (badness "); print int (last badness); goto common ending ;end;endThis code is used in section 664.668. The vpack subroutine is actually a special case of a slightly more general routine called vpackage ,which has four parameters. The fourth parameter, which is max dimen in the case of vpack , speci�es themaximum depth of the page box that is constructed. The depth is �rst computed by the normal rules; if itexceeds this limit, the reference point is simply moved down until the limiting depth is attained.de�ne vpack (#) � vpackage (#;max dimen) f special case of unconstrained depth gfunction vpackage (p : pointer ; h : scaled ; m : small number ; l : scaled): pointer ;label common ending ; exit ;var r: pointer ; f the box node that will be returned gw; d; x: scaled ; fwidth, depth, and natural height gs: scaled ; f shift amount gg: pointer ; f points to a glue speci�cation go: glue ord ; f order of in�nity gbegin last badness 0; r get node (box node size); type (r) vlist node ;subtype (r) min quarterword ; shift amount (r) 0; list ptr (r) p;w 0; hClear dimensions to zero 650 i;while p 6= null do hExamine node p in the vlist, taking account of its e�ect on the dimensions of thenew box; then advance p to the next node 669 i;width (r) w;if d > l thenbegin x x+ d� l; depth (r) l;endelse depth (r) d;hDetermine the value of height (r) and the appropriate glue setting; then return or gotocommon ending 672 i;common ending : hFinish issuing a diagnostic message for an overfull or underfull vbox 675 i;exit : vpackage r;end;669. hExamine node p in the vlist, taking account of its e�ect on the dimensions of the new box; thenadvance p to the next node 669 i �begin if is char node (p) then confusion ("vpack")else case type (p) ofhlist node ; vlist node ; rule node ; unset node : h Incorporate box dimensions into the dimensions of thevbox that will contain it 670 i;whatsit node : h Incorporate a whatsit node into a vbox 1359 i;glue node : h Incorporate glue into the vertical totals 671 i;kern node : begin x x+ d+ width (p); d 0;end;othercases do nothingendcases;p link (p);endThis code is used in section 668.

x670 TEXGPC PART 33: PACKAGING 251670. h Incorporate box dimensions into the dimensions of the vbox that will contain it 670 i �begin x x+ d+ height (p); d depth (p);if type (p) � rule node then s 0 else s shift amount (p);if width (p) + s > w then w width (p) + s;endThis code is used in section 669.671. h Incorporate glue into the vertical totals 671 i �begin x x+ d; d 0;g glue ptr (p); x x+ width (g);o stretch order (g); total stretch [o] total stretch [o] + stretch (g); o shrink order (g);total shrink [o] total shrink [o] + shrink (g);if subtype (p) � a leaders thenbegin g leader ptr (p);if width (g) > w then w width (g);end;endThis code is used in section 669.672. When we get to the present part of the program, x is the natural height of the box being packaged.hDetermine the value of height (r) and the appropriate glue setting; then return or gotocommon ending 672 i �if m = additional then h x+ h;height (r) h; x h� x; f now x is the excess to be made up gif x = 0 thenbegin glue sign (r) normal ; glue order (r) normal ; set glue ratio zero (glue set (r)); return;endelse if x > 0 then hDetermine vertical glue stretch setting, then return or goto common ending 673 ielse hDetermine vertical glue shrink setting, then return or goto common ending 676 iThis code is used in section 668.673. hDetermine vertical glue stretch setting, then return or goto common ending 673 i �begin hDetermine the stretch order 659 i;glue order (r) o; glue sign (r) stretching ;if total stretch [o] 6= 0 then glue set (r) unoat (x=total stretch [o])else begin glue sign (r) normal ; set glue ratio zero (glue set (r)); f there's nothing to stretch gend;if o = normal thenif list ptr (r) 6= null thenhReport an underfull vbox and goto common ending , if this box is su�ciently bad 674 i;return;endThis code is used in section 672.

252 PART 33: PACKAGING TEXGPC x674674. hReport an underfull vbox and goto common ending , if this box is su�ciently bad 674 i �begin last badness badness (x; total stretch [normal]);if last badness > vbadness thenbegin print ln ;if last badness > 100 then print nl ("Underfull") else print nl ("Loose");print (" \vbox (badness "); print int (last badness); goto common ending ;end;endThis code is used in section 673.675. hFinish issuing a diagnostic message for an overfull or underfull vbox 675 i �if output active then print (") has occurred while \output is active")else begin if pack begin line 6= 0 then f it's actually negative gbegin print (") in alignment at lines "); print int (abs (pack begin line)); print ("--");endelse print (") detected at line ");print int (line); print ln ;end;begin diagnostic ; show box (r); end diagnostic (true)This code is used in section 668.676. hDetermine vertical glue shrink setting, then return or goto common ending 676 i �begin hDetermine the shrink order 665 i;glue order (r) o; glue sign (r) shrinking ;if total shrink [o] 6= 0 then glue set (r) unoat ((�x)=total shrink [o])else begin glue sign (r) normal ; set glue ratio zero (glue set (r)); f there's nothing to shrink gend;if (total shrink [o] < �x) ^ (o = normal) ^ (list ptr (r) 6= null) thenbegin last badness 1000000; set glue ratio one (glue set (r)); f use the maximum shrinkage ghReport an overfull vbox and goto common ending , if this box is su�ciently bad 677 i;endelse if o = normal thenif list ptr (r) 6= null thenhReport a tight vbox and goto common ending , if this box is su�ciently bad 678 i;return;endThis code is used in section 672.677. hReport an overfull vbox and goto common ending , if this box is su�ciently bad 677 i �if (�x� total shrink [normal] > vfuzz) _ (vbadness < 100) thenbegin print ln ; print nl ("Overfull \vbox ("); print scaled (�x� total shrink [normal]);print ("pt too high"); goto common ending ;endThis code is used in section 676.678. hReport a tight vbox and goto common ending , if this box is su�ciently bad 678 i �begin last badness badness (�x; total shrink [normal]);if last badness > vbadness thenbegin print ln ; print nl ("Tight \vbox (badness "); print int (last badness); goto common ending ;end;endThis code is used in section 676.

x679 TEXGPC PART 33: PACKAGING 253679. When a box is being appended to the current vertical list, the baselineskip calculation is handled bythe append to vlist routine.procedure append to vlist (b : pointer);var d: scaled ; f de�ciency of space between baselines gp: pointer ; f a new glue node gbegin if prev depth > ignore depth thenbegin d width (baseline skip)� prev depth � height (b);if d < line skip limit then p new param glue (line skip code)else begin p new skip param (baseline skip code); width (temp ptr) d; f temp ptr = glue ptr (p) gend;link (tail) p; tail p;end;link (tail) b; tail b; prev depth depth (b);end;

254 PART 34: DATA STRUCTURES FOR MATH MODE TEXGPC x680680. Data structures for math mode. When TEX reads a formula that is enclosed between $'s, itconstructs an mlist, which is essentially a tree structure representing that formula. An mlist is a linearsequence of items, but we can regard it as a tree structure because mlists can appear within mlists. Forexample, many of the entries can be subscripted or superscripted, and such \scripts" are mlists in their ownright.An entire formula is parsed into such a tree before any of the actual typesetting is done, because thecurrent style of type is usually not known until the formula has been fully scanned. For example, when theformula `$a+b \over c+d$' is being read, there is no way to tell that `a+b' will be in script size until `\over'has appeared.During the scanning process, each element of the mlist being built is classi�ed as a relation, a binaryoperator, an open parenthesis, etc., or as a construct like `\sqrt' that must be built up. This classi�cationappears in the mlist data structure.After a formula has been fully scanned, the mlist is converted to an hlist so that it can be incorporatedinto the surrounding text. This conversion is controlled by a recursive procedure that decides all of theappropriate styles by a \top-down" process starting at the outermost level and working in towards thesubformulas. The formula is ultimately pasted together using combinations of horizontal and vertical boxes,with glue and penalty nodes inserted as necessary.An mlist is represented internally as a linked list consisting chiey of \noads" (pronounced \no-adds"), todistinguish them from the somewhat similar \nodes" in hlists and vlists. Certain kinds of ordinary nodesare allowed to appear in mlists together with the noads; TEX tells the di�erence by means of the type �eld,since a noad's type is always greater than that of a node. An mlist does not contain character nodes, hlistnodes, vlist nodes, math nodes, ligature nodes, or unset nodes; in particular, each mlist item appears in thevariable-size part of mem , so the type �eld is always present.

x681 TEXGPC PART 34: DATA STRUCTURES FOR MATH MODE 255681. Each noad is four or more words long. The �rst word contains the type and subtype and link �eldsthat are already so familiar to us; the second, third, and fourth words are called the noad's nucleus , subscr ,and supscr �elds.Consider, for example, the simple formula `x^2', which would be parsed into an mlist containing a singleelement called an ord noad . The nucleus of this noad is a representation of `x', the subscr is empty, and thesupscr is a representation of `2'.The nucleus , subscr , and supscr �elds are further broken into sub�elds. If p points to a noad, and if q isone of its principal �elds (e.g., q = subscr (p)), there are several possibilities for the sub�elds, depending onthe math type of q.math type (q) = math char means that fam (q) refers to one of the sixteen font families, and character (q) isthe number of a character within a font of that family, as in a character node.math type (q) = math text char is similar, but the character is unsubscripted and unsuperscripted and it isfollowed immediately by another character from the same font. (This math type setting appears onlybriey during the processing; it is used to suppress unwanted italic corrections.)math type (q) = empty indicates a �eld with no value (the corresponding attribute of noad p is not present).math type (q) = sub box means that info (q) points to a box node (either an hlist node or a vlist node) thatshould be used as the value of the �eld. The shift amount in the subsidiary box node is the amountby which that box will be shifted downward.math type (q) = sub mlist means that info (q) points to an mlist; the mlist must be converted to an hlist inorder to obtain the value of this �eld.In the latter case, we might have info (q) = null . This is not the same as math type (q) = empty ; for example,`$P_{}$' and `P' produce di�erent results (the former will not have the \italic correction" added to thewidth of P , but the \script skip" will be added).The de�nitions of sub�elds given here are evidently wasteful of space, since a halfword is being used forthe math type although only three bits would be needed. However, there are hardly ever many noads presentat once, since they are soon converted to nodes that take up even more space, so we can a�ord to representthem in whatever way simpli�es the programming.de�ne noad size = 4 f number of words in a normal noad gde�ne nucleus (#) � #+ 1 f the nucleus �eld of a noad gde�ne supscr (#) � #+ 2 f the supscr �eld of a noad gde�ne subscr (#) � #+ 3 f the subscr �eld of a noad gde�ne math type � link f a halfword in mem gde�ne fam � font f a quarterword in mem gde�ne math char = 1 fmath type when the attribute is simple gde�ne sub box = 2 fmath type when the attribute is a box gde�ne sub mlist = 3 fmath type when the attribute is a formula gde�ne math text char = 4 fmath type when italic correction is dubious g

256 PART 34: DATA STRUCTURES FOR MATH MODE TEXGPC x682682. Each portion of a formula is classi�ed as Ord, Op, Bin, Rel, Ope, Clo, Pun, or Inn, for purposes ofspacing and line breaking. An ord noad , op noad , bin noad , rel noad , open noad , close noad , punct noad ,or inner noad is used to represent portions of the various types. For example, an `=' sign in a formula leadsto the creation of a rel noad whose nucleus �eld is a representation of an equals sign (usually fam = 0,character = �75). A formula preceded by \mathrel also results in a rel noad . When a rel noad is followedby an op noad , say, and possibly separated by one or more ordinary nodes (not noads), TEX will insert apenalty node (with the current rel penalty) just after the formula that corresponds to the rel noad , unlessthere already was a penalty immediately following; and a \thick space" will be inserted just before theformula that corresponds to the op noad .A noad of type ord noad , op noad , : : : , inner noad usually has a subtype = normal . The only exceptionis that an op noad might have subtype = limits or no limits , if the normal positioning of limits has beenoverridden for this operator.de�ne ord noad = unset node + 3 f type of a noad classi�ed Ord gde�ne op noad = ord noad + 1 f type of a noad classi�ed Op gde�ne bin noad = ord noad + 2 f type of a noad classi�ed Bin gde�ne rel noad = ord noad + 3 f type of a noad classi�ed Rel gde�ne open noad = ord noad + 4 f type of a noad classi�ed Ope gde�ne close noad = ord noad + 5 f type of a noad classi�ed Clo gde�ne punct noad = ord noad + 6 f type of a noad classi�ed Pun gde�ne inner noad = ord noad + 7 f type of a noad classi�ed Inn gde�ne limits = 1 f subtype of op noad whose scripts are to be above, below gde�ne no limits = 2 f subtype of op noad whose scripts are to be normal g

x683 TEXGPC PART 34: DATA STRUCTURES FOR MATH MODE 257683. A radical noad is �ve words long; the �fth word is the left delimiter �eld, which usually represents asquare root sign.A fraction noad is six words long; it has a right delimiter �eld as well as a left delimiter .Delimiter �elds are of type four quarters , and they have four sub�elds called small fam , small char ,large fam , large char . These sub�elds represent variable-size delimiters by giving the \small" and \large"starting characters, as explained in Chapter 17 of The TEXbook.A fraction noad is actually quite di�erent from all other noads. Not only does it have six words, it hasthickness , denominator , and numerator �elds instead of nucleus , subscr , and supscr . The thickness is ascaled value that tells how thick to make a fraction rule; however, the special value default code is used tostand for the default rule thickness of the current size. The numerator and denominator point to mliststhat de�ne a fraction; we always havemath type (numerator) = math type (denominator) = sub mlist :The left delimiter and right delimiter �elds specify delimiters that will be placed at the left and right ofthe fraction. In this way, a fraction noad is able to represent all of TEX's operators \over, \atop, \above,\overwithdelims, \atopwithdelims, and \abovewithdelims.de�ne left delimiter (#) � #+ 4 f �rst delimiter �eld of a noad gde�ne right delimiter (#) � #+ 5 f second delimiter �eld of a fraction noad gde�ne radical noad = inner noad + 1 f type of a noad for square roots gde�ne radical noad size = 5 f number of mem words in a radical noad gde�ne fraction noad = radical noad + 1 f type of a noad for generalized fractions gde�ne fraction noad size = 6 f number of mem words in a fraction noad gde�ne small fam (#) � mem [#]:qqqq :b0 f fam for \small" delimiter gde�ne small char (#) � mem [#]:qqqq :b1 f character for \small" delimiter gde�ne large fam (#) � mem [#]:qqqq :b2 f fam for \large" delimiter gde�ne large char (#) � mem [#]:qqqq :b3 f character for \large" delimiter gde�ne thickness � width f thickness �eld in a fraction noad gde�ne default code � �10000000000 f denotes default rule thickness gde�ne numerator � supscr fnumerator �eld in a fraction noad gde�ne denominator � subscr f denominator �eld in a fraction noad g684. The global variable empty �eld is set up for initialization of empty �elds in new noads. Similarly,null delimiter is for the initialization of delimiter �elds.hGlobal variables 13 i +�empty �eld : two halves ;null delimiter : four quarters ;685. h Set initial values of key variables 21 i +�empty �eld :rh empty ; empty �eld :lh null ;null delimiter :b0 0; null delimiter :b1 min quarterword ;null delimiter :b2 0; null delimiter :b3 min quarterword ;686. The new noad function creates an ord noad that is completely null.function new noad : pointer ;var p: pointer ;begin p get node (noad size); type (p) ord noad ; subtype (p) normal ;mem [nucleus (p)]:hh empty �eld ; mem [subscr (p)]:hh empty �eld ;mem [supscr (p)]:hh empty �eld ; new noad p;end;

258 PART 34: DATA STRUCTURES FOR MATH MODE TEXGPC x687687. A few more kinds of noads will complete the set: An under noad has its nucleus underlined; anover noad has it overlined. An accent noad places an accent over its nucleus; the accent character appearsas fam (accent chr (p)) and character (accent chr (p)). A vcenter noad centers its nucleus vertically withrespect to the axis of the formula; in such noads we always have math type (nucleus (p)) = sub box .And �nally, we have left noad and right noad types, to implement TEX's \left and \right. The nucleusof such noads is replaced by a delimiter �eld; thus, for example, `\left(' produces a left noad such thatdelimiter (p) holds the family and character codes for all left parentheses. A left noad never appears in anmlist except as the �rst element, and a right noad never appears in an mlist except as the last element;furthermore, we either have both a left noad and a right noad , or neither one is present. The subscr andsupscr �elds are always empty in a left noad and a right noad .de�ne under noad = fraction noad + 1 f type of a noad for underlining gde�ne over noad = under noad + 1 f type of a noad for overlining gde�ne accent noad = over noad + 1 f type of a noad for accented subformulas gde�ne accent noad size = 5 f number of mem words in an accent noad gde�ne accent chr (#) � #+ 4 f the accent chr �eld of an accent noad gde�ne vcenter noad = accent noad + 1 f type of a noad for \vcentergde�ne left noad = vcenter noad + 1 f type of a noad for \leftgde�ne right noad = left noad + 1 f type of a noad for \rightgde�ne delimiter � nucleus f delimiter �eld in left and right noads gde�ne scripts allowed (#) � (type (#) � ord noad) ^ (type (#) < left noad)688. Math formulas can also contain instructions like \textstyle that override TEX's normal style rules.A style node is inserted into the data structure to record such instructions; it is three words long, so itis considered a node instead of a noad. The subtype is either display style or text style or script style orscript script style . The second and third words of a style node are not used, but they are present because achoice node is converted to a style node .TEX uses even numbers 0, 2, 4, 6 to encode the basic styles display style , : : : , script script style , andadds 1 to get the \cramped" versions of these styles. This gives a numerical order that is backwards fromthe convention of Appendix G in The TEXbook; i.e., a smaller style has a larger numerical value.de�ne style node = unset node + 1 f type of a style node gde�ne style node size = 3 f number of words in a style node gde�ne display style = 0 f subtype for \displaystylegde�ne text style = 2 f subtype for \textstylegde�ne script style = 4 f subtype for \scriptstylegde�ne script script style = 6 f subtype for \scriptscriptstylegde�ne cramped = 1 f add this to an uncramped style if you want to cramp it gfunction new style (s : small number): pointer ; f create a style node gvar p: pointer ; f the new node gbegin p get node (style node size); type (p) style node ; subtype (p) s; width (p) 0;depth (p) 0; f the width and depth are not used gnew style p;end;

x689 TEXGPC PART 34: DATA STRUCTURES FOR MATH MODE 259689. Finally, the \mathchoice primitive creates a choice node , which has special sub�elds display mlist ,text mlist , script mlist , and script script mlist pointing to the mlists for each style.de�ne choice node = unset node + 2 f type of a choice node gde�ne display mlist (#) � info (#+ 1) fmlist to be used in display style gde�ne text mlist (#) � link (#+ 1) fmlist to be used in text style gde�ne script mlist (#) � info (#+ 2) fmlist to be used in script style gde�ne script script mlist (#) � link (#+ 2) fmlist to be used in scriptscript style gfunction new choice : pointer ; f create a choice node gvar p: pointer ; f the new node gbegin p get node (style node size); type (p) choice node ; subtype (p) 0;f the subtype is not used gdisplay mlist (p) null ; text mlist (p) null ; script mlist (p) null ; script script mlist (p) null ;new choice p;end;690. Let's consider now the previously unwritten part of show node list that displays the things that canonly be present in mlists; this program illustrates how to access the data structures just de�ned.In the context of the following program, p points to a node or noad that should be displayed, and thecurrent string contains the \recursion history" that leads to this point. The recursion history consists of adot for each outer level in which p is subsidiary to some node, or in which p is subsidiary to the nucleus�eld of some noad; the dot is replaced by `_' or `^' or `/' or `\' if p is descended from the subscr or supscror denominator or numerator �elds of noads. For example, the current string would be `.^._/' if p pointsto the ord noad for x in the (ridiculous) formula `$\sqrt{a^{\mathinner{b_{c\over x+y}}}}$'.hCases of show node list that arise in mlists only 690 i �style node : print style (subtype (p));choice node : hDisplay choice node p 695 i;ord noad ; op noad ; bin noad ; rel noad ; open noad ; close noad ; punct noad ;inner noad ; radical noad ; over noad ; under noad ; vcenter noad ; accent noad ; left noad ; right noad :hDisplay normal noad p 696 i;fraction noad : hDisplay fraction noad p 697 i;This code is used in section 183.691. Here are some simple routines used in the display of noads.hDeclare procedures needed for displaying the elements of mlists 691 i �procedure print fam and char (p : pointer); f prints family and character gbegin print esc ("fam"); print int (fam (p)); print char (" "); print ASCII (qo (character (p)));end;procedure print delimiter (p : pointer); f prints a delimiter as 24-bit hex value gvar a: integer ; f accumulator gbegin a small fam (p) � 256 + qo (small char (p));a a � }1000+ large fam (p) � 256 + qo (large char (p));if a < 0 then print int (a) f this should never happen gelse print hex (a);end;See also sections 692 and 694.This code is used in section 179.

260 PART 34: DATA STRUCTURES FOR MATH MODE TEXGPC x692692. The next subroutine will descend to another level of recursion when a subsidiary mlist needs to bedisplayed. The parameter c indicates what character is to become part of the recursion history. An emptymlist is distinguished from a �eld with math type (p) = empty , because these are not equivalent (as explainedabove).hDeclare procedures needed for displaying the elements of mlists 691 i +�procedure show info ; forward ; f show node list (info (temp ptr)) gprocedure print subsidiary data (p : pointer ; c : ASCII code); f display a noad �eld gbegin if cur length � depth threshold thenbegin if math type (p) 6= empty then print (" []");endelse begin append char (c); f include c in the recursion history gtemp ptr p; f prepare for show info if recursion is needed gcase math type (p) ofmath char : begin print ln ; print current string ; print fam and char (p);end;sub box : show info ; f recursive call gsub mlist : if info (p) = null thenbegin print ln ; print current string ; print ("{}");endelse show info ; f recursive call gothercases do nothing f empty gendcases;ush char ; f remove c from the recursion history gend;end;693. The inelegant introduction of show info in the code above seems better than the alternative of usingPascal's strange forward declaration for a procedure with parameters. The Pascal convention about droppingparameters from a post-forward procedure is, frankly, so intolerable to the author of TEX that he wouldrather stoop to communication via a global temporary variable. (A similar stoopidity occurred with respectto hlist out and vlist out above, and it will occur with respect to mlist to hlist below.)procedure show info ; f the reader will kindly forgive this gbegin show node list (info (temp ptr));end;694. hDeclare procedures needed for displaying the elements of mlists 691 i +�procedure print style (c : integer);begin case c div 2 of0: print esc ("displaystyle"); f display style = 0 g1: print esc ("textstyle"); f text style = 2 g2: print esc ("scriptstyle"); f script style = 4 g3: print esc ("scriptscriptstyle"); f script script style = 6 gothercases print ("Unknown style!")endcases;end;

x695 TEXGPC PART 34: DATA STRUCTURES FOR MATH MODE 261695. hDisplay choice node p 695 i �begin print esc ("mathchoice"); append char ("D"); show node list (display mlist (p)); ush char ;append char ("T"); show node list (text mlist (p)); ush char ; append char ("S");show node list (script mlist (p)); ush char ; append char ("s"); show node list (script script mlist (p));ush char ;endThis code is used in section 690.696. hDisplay normal noad p 696 i �begin case type (p) oford noad : print esc("mathord");op noad : print esc("mathop");bin noad : print esc ("mathbin");rel noad : print esc("mathrel");open noad : print esc ("mathopen");close noad : print esc("mathclose");punct noad : print esc ("mathpunct");inner noad : print esc("mathinner");over noad : print esc("overline");under noad : print esc("underline");vcenter noad : print esc("vcenter");radical noad : begin print esc("radical"); print delimiter (left delimiter (p));end;accent noad : begin print esc("accent"); print fam and char (accent chr (p));end;left noad : begin print esc("left"); print delimiter (delimiter (p));end;right noad : begin print esc("right"); print delimiter (delimiter (p));end;end;if subtype (p) 6= normal thenif subtype (p) = limits then print esc("limits")else print esc ("nolimits");if type (p) < left noad then print subsidiary data (nucleus (p); ".");print subsidiary data (supscr (p); "^"); print subsidiary data (subscr (p); "_");endThis code is used in section 690.

262 PART 34: DATA STRUCTURES FOR MATH MODE TEXGPC x697697. hDisplay fraction noad p 697 i �begin print esc ("fraction, thickness ");if thickness (p) = default code then print ("= default")else print scaled (thickness (p));if (small fam (left delimiter (p)) 6= 0)_ (small char (left delimiter (p)) 6= min quarterword) _(large fam (left delimiter (p)) 6= 0) _ (large char (left delimiter (p)) 6= min quarterword) thenbegin print (", left-delimiter "); print delimiter (left delimiter (p));end;if (small fam (right delimiter (p)) 6= 0) _ (small char (right delimiter (p)) 6= min quarterword) _(large fam (right delimiter (p)) 6= 0) _ (large char (right delimiter (p)) 6= min quarterword) thenbegin print (", right-delimiter "); print delimiter (right delimiter (p));end;print subsidiary data (numerator (p); "\"); print subsidiary data (denominator (p); "/");endThis code is used in section 690.698. That which can be displayed can also be destroyed.hCases of ush node list that arise in mlists only 698 i �style node : begin free node (p; style node size); goto done ;end;choice node : begin ush node list (display mlist (p)); ush node list (text mlist (p));ush node list (script mlist (p)); ush node list (script script mlist (p)); free node (p; style node size);goto done ;end;ord noad ; op noad ; bin noad ; rel noad ; open noad ; close noad ; punct noad ; inner noad ; radical noad ;over noad ; under noad ; vcenter noad ; accent noad :begin if math type (nucleus (p)) � sub box then ush node list (info (nucleus (p)));if math type (supscr (p)) � sub box then ush node list (info (supscr (p)));if math type (subscr (p)) � sub box then ush node list (info (subscr (p)));if type (p) = radical noad then free node (p; radical noad size)else if type (p) = accent noad then free node (p; accent noad size)else free node (p;noad size);goto done ;end;left noad ; right noad : begin free node (p;noad size); goto done ;end;fraction noad : begin ush node list (info (numerator (p))); ush node list (info (denominator (p)));free node (p; fraction noad size); goto done ;end;This code is used in section 202.

x699 TEXGPC PART 35: SUBROUTINES FOR MATH MODE 263699. Subroutines for math mode. In order to convert mlists to hlists, i.e., noads to nodes, we needseveral subroutines that are conveniently dealt with now.Let us �rst introduce the macros that make it easy to get at the parameters and other font information. Asize code, which is a multiple of 16, is added to a family number to get an index into the table of internal fontnumbers for each combination of family and size. (Be alert: Size codes get larger as the type gets smaller.)de�ne text size = 0 f size code for the largest size in a family gde�ne script size = 16 f size code for the medium size in a family gde�ne script script size = 32 f size code for the smallest size in a family ghBasic printing procedures 57 i +�procedure print size (s : integer);begin if s = text size then print esc("textfont")else if s = script size then print esc("scriptfont")else print esc ("scriptscriptfont");end;700. Before an mlist is converted to an hlist, TEX makes sure that the fonts in family 2 have enoughparameters to be math-symbol fonts, and that the fonts in family 3 have enough parameters to be math-extension fonts. The math-symbol parameters are referred to by using the following macros, which take asize code as their parameter; for example, num1 (cur size) gives the value of the num1 parameter for thecurrent size.de�ne mathsy end (#) � fam fnt (2 + #)]] .scde�ne mathsy (#) � font info [#+ param base [mathsy endde�ne math x height � mathsy (5) f height of `x' gde�ne math quad � mathsy (6) f 18mugde�ne num1 � mathsy (8) f numerator shift-up in display styles gde�ne num2 � mathsy (9) f numerator shift-up in non-display, non-\atopgde�ne num3 � mathsy (10) f numerator shift-up in non-display \atopgde�ne denom1 � mathsy (11) f denominator shift-down in display styles gde�ne denom2 � mathsy (12) f denominator shift-down in non-display styles gde�ne sup1 � mathsy (13) f superscript shift-up in uncramped display style gde�ne sup2 � mathsy (14) f superscript shift-up in uncramped non-display gde�ne sup3 � mathsy (15) f superscript shift-up in cramped styles gde�ne sub1 � mathsy (16) f subscript shift-down if superscript is absent gde�ne sub2 � mathsy (17) f subscript shift-down if superscript is present gde�ne sup drop � mathsy (18) f superscript baseline below top of large box gde�ne sub drop � mathsy (19) f subscript baseline below bottom of large box gde�ne delim1 � mathsy (20) f size of \atopwithdelims delimiters in display styles gde�ne delim2 � mathsy (21) f size of \atopwithdelims delimiters in non-displays gde�ne axis height � mathsy (22) f height of fraction lines above the baseline gde�ne total mathsy params = 22701. The math-extension parameters have similar macros, but the size code is omitted (since it is alwayscur size when we refer to such parameters).de�ne mathex (#) � font info [#+ param base [fam fnt (3 + cur size)]]:scde�ne default rule thickness � mathex (8) f thickness of \over bars gde�ne big op spacing1 � mathex (9) fminimum clearance above a displayed op gde�ne big op spacing2 � mathex (10) fminimum clearance below a displayed op gde�ne big op spacing3 � mathex (11) fminimum baselineskip above displayed op gde�ne big op spacing4 � mathex (12) fminimum baselineskip below displayed op gde�ne big op spacing5 � mathex (13) f padding above and below displayed limits gde�ne total mathex params = 13

264 PART 35: SUBROUTINES FOR MATH MODE TEXGPC x702702. We also need to compute the change in style between mlists and their subsidiaries. The followingmacros de�ne the subsidiary style for an overlined nucleus (cramped style), for a subscript or a superscript(sub style or sup style), or for a numerator or denominator (num style or denom style).de�ne cramped style (#) � 2 � (# div 2) + cramped f cramp the style gde�ne sub style (#) � 2 � (# div 4) + script style + cramped f smaller and cramped gde�ne sup style (#) � 2 � (# div 4) + script style + (#mod 2) f smaller gde�ne num style (#) � #+ 2� 2 � (# div 6) f smaller unless already script-script gde�ne denom style (#) � 2 � (# div 2) + cramped + 2� 2 � (# div 6) f smaller, cramped g703. When the style changes, the following piece of program computes associated information:h Set up the values of cur size and cur mu , based on cur style 703 i �begin if cur style < script style then cur size text sizeelse cur size 16 � ((cur style � text style) div 2);cur mu x over n (math quad (cur size); 18);endThis code is used in sections 720, 726, 730, 754, 760, and 763.704. Here is a function that returns a pointer to a rule node having a given thickness t. The rule willextend horizontally to the boundary of the vlist that eventually contains it.function fraction rule (t : scaled): pointer ; f construct the bar for a fraction gvar p: pointer ; f the new node gbegin p new rule ; height (p) t; depth (p) 0; fraction rule p;end;705. The overbar function returns a pointer to a vlist box that consists of a given box b, above which hasbeen placed a kern of height k under a fraction rule of thickness t under additional space of height t.function overbar (b : pointer ; k; t : scaled): pointer ;var p; q: pointer ; f nodes being constructed gbegin p new kern (k); link (p) b; q fraction rule (t); link (q) p; p new kern (t); link (p) q;overbar vpack (p;natural);end;

x706 TEXGPC PART 35: SUBROUTINES FOR MATH MODE 265706. The var delimiter function, which �nds or constructs a su�ciently large delimiter, is the mostinteresting of the auxiliary functions that currently concern us. Given a pointer d to a delimiter �eld insome noad, together with a size code s and a vertical distance v, this function returns a pointer to a box thatcontains the smallest variant of d whose height plus depth is v or more. (And if no variant is large enough,it returns the largest available variant.) In particular, this routine will construct arbitrarily large delimitersfrom extensible components, if d leads to such characters.The value returned is a box whose shift amount has been set so that the box is vertically centered withrespect to the axis in the given size. If a built-up symbol is returned, the height of the box before shiftingwill be the height of its topmost component.hDeclare subprocedures for var delimiter 709 ifunction var delimiter (d : pointer ; s : small number ; v : scaled): pointer ;label found ; continue ;var b: pointer ; f the box that will be constructed gf; g: internal font number ; f best-so-far and tentative font codes gc; x; y: quarterword ; f best-so-far and tentative character codes gm;n: integer ; f the number of extensible pieces gu: scaled ; f height-plus-depth of a tentative character gw: scaled ; f largest height-plus-depth so far gq: four quarters ; f character info ghd : eight bits ; f height-depth byte gr: four quarters ; f extensible pieces gz: small number ; f runs through font family members glarge attempt : boolean ; f are we trying the \large" variant? gbegin f null font ; w 0; large attempt false ; z small fam (d); x small char (d);loop begin hLook at the variants of (z; x); set f and c whenever a better character is found; gotofound as soon as a large enough variant is encountered 707 i;if large attempt then goto found ; f there were none large enough glarge attempt true ; z large fam (d); x large char (d);end;found : if f 6= null font then hMake variable b point to a box for (f; c) 710 ielse begin b new null box ; width (b) null delimiter space ;f use this width if no delimiter was found gend;shift amount (b) half (height (b)� depth (b))� axis height (s); var delimiter b;end;707. The search process is complicated slightly by the facts that some of the characters might not bepresent in some of the fonts, and they might not be probed in increasing order of height.hLook at the variants of (z; x); set f and c whenever a better character is found; goto found as soon as alarge enough variant is encountered 707 i �if (z 6= 0) _ (x 6= min quarterword) thenbegin z z + s+ 16;repeat z z � 16; g fam fnt (z);if g 6= null font then hLook at the list of characters starting with x in font g; set f and c whenevera better character is found; goto found as soon as a large enough variant is encountered 708 i;until z < 16;endThis code is used in section 706.

266 PART 35: SUBROUTINES FOR MATH MODE TEXGPC x708708. hLook at the list of characters starting with x in font g; set f and c whenever a better character isfound; goto found as soon as a large enough variant is encountered 708 i �begin y x;if (qo (y) � font bc [g]) ^ (qo (y) � font ec [g]) thenbegin continue : q char info (g)(y);if char exists (q) thenbegin if char tag (q) = ext tag thenbegin f g; c y; goto found ;end;hd height depth (q); u char height (g)(hd) + char depth (g)(hd);if u > w thenbegin f g; c y; w u;if u � v then goto found ;end;if char tag (q) = list tag thenbegin y rem byte (q); goto continue ;end;end;end;endThis code is used in section 707.709. Here is a subroutine that creates a new box, whose list contains a single character, and whose widthincludes the italic correction for that character. The height or depth of the box will be negative, if the heightor depth of the character is negative; thus, this routine may deliver a slightly di�erent result than hpackwould produce.hDeclare subprocedures for var delimiter 709 i �function char box (f : internal font number ; c : quarterword): pointer ;var q: four quarters ; hd : eight bits ; f height depth byte gb; p: pointer ; f the new box and its character node gbegin q char info (f)(c); hd height depth (q); b new null box ;width (b) char width (f)(q) + char italic (f)(q); height (b) char height (f)(hd);depth (b) char depth (f)(hd); p get avail ; character (p) c; font (p) f ; list ptr (b) p;char box b;end;See also sections 711 and 712.This code is used in section 706.710. When the following code is executed, char tag (q) will be equal to ext tag if and only if a built-upsymbol is supposed to be returned.hMake variable b point to a box for (f; c) 710 i �if char tag (q) = ext tag thenhConstruct an extensible character in a new box b, using recipe rem byte (q) and font f 713 ielse b char box (f; c)This code is used in section 706.

x711 TEXGPC PART 35: SUBROUTINES FOR MATH MODE 267711. When we build an extensible character, it's handy to have the following subroutine, which puts agiven character on top of the characters already in box b:hDeclare subprocedures for var delimiter 709 i +�procedure stack into box (b : pointer ; f : internal font number ; c : quarterword);var p: pointer ; f new node placed into b gbegin p char box (f; c); link (p) list ptr (b); list ptr (b) p; height (b) height (p);end;712. Another handy subroutine computes the height plus depth of a given character:hDeclare subprocedures for var delimiter 709 i +�function height plus depth (f : internal font number ; c : quarterword): scaled ;var q: four quarters ; hd : eight bits ; f height depth byte gbegin q char info (f)(c); hd height depth (q);height plus depth char height (f)(hd) + char depth (f)(hd);end;713. hConstruct an extensible character in a new box b, using recipe rem byte (q) and font f 713 i �begin b new null box ; type (b) vlist node ; r font info [exten base [f] + rem byte (q)]:qqqq ;hCompute the minimum suitable height, w, and the corresponding number of extension steps, n; also setwidth (b) 714 i;c ext bot (r);if c 6= min quarterword then stack into box (b; f ; c);c ext rep (r);for m 1 to n do stack into box (b; f ; c);c ext mid (r);if c 6= min quarterword thenbegin stack into box (b; f ; c); c ext rep (r);for m 1 to n do stack into box (b; f ; c);end;c ext top (r);if c 6= min quarterword then stack into box (b; f ; c);depth (b) w � height (b);endThis code is used in section 710.

268 PART 35: SUBROUTINES FOR MATH MODE TEXGPC x714714. The width of an extensible character is the width of the repeatable module. If this module does nothave positive height plus depth, we don't use any copies of it, otherwise we use as few as possible (in groupsof two if there is a middle part).hCompute the minimum suitable height, w, and the corresponding number of extension steps, n; also setwidth (b) 714 i �c ext rep (r); u height plus depth (f; c); w 0; q char info (f)(c);width (b) char width (f)(q) + char italic (f)(q);c ext bot (r); if c 6= min quarterword then w w + height plus depth (f; c);c ext mid (r); if c 6= min quarterword then w w + height plus depth (f; c);c ext top (r); if c 6= min quarterword then w w + height plus depth (f; c);n 0;if u > 0 thenwhile w < v dobegin w w + u; incr (n);if ext mid (r) 6= min quarterword then w w + u;endThis code is used in section 713.715. The next subroutine is much simpler; it is used for numerators and denominators of fractions as wellas for displayed operators and their limits above and below. It takes a given box b and changes it so thatthe new box is centered in a box of width w. The centering is done by putting \hss glue at the left andright of the list inside b, then packaging the new box; thus, the actual box might not really be centered, ifit already contains in�nite glue.The given box might contain a single character whose italic correction has been added to the width of thebox; in this case a compensating kern is inserted.function rebox (b : pointer ; w : scaled): pointer ;var p: pointer ; f temporary register for list manipulation gf : internal font number ; f font in a one-character box gv: scaled ; fwidth of a character without italic correction gbegin if (width (b) 6= w) ^ (list ptr (b) 6= null) thenbegin if type (b) = vlist node then b hpack (b;natural);p list ptr (b);if (is char node (p)) ^ (link (p) = null) thenbegin f font (p); v char width (f)(char info (f)(character (p)));if v 6= width (b) then link (p) new kern (width (b)� v);end;free node (b; box node size); b new glue (ss glue); link (b) p;while link (p) 6= null do p link (p);link (p) new glue (ss glue); rebox hpack (b; w; exactly);endelse begin width (b) w; rebox b;end;end;

x716 TEXGPC PART 35: SUBROUTINES FOR MATH MODE 269716. Here is a subroutine that creates a new glue speci�cation from another one that is expressed in `mu',given the value of the math unit.de�ne mu mult (#) � nx plus y (n; #; xn over d (#; f; �200000))function math glue (g : pointer ; m : scaled): pointer ;var p: pointer ; f the new glue speci�cation gn: integer ; f integer part of m gf : scaled ; f fraction part of m gbegin n x over n (m; �200000); f remainder ;if f < 0 thenbegin decr (n); f f + �200000 ;end;p get node (glue spec size); width (p) mu mult (width (g)); f convert mu to pt gstretch order (p) stretch order (g);if stretch order (p) = normal then stretch (p) mu mult (stretch (g))else stretch (p) stretch (g);shrink order (p) shrink order (g);if shrink order (p) = normal then shrink (p) mu mult (shrink (g))else shrink (p) shrink (g);math glue p;end;717. The math kern subroutine removes mu glue from a kern node, given the value of the math unit.procedure math kern (p : pointer ; m : scaled);var n: integer ; f integer part of m gf : scaled ; f fraction part of m gbegin if subtype (p) = mu glue thenbegin n x over n (m; �200000); f remainder ;if f < 0 thenbegin decr (n); f f + �200000 ;end;width (p) mu mult (width (p)); subtype (p) explicit ;end;end;718. Sometimes it is necessary to destroy an mlist. The following subroutine empties the current list,assuming that abs (mode) = mmode .procedure ush math ;begin ush node list (link (head)); ush node list (incompleat noad); link (head) null ; tail head ;incompleat noad null ;end;

270 PART 36: TYPESETTING MATH FORMULAS TEXGPC x719719. Typesetting math formulas. TEX's most important routine for dealing with formulas is calledmlist to hlist . After a formula has been scanned and represented as an mlist, this routine converts it to anhlist that can be placed into a box or incorporated into the text of a paragraph. There are three implicitparameters, passed in global variables: cur mlist points to the �rst node or noad in the given mlist (andit might be null); cur style is a style code; and mlist penalties is true if penalty nodes for potential linebreaks are to be inserted into the resulting hlist. After mlist to hlist has acted, link (temp head) points tothe translated hlist.Since mlists can be inside mlists, the procedure is recursive. And since this is not part of TEX's innerloop, the program has been written in a manner that stresses compactness over e�ciency.hGlobal variables 13 i +�cur mlist : pointer ; f beginning of mlist to be translated gcur style : small number ; f style code at current place in the list gcur size : small number ; f size code corresponding to cur style gcur mu : scaled ; f the math unit width corresponding to cur size gmlist penalties : boolean ; f should mlist to hlist insert penalties? g720. The recursion in mlist to hlist is due primarily to a subroutine called clean box that puts a givennoad �eld into a box using a given math style; mlist to hlist can call clean box , which can call mlist to hlist .The box returned by clean box is \clean" in the sense that its shift amount is zero.procedure mlist to hlist ; forward ;function clean box (p : pointer ; s : small number): pointer ;label found ;var q: pointer ; f beginning of a list to be boxed gsave style : small number ; f cur style to be restored gx: pointer ; f box to be returned gr: pointer ; f temporary pointer gbegin case math type (p) ofmath char : begin cur mlist new noad ; mem [nucleus (cur mlist)] mem [p];end;sub box : begin q info (p); goto found ;end;sub mlist : cur mlist info (p);othercases begin q new null box ; goto found ;endendcases;save style cur style ; cur style s; mlist penalties false ;mlist to hlist ; q link (temp head); f recursive call gcur style save style ; f restore the style gh Set up the values of cur size and cur mu , based on cur style 703 i;found : if is char node (q) _ (q = null) then x hpack (q;natural)else if (link (q) = null) ^ (type (q) � vlist node) ^ (shift amount (q) = 0) then x qf it's already clean gelse x hpack (q;natural);h Simplify a trivial box 721 i;clean box x;end;

x721 TEXGPC PART 36: TYPESETTING MATH FORMULAS 271721. Here we save memory space in a common case.h Simplify a trivial box 721 i �q list ptr (x);if is char node (q) thenbegin r link (q);if r 6= null thenif link (r) = null thenif :is char node (r) thenif type (r) = kern node then f unneeded italic correction gbegin free node (r; small node size); link (q) null ;end;endThis code is used in section 720.722. It is convenient to have a procedure that converts a math char �eld to an \unpacked" form. Thefetch routine sets cur f , cur c , and cur i to the font code, character code, and character information bytesof a given noad �eld. It also takes care of issuing error messages for nonexistent characters; in such cases,char exists (cur i) will be false after fetch has acted, and the �eld will also have been reset to empty .procedure fetch (a : pointer); f unpack the math char �eld a gbegin cur c character (a); cur f fam fnt (fam (a) + cur size);if cur f = null font then hComplain about an unde�ned family and set cur i null 723 ielse begin if (qo (cur c) � font bc [cur f]) ^ (qo (cur c) � font ec [cur f]) thencur i char info (cur f)(cur c)else cur i null character ;if :(char exists (cur i)) thenbegin char warning (cur f ; qo (cur c)); math type (a) empty ;end;end;end;723. hComplain about an unde�ned family and set cur i null 723 i �begin print err (""); print size (cur size); print char (" "); print int (fam (a));print (" is undefined (character "); print ASCII (qo (cur c)); print char (")");help4 ("Somewhere in the math formula just ended, you used the")("stated character from an undefined font family. For example,")("plain TeX doesn�t allow \it or \sl in subscripts. Proceed,")("and I�ll try to forget that I needed that character."); error ; cur i null character ;math type (a) empty ;endThis code is used in section 722.724. The outputs of fetch are placed in global variables.hGlobal variables 13 i +�cur f : internal font number ; f the font �eld of a math char gcur c : quarterword ; f the character �eld of a math char gcur i : four quarters ; f the char info of a math char , or a lig/kern instruction g

272 PART 36: TYPESETTING MATH FORMULAS TEXGPC x725725. We need to do a lot of di�erent things, so mlist to hlist makes two passes over the given mlist.The �rst pass does most of the processing: It removes \mu" spacing from glue, it recursively evaluates allsubsidiary mlists so that only the top-level mlist remains to be handled, it puts fractions and square rootsand such things into boxes, it attaches subscripts and superscripts, and it computes the overall height anddepth of the top-level mlist so that the size of delimiters for a left noad and a right noad will be known.The hlist resulting from each noad is recorded in that noad's new hlist �eld, an integer �eld that replacesthe nucleus or thickness .The second pass eliminates all noads and inserts the correct glue and penalties between nodes.de�ne new hlist (#) � mem [nucleus (#)]:int f the translation of an mlist g726. Here is the overall plan of mlist to hlist , and the list of its local variables.de�ne done with noad = 80 f go here when a noad has been fully translated gde�ne done with node = 81 f go here when a node has been fully converted gde�ne check dimensions = 82 f go here to update max h and max d gde�ne delete q = 83 f go here to delete q and move to the next node ghDeclare math construction procedures 734 iprocedure mlist to hlist ;label reswitch ; check dimensions ; done with noad ; done with node ; delete q ; done ;var mlist : pointer ; f beginning of the given list gpenalties : boolean ; f should penalty nodes be inserted? gstyle : small number ; f the given style gsave style : small number ; f holds cur style during recursion gq: pointer ; f runs through the mlist gr: pointer ; f the most recent noad preceding q gr type : small number ; f the type of noad r, or op noad if r = null gt: small number ; f the e�ective type of noad q during the second pass gp; x; y; z: pointer ; f temporary registers for list construction gpen : integer ; f a penalty to be inserted gs: small number ; f the size of a noad to be deleted gmax h ;max d : scaled ; fmaximum height and depth of the list translated so far gdelta : scaled ; f o�set between subscript and superscript gbegin mlist cur mlist ; penalties mlist penalties ; style cur style ;f tuck global parameters away as local variables gq mlist ; r null ; r type op noad ; max h 0; max d 0;h Set up the values of cur size and cur mu , based on cur style 703 i;while q 6= null do hProcess node-or-noad q as much as possible in preparation for the second pass ofmlist to hlist , then move to the next item in the mlist 727 i;hConvert a �nal bin noad to an ord noad 729 i;hMake a second pass over the mlist, removing all noads and inserting the proper spacing andpenalties 760 i;end;

x727 TEXGPC PART 36: TYPESETTING MATH FORMULAS 273727. We use the fact that no character nodes appear in an mlist, hence the �eld type (q) is always present.hProcess node-or-noad q as much as possible in preparation for the second pass of mlist to hlist , then moveto the next item in the mlist 727 i �begin hDo �rst-pass processing based on type (q); goto done with noad if a noad has been fullyprocessed, goto check dimensions if it has been translated into new hlist (q), or goto done with nodeif a node has been fully processed 728 i;check dimensions : z hpack (new hlist (q);natural);if height (z) > max h then max h height (z);if depth (z) > max d then max d depth (z);free node (z; box node size);done with noad : r q; r type type (r);done with node : q link (q);endThis code is used in section 726.728. One of the things we must do on the �rst pass is change a bin noad to an ord noad if the bin noadis not in the context of a binary operator. The values of r and r type make this fairly easy.hDo �rst-pass processing based on type (q); goto done with noad if a noad has been fully processed, gotocheck dimensions if it has been translated into new hlist (q), or goto done with node if a node hasbeen fully processed 728 i �reswitch : delta 0;case type (q) ofbin noad : case r type ofbin noad ; op noad ; rel noad ; open noad ; punct noad ; left noad : begin type (q) ord noad ;goto reswitch ;end;othercases do nothingendcases;rel noad ; close noad ; punct noad ; right noad : beginhConvert a �nal bin noad to an ord noad 729 i;if type (q) = right noad then goto done with noad ;end;hCases for noads that can follow a bin noad 733 ihCases for nodes that can appear in an mlist, after which we goto done with node 730 iothercases confusion ("mlist1")endcases;hConvert nucleus (q) to an hlist and attach the sub/superscripts 754 iThis code is used in section 727.729. hConvert a �nal bin noad to an ord noad 729 i �if r type = bin noad then type (r) ord noadThis code is used in sections 726 and 728.

274 PART 36: TYPESETTING MATH FORMULAS TEXGPC x730730. hCases for nodes that can appear in an mlist, after which we goto done with node 730 i �style node : begin cur style subtype (q);h Set up the values of cur size and cur mu , based on cur style 703 i;goto done with node ;end;choice node : hChange this node to a style node followed by the correct choice, then gotodone with node 731 i;ins node ;mark node ; adjust node ;whatsit node ; penalty node ; disc node : goto done with node ;rule node : begin if height (q) > max h then max h height (q);if depth (q) > max d then max d depth (q);goto done with node ;end;glue node : begin hConvert math glue to ordinary glue 732 i;goto done with node ;end;kern node : begin math kern (q; cur mu); goto done with node ;end;This code is used in section 728.731. de�ne choose mlist (#) �begin p #(q); #(q) null ; endhChange this node to a style node followed by the correct choice, then goto done with node 731 i �begin case cur style div 2 of0: choose mlist (display mlist); f display style = 0 g1: choose mlist (text mlist); f text style = 2 g2: choose mlist (script mlist); f script style = 4 g3: choose mlist (script script mlist); f script script style = 6 gend; f there are no other cases gush node list (display mlist (q)); ush node list (text mlist (q)); ush node list (script mlist (q));ush node list (script script mlist (q));type (q) style node ; subtype (q) cur style ; width (q) 0; depth (q) 0;if p 6= null thenbegin z link (q); link (q) p;while link (p) 6= null do p link (p);link (p) z;end;goto done with node ;endThis code is used in section 730.

x732 TEXGPC PART 36: TYPESETTING MATH FORMULAS 275732. Conditional math glue (`\nonscript') results in a glue node pointing to zero glue , with subtype (q) =cond math glue ; in such a case the node following will be eliminated if it is a glue or kern node and if thecurrent size is di�erent from text size . Unconditional math glue (`\muskip') is converted to normal glue bymultiplying the dimensions by cur mu .hConvert math glue to ordinary glue 732 i �if subtype (q) = mu glue thenbegin x glue ptr (q); y math glue (x; cur mu); delete glue ref (x); glue ptr (q) y;subtype (q) normal ;endelse if (cur size 6= text size) ^ (subtype (q) = cond math glue) thenbegin p link (q);if p 6= null thenif (type (p) = glue node) _ (type (p) = kern node) thenbegin link (q) link (p); link (p) null ; ush node list (p);end;endThis code is used in section 730.733. hCases for noads that can follow a bin noad 733 i �left noad : goto done with noad ;fraction noad : begin make fraction (q); goto check dimensions ;end;op noad : begin delta make op (q);if subtype (q) = limits then goto check dimensions ;end;ord noad : make ord (q);open noad ; inner noad : do nothing ;radical noad : make radical (q);over noad : make over (q);under noad : make under (q);accent noad : make math accent (q);vcenter noad : make vcenter (q);This code is used in section 728.734. Most of the actual construction work of mlist to hlist is done by procedures with names likemake fraction , make radical , etc. To illustrate the general setup of such procedures, let's begin with acouple of simple ones.hDeclare math construction procedures 734 i �procedure make over (q : pointer);begin info (nucleus (q)) overbar (clean box (nucleus (q); cramped style (cur style));3 � default rule thickness ; default rule thickness); math type (nucleus (q)) sub box ;end;See also sections 735, 736, 737, 738, 743, 749, 752, 756, and 762.This code is used in section 726.

276 PART 36: TYPESETTING MATH FORMULAS TEXGPC x735735. hDeclare math construction procedures 734 i +�procedure make under (q : pointer);var p; x; y: pointer ; f temporary registers for box construction gdelta : scaled ; f overall height plus depth gbegin x clean box (nucleus (q); cur style); p new kern (3 � default rule thickness); link (x) p;link (p) fraction rule (default rule thickness); y vpack (x;natural);delta height (y) + depth (y) + default rule thickness ; height (y) height (x);depth (y) delta � height (y); info (nucleus (q)) y; math type (nucleus (q)) sub box ;end;736. hDeclare math construction procedures 734 i +�procedure make vcenter (q : pointer);var v: pointer ; f the box that should be centered vertically gdelta : scaled ; f its height plus depth gbegin v info (nucleus (q));if type (v) 6= vlist node then confusion ("vcenter");delta height (v) + depth (v); height (v) axis height (cur size) + half (delta);depth (v) delta � height (v);end;737. According to the rules in the DVI �le speci�cations, we ensure alignment between a square root signand the rule above its nucleus by assuming that the baseline of the square-root symbol is the same as thebottom of the rule. The height of the square-root symbol will be the thickness of the rule, and the depth ofthe square-root symbol should exceed or equal the height-plus-depth of the nucleus plus a certain minimumclearance clr . The symbol will be placed so that the actual clearance is clr plus half the excess.hDeclare math construction procedures 734 i +�procedure make radical (q : pointer);var x; y: pointer ; f temporary registers for box construction gdelta ; clr : scaled ; f dimensions involved in the calculation gbegin x clean box (nucleus (q); cramped style (cur style));if cur style < text style then f display style gclr default rule thickness + (abs (math x height (cur size)) div 4)else begin clr default rule thickness ; clr clr + (abs (clr) div 4);end;y var delimiter (left delimiter (q); cur size ; height (x) + depth (x) + clr + default rule thickness);delta depth (y)� (height (x) + depth (x) + clr);if delta > 0 then clr clr + half (delta); f increase the actual clearance gshift amount (y) �(height (x) + clr); link (y) overbar (x; clr ; height (y));info (nucleus (q)) hpack (y;natural); math type (nucleus (q)) sub box ;end;

x738 TEXGPC PART 36: TYPESETTING MATH FORMULAS 277738. Slants are not considered when placing accents in math mode. The accenter is centered over theaccentee, and the accent width is treated as zero with respect to the size of the �nal box.hDeclare math construction procedures 734 i +�procedure make math accent (q : pointer);label done ; done1 ;var p; x; y: pointer ; f temporary registers for box construction ga: integer ; f address of lig/kern instruction gc: quarterword ; f accent character gf : internal font number ; f its font gi: four quarters ; f its char info gs: scaled ; f amount to skew the accent to the right gh: scaled ; f height of character being accented gdelta : scaled ; f space to remove between accent and accentee gw: scaled ; fwidth of the accentee, not including sub/superscripts gbegin fetch (accent chr (q));if char exists (cur i) thenbegin i cur i ; c cur c ; f cur f ;hCompute the amount of skew 741 i;x clean box (nucleus (q); cramped style (cur style)); w width (x); h height (x);h Switch to a larger accent if available and appropriate 740 i;if h < x height (f) then delta h else delta x height (f);if (math type (supscr (q)) 6= empty) _ (math type (subscr (q)) 6= empty) thenif math type (nucleus (q)) = math char then h Swap the subscript and superscript into box x 742 i;y char box (f; c); shift amount (y) s+ half (w � width (y)); width (y) 0; p new kern (�delta);link (p) x; link (y) p; y vpack (y;natural); width (y) width (x);if height (y) < h then hMake the height of box y equal to h 739 i;info (nucleus (q)) y; math type (nucleus (q)) sub box ;end;end;739. hMake the height of box y equal to h 739 i �begin p new kern (h� height (y)); link (p) list ptr (y); list ptr (y) p; height (y) h;endThis code is used in section 738.740. h Switch to a larger accent if available and appropriate 740 i �loop begin if char tag (i) 6= list tag then goto done ;y rem byte (i); i char info (f)(y);if :char exists (i) then goto done ;if char width (f)(i) > w then goto done ;c y;end;done :This code is used in section 738.

278 PART 36: TYPESETTING MATH FORMULAS TEXGPC x741741. hCompute the amount of skew 741 i �s 0;if math type (nucleus (q)) = math char thenbegin fetch (nucleus (q));if char tag (cur i) = lig tag thenbegin a lig kern start (cur f)(cur i); cur i font info [a]:qqqq ;if skip byte (cur i) > stop ag thenbegin a lig kern restart (cur f)(cur i); cur i font info [a]:qqqq ;end;loop begin if qo (next char (cur i)) = skew char [cur f] thenbegin if op byte (cur i) � kern ag thenif skip byte (cur i) � stop ag then s char kern (cur f)(cur i);goto done1 ;end;if skip byte (cur i) � stop ag then goto done1 ;a a+ qo (skip byte (cur i)) + 1; cur i font info [a]:qqqq ;end;end;end;done1 :This code is used in section 738.742. h Swap the subscript and superscript into box x 742 i �begin ush node list (x); x new noad ; mem [nucleus (x)] mem [nucleus (q)];mem [supscr (x)] mem [supscr (q)]; mem [subscr (x)] mem [subscr (q)];mem [supscr (q)]:hh empty �eld ; mem [subscr (q)]:hh empty �eld ;math type (nucleus (q)) sub mlist ; info (nucleus (q)) x; x clean box (nucleus (q); cur style);delta delta + height (x)� h; h height (x);endThis code is used in section 738.743. The make fraction procedure is a bit di�erent because it sets new hlist (q) directly rather than makinga sub-box.hDeclare math construction procedures 734 i +�procedure make fraction (q : pointer);var p; v; x; y; z: pointer ; f temporary registers for box construction gdelta ; delta1 ; delta2 ; shift up ; shift down ; clr : scaled ; f dimensions for box calculations gbegin if thickness (q) = default code then thickness (q) default rule thickness ;hCreate equal-width boxes x and z for the numerator and denominator, and compute the default amountsshift up and shift down by which they are displaced from the baseline 744 i;if thickness (q) = 0 then hAdjust shift up and shift down for the case of no fraction line 745 ielse hAdjust shift up and shift down for the case of a fraction line 746 i;hConstruct a vlist box for the fraction, according to shift up and shift down 747 i;hPut the fraction into a box with its delimiters, and make new hlist (q) point to it 748 i;end;

x744 TEXGPC PART 36: TYPESETTING MATH FORMULAS 279744. hCreate equal-width boxes x and z for the numerator and denominator, and compute the defaultamounts shift up and shift down by which they are displaced from the baseline 744 i �x clean box (numerator (q);num style (cur style));z clean box (denominator (q); denom style (cur style));if width (x) < width (z) then x rebox (x;width (z))else z rebox (z;width (x));if cur style < text style then f display style gbegin shift up num1 (cur size); shift down denom1 (cur size);endelse begin shift down denom2 (cur size);if thickness (q) 6= 0 then shift up num2 (cur size)else shift up num3 (cur size);endThis code is used in section 743.745. The numerator and denominator must be separated by a certain minimum clearance, called clr inthe following program. The di�erence between clr and the actual clearance is 2delta .hAdjust shift up and shift down for the case of no fraction line 745 i �begin if cur style < text style then clr 7 � default rule thicknesselse clr 3 � default rule thickness ;delta half (clr � ((shift up � depth (x))� (height (z)� shift down)));if delta > 0 thenbegin shift up shift up + delta ; shift down shift down + delta ;end;endThis code is used in section 743.746. In the case of a fraction line, the minimum clearance depends on the actual thickness of the line.hAdjust shift up and shift down for the case of a fraction line 746 i �begin if cur style < text style then clr 3 � thickness (q)else clr thickness (q);delta half (thickness (q)); delta1 clr � ((shift up � depth (x))� (axis height (cur size) + delta));delta2 clr � ((axis height (cur size)� delta)� (height (z)� shift down));if delta1 > 0 then shift up shift up + delta1 ;if delta2 > 0 then shift down shift down + delta2 ;endThis code is used in section 743.747. hConstruct a vlist box for the fraction, according to shift up and shift down 747 i �v new null box ; type (v) vlist node ; height (v) shift up + height (x);depth (v) depth (z) + shift down ; width (v) width (x); f this also equals width (z) gif thickness (q) = 0 thenbegin p new kern ((shift up � depth (x))� (height (z)� shift down)); link (p) z;endelse begin y fraction rule (thickness (q));p new kern ((axis height (cur size)� delta)� (height (z)� shift down));link (y) p; link (p) z;p new kern ((shift up � depth (x))� (axis height (cur size) + delta)); link (p) y;end;link (x) p; list ptr (v) xThis code is used in section 743.

280 PART 36: TYPESETTING MATH FORMULAS TEXGPC x748748. hPut the fraction into a box with its delimiters, and make new hlist (q) point to it 748 i �if cur style < text style then delta delim1 (cur size)else delta delim2 (cur size);x var delimiter (left delimiter (q); cur size ; delta); link (x) v;z var delimiter (right delimiter (q); cur size ; delta); link (v) z;new hlist (q) hpack (x;natural)This code is used in section 743.749. If the nucleus of an op noad is a single character, it is to be centered vertically with respect tothe axis, after �rst being enlarged (via a character list in the font) if we are in display style. The normalconvention for placing displayed limits is to put them above and below the operator in display style.The italic correction is removed from the character if there is a subscript and the limits are not beingdisplayed. The make op routine returns the value that should be used as an o�set between subscript andsuperscript.After make op has acted, subtype (q) will be limits if and only if the limits have been set above and belowthe operator. In that case, new hlist (q) will already contain the desired �nal box.hDeclare math construction procedures 734 i +�function make op (q : pointer): scaled ;var delta : scaled ; f o�set between subscript and superscript gp; v; x; y; z: pointer ; f temporary registers for box construction gc: quarterword ; i: four quarters ; f registers for character examination gshift up ; shift down : scaled ; f dimensions for box calculation gbegin if (subtype (q) = normal) ^ (cur style < text style) then subtype (q) limits ;if math type (nucleus (q)) = math char thenbegin fetch (nucleus (q));if (cur style < text style) ^ (char tag (cur i) = list tag) then fmake it larger gbegin c rem byte (cur i); i char info (cur f)(c);if char exists (i) thenbegin cur c c; cur i i; character (nucleus (q)) c;end;end;delta char italic (cur f)(cur i); x clean box (nucleus (q); cur style);if (math type (subscr (q)) 6= empty) ^ (subtype (q) 6= limits) then width (x) width (x)� delta ;f remove italic correction gshift amount (x) half (height (x)� depth (x))� axis height (cur size); f center vertically gmath type (nucleus (q)) sub box ; info (nucleus (q)) x;endelse delta 0;if subtype (q) = limits then hConstruct a box with limits above and below it, skewed by delta 750 i;make op delta ;end;

x750 TEXGPC PART 36: TYPESETTING MATH FORMULAS 281750. The following program builds a vlist box v for displayed limits. The width of the box is not a�ectedby the fact that the limits may be skewed.hConstruct a box with limits above and below it, skewed by delta 750 i �begin x clean box (supscr (q); sup style (cur style)); y clean box (nucleus (q); cur style);z clean box (subscr (q); sub style (cur style)); v new null box ; type (v) vlist node ;width (v) width (y);if width (x) > width (v) then width (v) width (x);if width (z) > width (v) then width (v) width (z);x rebox (x;width (v)); y rebox (y;width (v)); z rebox (z;width (v));shift amount (x) half (delta); shift amount (z) �shift amount (x); height (v) height (y);depth (v) depth (y);hAttach the limits to y and adjust height (v), depth (v) to account for their presence 751 i;new hlist (q) v;endThis code is used in section 749.751. We use shift up and shift down in the following program for the amount of glue between the displayedoperator y and its limits x and z. The vlist inside box v will consist of x followed by y followed by z, withkern nodes for the spaces between and around them.hAttach the limits to y and adjust height (v), depth (v) to account for their presence 751 i �if math type (supscr (q)) = empty thenbegin free node (x; box node size); list ptr (v) y;endelse begin shift up big op spacing3 � depth (x);if shift up < big op spacing1 then shift up big op spacing1 ;p new kern (shift up); link (p) y; link (x) p;p new kern (big op spacing5); link (p) x; list ptr (v) p;height (v) height (v) + big op spacing5 + height (x) + depth (x) + shift up ;end;if math type (subscr (q)) = empty then free node (z; box node size)else begin shift down big op spacing4 � height (z);if shift down < big op spacing2 then shift down big op spacing2 ;p new kern (shift down); link (y) p; link (p) z;p new kern (big op spacing5); link (z) p;depth (v) depth (v) + big op spacing5 + height (z) + depth (z) + shift down ;endThis code is used in section 750.

282 PART 36: TYPESETTING MATH FORMULAS TEXGPC x752752. A ligature found in a math formula does not create a ligature node , because there is no question ofhyphenation afterwards; the ligature will simply be stored in an ordinary char node , after residing in anord noad .The math type is converted to math text char here if we would not want to apply an italic correction tothe current character unless it belongs to a math font (i.e., a font with space = 0).No boundary characters enter into these ligatures.hDeclare math construction procedures 734 i +�procedure make ord (q : pointer);label restart ; exit ;var a: integer ; f address of lig/kern instruction gp; r: pointer ; f temporary registers for list manipulation gbegin restart :if math type (subscr (q)) = empty thenif math type (supscr (q)) = empty thenif math type (nucleus (q)) = math char thenbegin p link (q);if p 6= null thenif (type (p) � ord noad) ^ (type (p) � punct noad) thenif math type (nucleus (p)) = math char thenif fam (nucleus (p)) = fam (nucleus (q)) thenbegin math type (nucleus (q)) math text char ; fetch (nucleus (q));if char tag (cur i) = lig tag thenbegin a lig kern start (cur f)(cur i); cur c character (nucleus (p));cur i font info [a]:qqqq ;if skip byte (cur i) > stop ag thenbegin a lig kern restart (cur f)(cur i); cur i font info [a]:qqqq ;end;loop begin h If instruction cur i is a kern with cur c , attach the kern after q; or if it isa ligature with cur c , combine noads q and p appropriately; then return if thecursor has moved past a noad, or goto restart 753 i;if skip byte (cur i) � stop ag then return;a a+ qo (skip byte (cur i)) + 1; cur i font info [a]:qqqq ;end;end;end;end;exit : end;

x753 TEXGPC PART 36: TYPESETTING MATH FORMULAS 283753. Note that a ligature between an ord noad and another kind of noad is replaced by an ord noad , whenthe two noads collapse into one. But we could make a parenthesis (say) change shape when it follows certainletters. Presumably a font designer will de�ne such ligatures only when this convention makes sense.h If instruction cur i is a kern with cur c , attach the kern after q; or if it is a ligature with cur c ,combine noads q and p appropriately; then return if the cursor has moved past a noad, or gotorestart 753 i �if next char (cur i) = cur c thenif skip byte (cur i) � stop ag thenif op byte (cur i) � kern ag thenbegin p new kern (char kern (cur f)(cur i)); link (p) link (q); link (q) p; return;endelse begin check interrupt ; f allow a way out of in�nite ligature loop gcase op byte (cur i) ofqi (1); qi (5): character (nucleus (q)) rem byte (cur i); f =:|, =:|>gqi (2); qi (6): character (nucleus (p)) rem byte (cur i); f |=:, |=:>gqi (3); qi (7); qi (11): begin r new noad ; f |=:|, |=:|>, |=:|>>gcharacter (nucleus (r)) rem byte (cur i); fam (nucleus (r)) fam (nucleus (q));link (q) r; link (r) p;if op byte (cur i) < qi (11) then math type (nucleus (r)) math charelse math type (nucleus (r)) math text char ; f prevent combination gend;othercases begin link (q) link (p); character (nucleus (q)) rem byte (cur i); f =:gmem [subscr (q)] mem [subscr (p)]; mem [supscr (q)] mem [supscr (p)];free node (p;noad size);endendcases;if op byte (cur i) > qi (3) then return;math type (nucleus (q)) math char ; goto restart ;endThis code is used in section 752.

284 PART 36: TYPESETTING MATH FORMULAS TEXGPC x754754. When we get to the following part of the program, we have \fallen through" from cases that did notlead to check dimensions or done with noad or done with node . Thus, q points to a noad whose nucleusmay need to be converted to an hlist, and whose subscripts and superscripts need to be appended if theyare present.If nucleus (q) is not a math char , the variable delta is the amount by which a superscript should be movedright with respect to a subscript when both are present.hConvert nucleus (q) to an hlist and attach the sub/superscripts 754 i �case math type (nucleus (q)) ofmath char ;math text char : hCreate a character node p for nucleus (q), possibly followed by a kern nodefor the italic correction, and set delta to the italic correction if a subscript is present 755 i;empty : p null ;sub box : p info (nucleus (q));sub mlist : begin cur mlist info (nucleus (q)); save style cur style ; mlist penalties false ;mlist to hlist ; f recursive call gcur style save style ; h Set up the values of cur size and cur mu , based on cur style 703 i;p hpack (link (temp head);natural);end;othercases confusion ("mlist2")endcases;new hlist (q) p;if (math type (subscr (q)) = empty) ^ (math type (supscr (q)) = empty) then goto check dimensions ;make scripts (q; delta)This code is used in section 728.755. hCreate a character node p for nucleus (q), possibly followed by a kern node for the italic correction,and set delta to the italic correction if a subscript is present 755 i �begin fetch (nucleus (q));if char exists (cur i) thenbegin delta char italic (cur f)(cur i); p new character (cur f ; qo (cur c));if (math type (nucleus (q)) = math text char) ^ (space (cur f) 6= 0) then delta 0;f no italic correction in mid-word of text font gif (math type (subscr (q)) = empty) ^ (delta 6= 0) thenbegin link (p) new kern (delta); delta 0;end;endelse p null ;endThis code is used in section 754.

x756 TEXGPC PART 36: TYPESETTING MATH FORMULAS 285756. The purpose of make scripts (q; delta) is to attach the subscript and/or superscript of noad q to thelist that starts at new hlist (q), given that subscript and superscript aren't both empty. The superscript willappear to the right of the subscript by a given distance delta .We set shift down and shift up to the minimum amounts to shift the baseline of subscripts and superscriptsbased on the given nucleus.hDeclare math construction procedures 734 i +�procedure make scripts (q : pointer ; delta : scaled);var p; x; y; z: pointer ; f temporary registers for box construction gshift up ; shift down ; clr : scaled ; f dimensions in the calculation gt: small number ; f subsidiary size code gbegin p new hlist (q);if is char node (p) thenbegin shift up 0; shift down 0;endelse begin z hpack (p;natural);if cur style < script style then t script size else t script script size ;shift up height (z)� sup drop (t); shift down depth (z) + sub drop (t); free node (z; box node size);end;if math type (supscr (q)) = empty then hConstruct a subscript box x when there is no superscript 757 ielse begin hConstruct a superscript box x 758 i;if math type (subscr (q)) = empty then shift amount (x) �shift upelse hConstruct a sub/superscript combination box x, with the superscript o�set by delta 759 i;end;if new hlist (q) = null then new hlist (q) xelse begin p new hlist (q);while link (p) 6= null do p link (p);link (p) x;end;end;757. When there is a subscript without a superscript, the top of the subscript should not exceed thebaseline plus four-�fths of the x-height.hConstruct a subscript box x when there is no superscript 757 i �begin x clean box (subscr (q); sub style (cur style)); width (x) width (x) + script space ;if shift down < sub1 (cur size) then shift down sub1 (cur size);clr height (x)� (abs (math x height (cur size) � 4) div 5);if shift down < clr then shift down clr ;shift amount (x) shift down ;endThis code is used in section 756.

286 PART 36: TYPESETTING MATH FORMULAS TEXGPC x758758. The bottom of a superscript should never descend below the baseline plus one-fourth of the x-height.hConstruct a superscript box x 758 i �begin x clean box (supscr (q); sup style (cur style)); width (x) width (x) + script space ;if odd (cur style) then clr sup3 (cur size)else if cur style < text style then clr sup1 (cur size)else clr sup2 (cur size);if shift up < clr then shift up clr ;clr depth (x) + (abs (math x height (cur size)) div 4);if shift up < clr then shift up clr ;endThis code is used in section 756.759. When both subscript and superscript are present, the subscript must be separated from the super-script by at least four times default rule thickness . If this condition would be violated, the subscript movesdown, after which both subscript and superscript move up so that the bottom of the superscript is at leastas high as the baseline plus four-�fths of the x-height.hConstruct a sub/superscript combination box x, with the superscript o�set by delta 759 i �begin y clean box (subscr (q); sub style (cur style)); width (y) width (y) + script space ;if shift down < sub2 (cur size) then shift down sub2 (cur size);clr 4 � default rule thickness � ((shift up � depth (x))� (height (y)� shift down));if clr > 0 thenbegin shift down shift down + clr ;clr (abs (math x height (cur size) � 4) div 5)� (shift up � depth (x));if clr > 0 thenbegin shift up shift up + clr ; shift down shift down � clr ;end;end;shift amount (x) delta ; f superscript is delta to the right of the subscript gp new kern ((shift up � depth (x))� (height (y)� shift down)); link (x) p; link (p) y;x vpack (x;natural); shift amount (x) shift down ;endThis code is used in section 756.760. We have now tied up all the loose ends of the �rst pass of mlist to hlist . The second pass simply goesthrough and hooks everything together with the proper glue and penalties. It also handles the left noad andright noad that might be present, since max h and max d are now known. Variable p points to a node atthe current end of the �nal hlist.hMake a second pass over the mlist, removing all noads and inserting the proper spacing and penalties 760 i �p temp head ; link (p) null ; q mlist ; r type 0; cur style style ;h Set up the values of cur size and cur mu , based on cur style 703 i;while q 6= null dobegin h If node q is a style node, change the style and goto delete q ; otherwise if it is not a noad, putit into the hlist, advance q, and goto done ; otherwise set s to the size of noad q, set t to theassociated type (ord noad : : inner noad), and set pen to the associated penalty 761 i;hAppend inter-element spacing based on r type and t 766 i;hAppend any new hlist entries for q, and any appropriate penalties 767 i;r type t;delete q : r q; q link (q); free node (r; s);done : endThis code is used in section 726.

x761 TEXGPC PART 36: TYPESETTING MATH FORMULAS 287761. Just before doing the big case switch in the second pass, the program sets up default values so thatmost of the branches are short.h If node q is a style node, change the style and goto delete q ; otherwise if it is not a noad, put it into thehlist, advance q, and goto done ; otherwise set s to the size of noad q, set t to the associated type(ord noad : : inner noad), and set pen to the associated penalty 761 i �t ord noad ; s noad size ; pen inf penalty ;case type (q) ofop noad ; open noad ; close noad ; punct noad ; inner noad : t type (q);bin noad : begin t bin noad ; pen bin op penalty ;end;rel noad : begin t rel noad ; pen rel penalty ;end;ord noad ; vcenter noad ; over noad ; under noad : do nothing ;radical noad : s radical noad size ;accent noad : s accent noad size ;fraction noad : begin t inner noad ; s fraction noad size ;end;left noad ; right noad : t make left right (q; style ;max d ;max h);style node : hChange the current style and goto delete q 763 i;whatsit node ; penalty node ; rule node ; disc node ; adjust node ; ins node ;mark node ; glue node ; kern node :begin link (p) q; p q; q link (q); link (p) null ; goto done ;end;othercases confusion ("mlist3")endcasesThis code is used in section 760.762. The make left right function constructs a left or right delimiter of the required size and returns thevalue open noad or close noad . The right noad and left noad will both be based on the original style , sothey will have consistent sizes.We use the fact that right noad � left noad = close noad � open noad .hDeclare math construction procedures 734 i +�function make left right (q : pointer ; style : small number ; max d ;max h : scaled): small number ;var delta ; delta1 ; delta2 : scaled ; f dimensions used in the calculation gbegin if style < script style then cur size text sizeelse cur size 16 � ((style � text style) div 2);delta2 max d + axis height (cur size); delta1 max h +max d � delta2 ;if delta2 > delta1 then delta1 delta2 ; f delta1 is max distance from axis gdelta (delta1 div 500) � delimiter factor ; delta2 delta1 + delta1 � delimiter shortfall ;if delta < delta2 then delta delta2 ;new hlist (q) var delimiter (delimiter (q); cur size ; delta);make left right type (q)� (left noad � open noad); f open noad or close noad gend;763. hChange the current style and goto delete q 763 i �begin cur style subtype (q); s style node size ;h Set up the values of cur size and cur mu , based on cur style 703 i;goto delete q ;endThis code is used in section 761.

288 PART 36: TYPESETTING MATH FORMULAS TEXGPC x764764. The inter-element spacing in math formulas depends on a 8� 8 table that TEX preloads as a 64-digitstring. The elements of this string have the following signi�cance:0 means no space;1 means a conditional thin space (\nonscript\mskip\thinmuskip);2 means a thin space (\mskip\thinmuskip);3 means a conditional medium space (\nonscript\mskip\medmuskip);4 means a conditional thick space (\nonscript\mskip\thickmuskip);* means an impossible case.This is all pretty cryptic, but The TEXbook explains what is supposed to happen, and the string makes ithappen.A global variable magic o�set is computed so that if a and b are in the range ord noad : : inner noad ,then str pool [a � 8 + b+magic o�set] is the digit for spacing between noad types a and b.If Pascal had provided a good way to preload constant arrays, this part of the program would not havebeen so strange.de�ne math spacing ="0234000122*4000133**3**344*0400400*000000234000111*1111112341011"hGlobal variables 13 i +�magic o�set : integer ; f used to �nd inter-element spacing g765. hCompute the magic o�set 765 i �magic o�set str start [math spacing]� 9 � ord noadThis code is used in section 1337.766. hAppend inter-element spacing based on r type and t 766 i �if r type > 0 then f not the �rst noad gbegin case so(str pool [r type � 8 + t+magic o�set]) of"0": x 0;"1": if cur style < script style then x thin mu skip code else x 0;"2": x thin mu skip code ;"3": if cur style < script style then x med mu skip code else x 0;"4": if cur style < script style then x thick mu skip code else x 0;othercases confusion ("mlist4")endcases;if x 6= 0 thenbegin y math glue (glue par (x); cur mu); z new glue (y); glue ref count (y) null ;link (p) z; p z;subtype (z) x+ 1; f store a symbolic subtype gend;endThis code is used in section 760.

x767 TEXGPC PART 36: TYPESETTING MATH FORMULAS 289767. We insert a penalty node after the hlist entries of noad q if pen is not an \in�nite" penalty, and ifthe node immediately following q is not a penalty node or a rel noad or absent entirely.hAppend any new hlist entries for q, and any appropriate penalties 767 i �if new hlist (q) 6= null thenbegin link (p) new hlist (q);repeat p link (p);until link (p) = null ;end;if penalties thenif link (q) 6= null thenif pen < inf penalty thenbegin r type type (link (q));if r type 6= penalty node thenif r type 6= rel noad thenbegin z new penalty (pen); link (p) z; p z;end;endThis code is used in section 760.

290 PART 37: ALIGNMENT TEXGPC x768768. Alignment. It's sort of a miracle whenever \halign and \valign work, because they cut acrossso many of the control structures of TEX.Therefore the present page is probably not the best place for a beginner to start reading this program; itis better to master everything else �rst.Let us focus our thoughts on an example of what the input might be, in order to get some idea abouthow the alignment miracle happens. The example doesn't do anything useful, but it is su�ciently generalto indicate all of the special cases that must be dealt with; please do not be disturbed by its apparentcomplexity and meaninglessness.\tabskip 2pt plus 3pt\halign to 300pt{u1#v1&\tabskip 1pt plus 1fil u2#v2&u3#v3\cra1&\omit a2&\vrule\cr\noalign{\vskip 3pt}b1\span b2\cr\omit&c2\span\omit\cr}Here's what happens:(0) When `\halign to 300pt{' is scanned, the scan spec routine places the 300pt dimension onto thesave stack , and an align group code is placed above it. This will make it possible to complete the alignmentwhen the matching `}' is found.(1) The preamble is scanned next. Macros in the preamble are not expanded, except as part of a tabskipspeci�cation. For example, if u2 had been a macro in the preamble above, it would have been expanded,since TEX must look for `minus...' as part of the tabskip glue. A \preamble list" is constructed based onthe user's preamble; in our case it contains the following seven items:\glue 2pt plus 3pt (the tabskip preceding column 1)\alignrecord, width �1 (preamble info for column 1)\glue 2pt plus 3pt (the tabskip between columns 1 and 2)\alignrecord, width �1 (preamble info for column 2)\glue 1pt plus 1fil (the tabskip between columns 2 and 3)\alignrecord, width �1 (preamble info for column 3)\glue 1pt plus 1fil (the tabskip following column 3)These \alignrecord" entries have the same size as an unset node , since they will later be converted into suchnodes. However, at the moment they have no type or subtype �elds; they have info �elds instead, and theseinfo �elds are initially set to the value end span , for reasons explained below. Furthermore, the alignrecordnodes have no height or depth �elds; these are renamed u part and v part , and they point to token lists forthe templates of the alignment. For example, the u part �eld in the �rst alignrecord points to the token list`u1', i.e., the template preceding the `#' for column 1.(2) TEX now looks at what follows the \cr that ended the preamble. It is not `\noalign' or `\omit', sothis input is put back to be read again, and the template `u1' is fed to the scanner. Just before reading `u1',TEX goes into restricted horizontal mode. Just after reading `u1', TEX will see `a1', and then (when the & issensed) TEX will see `v1'. Then TEX scans an endv token, indicating the end of a column. At this point anunset node is created, containing the contents of the current hlist (i.e., `u1a1v1'). The natural width of thisunset node replaces the width �eld of the alignrecord for column 1; in general, the alignrecords will recordthe maximum natural width that has occurred so far in a given column.(3) Since `\omit' follows the `&', the templates for column 2 are now bypassed. Again TEX goes intorestricted horizontal mode and makes an unset node from the resulting hlist; but this time the hlist containssimply `a2'. The natural width of the new unset box is remembered in the width �eld of the alignrecord forcolumn 2.(4) A third unset node is created for column 3, using essentially the mechanism that worked for column 1;this unset box contains `u3\vrule v3'. The vertical rule in this case has running dimensions that will later

x768 TEXGPC PART 37: ALIGNMENT 291extend to the height and depth of the whole �rst row, since each unset node in a row will eventually inheritthe height and depth of its enclosing box.(5) The �rst row has now ended; it is made into a single unset box comprising the following seven items:\glue 2pt plus 3pt\unsetbox for 1 column: u1a1v1\glue 2pt plus 3pt\unsetbox for 1 column: a2\glue 1pt plus 1fil\unsetbox for 1 column: u3\vrule v3\glue 1pt plus 1filThe width of this unset row is unimportant, but it has the correct height and depth, so the correct baselineskipglue will be computed as the row is inserted into a vertical list.(6) Since `\noalign' follows the current \cr, TEX appends additional material (in this case \vskip 3pt)to the vertical list. While processing this material, TEX will be in internal vertical mode, and no align groupwill be on save stack .(7) The next row produces an unset box that looks like this:\glue 2pt plus 3pt\unsetbox for 2 columns: u1b1v1u2b2v2\glue 1pt plus 1fil\unsetbox for 1 column: (empty)\glue 1pt plus 1filThe natural width of the unset box that spans columns 1 and 2 is stored in a \span node," which we willexplain later; the info �eld of the alignrecord for column 1 now points to the new span node, and the infoof the span node points to end span .(8) The �nal row produces the unset box\glue 2pt plus 3pt\unsetbox for 1 column: (empty)\glue 2pt plus 3pt\unsetbox for 2 columns: u2c2v2\glue 1pt plus 1filA new span node is attached to the alignrecord for column 2.(9) The last step is to compute the true column widths and to change all the unset boxes to hboxes,appending the whole works to the vertical list that encloses the \halign. The rules for deciding on the �nalwidths of each unset column box will be explained below.Note that as \halign is being processed, we fearlessly give up control to the rest of TEX. At critical junctures,an alignment routine is called upon to step in and do some little action, but most of the time these routinesjust lurk in the background. It's something like post-hypnotic suggestion.769. We have mentioned that alignrecords contain no height or depth �elds. Their glue sign and glue orderare pre-empted as well, since it is necessary to store information about what to do when a template ends.This information is called the extra info �eld.de�ne u part (#) � mem [#+ height o�set]:int f pointer to huji token list gde�ne v part (#) � mem [#+ depth o�set]:int f pointer to hvji token list gde�ne extra info (#) � info (#+ list o�set) f info to remember during template g

292 PART 37: ALIGNMENT TEXGPC x770770. Alignments can occur within alignments, so a small stack is used to access the alignrecord information.At each level we have a preamble pointer, indicating the beginning of the preamble list; a cur align pointer,indicating the current position in the preamble list; a cur span pointer, indicating the value of cur align atthe beginning of a sequence of spanned columns; a cur loop pointer, indicating the tabskip glue before analignrecord that should be copied next if the current list is extended; and the align state variable, whichindicates the nesting of braces so that \cr and \span and tab marks are properly intercepted. There also arepointers cur head and cur tail to the head and tail of a list of adjustments being moved out from horizontalmode to vertical mode.The current values of these seven quantities appear in global variables; when they have to be pushed down,they are stored in 5-word nodes, and align ptr points to the topmost such node.de�ne preamble � link (align head) f the current preamble list gde�ne align stack node size = 5 f number of mem words to save alignment states ghGlobal variables 13 i +�cur align : pointer ; f current position in preamble list gcur span : pointer ; f start of currently spanned columns in preamble list gcur loop : pointer ; f place to copy when extending a periodic preamble galign ptr : pointer ; fmost recently pushed-down alignment stack node gcur head ; cur tail : pointer ; f adjustment list pointers g771. The align state and preamble variables are initialized elsewhere.h Set initial values of key variables 21 i +�align ptr null ; cur align null ; cur span null ; cur loop null ; cur head null ;cur tail null ;772. Alignment stack maintenance is handled by a pair of trivial routines called push alignment andpop alignment .procedure push alignment ;var p: pointer ; f the new alignment stack node gbegin p get node (align stack node size); link (p) align ptr ; info (p) cur align ;llink (p) preamble ; rlink (p) cur span ; mem [p+ 2]:int cur loop ; mem [p+ 3]:int align state ;info (p+ 4) cur head ; link (p+ 4) cur tail ; align ptr p; cur head get avail ;end;procedure pop alignment ;var p: pointer ; f the top alignment stack node gbegin free avail (cur head); p align ptr ; cur tail link (p+ 4); cur head info (p+ 4);align state mem [p+ 3]:int ; cur loop mem [p+ 2]:int ; cur span rlink (p); preamble llink (p);cur align info (p); align ptr link (p); free node (p; align stack node size);end;773. TEX has eight procedures that govern alignments: init align and �n align are used at the verybeginning and the very end; init row and �n row are used at the beginning and end of individual rows;init span is used at the beginning of a sequence of spanned columns (possibly involving only one column);init col and �n col are used at the beginning and end of individual columns; and align peek is used after\cr to see whether the next item is \noalign.We shall consider these routines in the order they are �rst used during the course of a complete \halign,namely init align , align peek , init row , init span , init col , �n col , �n row , �n align .

x774 TEXGPC PART 37: ALIGNMENT 293774. When \halign or \valign has been scanned in an appropriate mode, TEX calls init align , whosetask is to get everything o� to a good start. This mostly involves scanning the preamble and putting itsinformation into the preamble list.hDeclare the procedure called get preamble token 782 iprocedure align peek ; forward ;procedure normal paragraph ; forward ;procedure init align ;label done ; done1 ; done2 ; continue ;var save cs ptr : pointer ; fwarning index value for error messages gp: pointer ; f for short-term temporary use gbegin save cs ptr cur cs ; f \halign or \valign, usually gpush alignment ; align state �1000000; f enter a new alignment level ghCheck for improper alignment in displayed math 776 i;push nest ; f enter a new semantic level ghChange current mode to �vmode for \halign, �hmode for \valign 775 i;scan spec(align group ; false);h Scan the preamble and record it in the preamble list 777 i;new save level (align group);if every cr 6= null then begin token list (every cr ; every cr text);align peek ; f look for \noalign or \omitgend;775. In vertical modes, prev depth already has the correct value. But if we are in mmode (displayedformula mode), we reach out to the enclosing vertical mode for the prev depth value that produces thecorrect baseline calculations.hChange current mode to �vmode for \halign, �hmode for \valign 775 i �if mode = mmode thenbegin mode �vmode ; prev depth nest [nest ptr � 2]:aux �eld :sc ;endelse if mode > 0 then negate (mode)This code is used in section 774.776. When \halign is used as a displayed formula, there should be no other pieces of mlists present.hCheck for improper alignment in displayed math 776 i �if (mode = mmode) ^ ((tail 6= head) _ (incompleat noad 6= null)) thenbegin print err ("Improper "); print esc("halign"); print (" inside $$�s");help3 ("Displays can use special alignments (like \eqalignno)")("only if nothing but the alignment itself is between $$�s.")("So I�ve deleted the formulas that preceded this alignment."); error ; ush math ;endThis code is used in section 774.

294 PART 37: ALIGNMENT TEXGPC x777777. h Scan the preamble and record it in the preamble list 777 i �preamble null ; cur align align head ; cur loop null ; scanner status aligning ;warning index save cs ptr ; align state �1000000; f at this point, cur cmd = left brace gloop begin hAppend the current tabskip glue to the preamble list 778 i;if cur cmd = car ret then goto done ; f \cr ends the preamble gh Scan preamble text until cur cmd is tab mark or car ret , looking for changes in the tabskip glue;append an alignrecord to the preamble list 779 i;end;done : scanner status normalThis code is used in section 774.778. hAppend the current tabskip glue to the preamble list 778 i �link (cur align) new param glue (tab skip code); cur align link (cur align)This code is used in section 777.779. h Scan preamble text until cur cmd is tab mark or car ret , looking for changes in the tabskip glue;append an alignrecord to the preamble list 779 i �h Scan the template huji, putting the resulting token list in hold head 783 i;link (cur align) new null box ; cur align link (cur align); f a new alignrecord ginfo (cur align) end span ; width (cur align) null ag ; u part (cur align) link (hold head);h Scan the template hvji, putting the resulting token list in hold head 784 i;v part (cur align) link (hold head)This code is used in section 777.780. We enter `\span' into eqtb with tab mark as its command code, and with span code as the commandmodi�er. This makes TEX interpret it essentially the same as an alignment delimiter like `&', yet it isrecognizably di�erent when we need to distinguish it from a normal delimiter. It also turns out to be usefulto give a special cr code to `\cr', and an even larger cr cr code to `\crcr'.The end of a template is represented by two \frozen" control sequences called \endtemplate. The �rsthas the command code end template , which is > outer call , so it will not easily disappear in the presence oferrors. The get x token routine converts the �rst into the second, which has endv as its command code.de�ne span code = 256 f distinct from any character gde�ne cr code = 257 f distinct from span code and from any character gde�ne cr cr code = cr code + 1 f this distinguishes \crcr from \cr gde�ne end template token � cs token ag + frozen end templatehPut each of TEX's primitives into the hash table 226 i +�primitive ("span"; tab mark ; span code);primitive ("cr"; car ret ; cr code); text (frozen cr) "cr"; eqtb [frozen cr] eqtb [cur val];primitive ("crcr"; car ret ; cr cr code); text (frozen end template) "endtemplate";text (frozen endv) "endtemplate"; eq type (frozen endv) endv ; equiv (frozen endv) null list ;eq level (frozen endv) level one ;eqtb [frozen end template] eqtb [frozen endv]; eq type (frozen end template) end template ;781. hCases of print cmd chr for symbolic printing of primitives 227 i +�tab mark : if chr code = span code then print esc("span")else chr cmd ("alignment tab character ");car ret : if chr code = cr code then print esc("cr")else print esc ("crcr");

x782 TEXGPC PART 37: ALIGNMENT 295782. The preamble is copied directly, except that \tabskip causes a change to the tabskip glue, therebypossibly expanding macros that immediately follow it. An appearance of \span also causes such an expansion.Note that if the preamble contains `\global\tabskip', the `\global' token survives in the preamble andthe `\tabskip' de�nes new tabskip glue (locally).hDeclare the procedure called get preamble token 782 i �procedure get preamble token ;label restart ;begin restart : get token ;while (cur chr = span code) ^ (cur cmd = tab mark) dobegin get token ; f this token will be expanded once gif cur cmd > max command thenbegin expand ; get token ;end;end;if cur cmd = endv then fatal error ("(interwoven alignment preambles are not allowed)");if (cur cmd = assign glue) ^ (cur chr = glue base + tab skip code) thenbegin scan optional equals ; scan glue (glue val);if global defs > 0 then geq de�ne (glue base + tab skip code ; glue ref ; cur val)else eq de�ne (glue base + tab skip code ; glue ref ; cur val);goto restart ;end;end;This code is used in section 774.783. Spaces are eliminated from the beginning of a template.h Scan the template huji, putting the resulting token list in hold head 783 i �p hold head ; link (p) null ;loop begin get preamble token ;if cur cmd = mac param then goto done1 ;if (cur cmd � car ret) ^ (cur cmd � tab mark) ^ (align state = �1000000) thenif (p = hold head) ^ (cur loop = null) ^ (cur cmd = tab mark) then cur loop cur alignelse begin print err ("Missing # inserted in alignment preamble");help3 ("There should be exactly one # between &�s, when an")("\halign or \valign is being set up. In this case you had")("none, so I�ve put one in; maybe that will work."); back error ; goto done1 ;endelse if (cur cmd 6= spacer) _ (p 6= hold head) thenbegin link (p) get avail ; p link (p); info (p) cur tok ;end;end;done1 :This code is used in section 779.

296 PART 37: ALIGNMENT TEXGPC x784784. h Scan the template hvji, putting the resulting token list in hold head 784 i �p hold head ; link (p) null ;loop begin continue : get preamble token ;if (cur cmd � car ret) ^ (cur cmd � tab mark) ^ (align state = �1000000) then goto done2 ;if cur cmd = mac param thenbegin print err ("Only one # is allowed per tab");help3 ("There should be exactly one # between &�s, when an")("\halign or \valign is being set up. In this case you had")("more than one, so I�m ignoring all but the first."); error ; goto continue ;end;link (p) get avail ; p link (p); info (p) cur tok ;end;done2 : link (p) get avail ; p link (p); info (p) end template token f put \endtemplate at the end gThis code is used in section 779.785. The tricky part about alignments is getting the templates into the scanner at the right time, andrecovering control when a row or column is �nished.We usually begin a row after each \cr has been sensed, unless that \cr is followed by \noalign or by theright brace that terminates the alignment. The align peek routine is used to look ahead and do the rightthing; it either gets a new row started, or gets a \noalign started, or �nishes o� the alignment.hDeclare the procedure called align peek 785 i �procedure align peek ;label restart ;begin restart : align state 1000000; hGet the next non-blank non-call token 406 i;if cur cmd = no align thenbegin scan left brace ; new save level (no align group);if mode = �vmode then normal paragraph ;endelse if cur cmd = right brace then �n alignelse if (cur cmd = car ret) ^ (cur chr = cr cr code) then goto restart f ignore \crcrgelse begin init row ; f start a new row ginit col ; f start a new column and replace what we peeked at gend;end;This code is used in section 800.786. To start a row (i.e., a `row' that rhymes with `dough' but not with `bough'), we enter a new semanticlevel, copy the �rst tabskip glue, and change from internal vertical mode to restricted horizontal mode orvice versa. The space factor and prev depth are not used on this semantic level, but we clear them to zerojust to be tidy.hDeclare the procedure called init span 787 iprocedure init row ;begin push nest ; mode (�hmode � vmode)�mode ;if mode = �hmode then space factor 0 else prev depth 0;tail append (new glue (glue ptr (preamble))); subtype (tail) tab skip code + 1;cur align link (preamble); cur tail cur head ; init span (cur align);end;

x787 TEXGPC PART 37: ALIGNMENT 297787. The parameter to init span is a pointer to the alignrecord where the next column or group of columnswill begin. A new semantic level is entered, so that the columns will generate a list for subsequent packaging.hDeclare the procedure called init span 787 i �procedure init span (p : pointer);begin push nest ;if mode = �hmode then space factor 1000else begin prev depth ignore depth ; normal paragraph ;end;cur span p;end;This code is used in section 786.788. When a column begins, we assume that cur cmd is either omit or else the current token should beput back into the input until the huji template has been scanned. (Note that cur cmd might be tab markor car ret .) We also assume that align state is approximately 1000000 at this time. We remain in the samemode, and start the template if it is called for.procedure init col ;begin extra info (cur align) cur cmd ;if cur cmd = omit then align state 0else begin back input ; begin token list (u part (cur align); u template);end; f now align state = 1000000 gend;789. The scanner sets align state to zero when the huji template ends. When a subsequent \cr or \spanor tab mark occurs with align state = 0, the scanner activates the following code, which �res up the hvjitemplate. We need to remember the cur chr , which is either cr cr code , cr code , span code , or a charactercode, depending on how the column text has ended.This part of the program had better not be activated when the preamble to another alignment is beingscanned, or when no alignment preamble is active.h Insert the hvji template and goto restart 789 i �begin if (scanner status = aligning) _ (cur align = null) thenfatal error ("(interwoven alignment preambles are not allowed)");cur cmd extra info (cur align); extra info (cur align) cur chr ;if cur cmd = omit then begin token list (omit template ; v template)else begin token list (v part (cur align); v template);align state 1000000; goto restart ;endThis code is used in section 342.790. The token list omit template just referred to is a constant token list that contains the special controlsequence \endtemplate only.h Initialize the special list heads and constant nodes 790 i �info (omit template) end template token ; f link (omit template) = null gSee also sections 797, 820, 981, and 988.This code is used in section 164.

298 PART 37: ALIGNMENT TEXGPC x791791. When the endv command at the end of a hvji template comes through the scanner, things reallystart to happen; and it is the �n col routine that makes them happen. This routine returns true if a row aswell as a column has been �nished.function �n col : boolean ;label exit ;var p: pointer ; f the alignrecord after the current one gq; r: pointer ; f temporary pointers for list manipulation gs: pointer ; f a new span node gu: pointer ; f a new unset box gw: scaled ; f natural width go: glue ord ; f order of in�nity gn: halfword ; f span counter gbegin if cur align = null then confusion ("endv");q link (cur align); if q = null then confusion ("endv");if align state < 500000 then fatal error ("(interwoven alignment preambles are not allowed)");p link (q); h If the preamble list has been traversed, check that the row has ended 792 i;if extra info (cur align) 6= span code thenbegin unsave ; new save level (align group);hPackage an unset box for the current column and record its width 796 i;hCopy the tabskip glue between columns 795 i;if extra info (cur align) � cr code thenbegin �n col true ; return;end;init span (p);end;align state 1000000; hGet the next non-blank non-call token 406 i;cur align p; init col ; �n col false ;exit : end;792. h If the preamble list has been traversed, check that the row has ended 792 i �if (p = null) ^ (extra info (cur align) < cr code) thenif cur loop 6= null then hLengthen the preamble periodically 793 ielse begin print err ("Extra alignment tab has been changed to "); print esc("cr");help3 ("You have given more \span or & marks than there were")("in the preamble to the \halign or \valign now in progress.")("So I�ll assume that you meant to type \cr instead."); extra info (cur align) cr code ;error ;endThis code is used in section 791.793. hLengthen the preamble periodically 793 i �begin link (q) new null box ; p link (q); f a new alignrecord ginfo (p) end span ; width (p) null ag ; cur loop link (cur loop);hCopy the templates from node cur loop into node p 794 i;cur loop link (cur loop); link (p) new glue (glue ptr (cur loop));endThis code is used in section 792.

x794 TEXGPC PART 37: ALIGNMENT 299794. hCopy the templates from node cur loop into node p 794 i �q hold head ; r u part (cur loop);while r 6= null dobegin link (q) get avail ; q link (q); info (q) info (r); r link (r);end;link (q) null ; u part (p) link (hold head); q hold head ; r v part (cur loop);while r 6= null dobegin link (q) get avail ; q link (q); info (q) info (r); r link (r);end;link (q) null ; v part (p) link (hold head)This code is used in section 793.795. hCopy the tabskip glue between columns 795 i �tail append (new glue (glue ptr (link (cur align)))); subtype (tail) tab skip code + 1This code is used in section 791.796. hPackage an unset box for the current column and record its width 796 i �begin if mode = �hmode thenbegin adjust tail cur tail ; u hpack (link (head);natural); w width (u); cur tail adjust tail ;adjust tail null ;endelse begin u vpackage (link (head);natural ; 0); w height (u);end;n min quarterword ; f this represents a span count of 1 gif cur span 6= cur align then hUpdate width entry for spanned columns 798 ielse if w > width (cur align) then width (cur align) w;type (u) unset node ; span count (u) n;hDetermine the stretch order 659 i;glue order (u) o; glue stretch (u) total stretch [o];hDetermine the shrink order 665 i;glue sign (u) o; glue shrink (u) total shrink [o];pop nest ; link (tail) u; tail u;endThis code is used in section 791.797. A span node is a 2-word record containing width , info , and link �elds. The link �eld is not really alink, it indicates the number of spanned columns; the info �eld points to a span node for the same startingcolumn, having a greater extent of spanning, or to end span , which has the largest possible link �eld; thewidth �eld holds the largest natural width corresponding to a particular set of spanned columns.A list of the maximum widths so far, for spanned columns starting at a given column, begins with theinfo �eld of the alignrecord for that column.de�ne span node size = 2 f number of mem words for a span node gh Initialize the special list heads and constant nodes 790 i +�link (end span) max quarterword + 1; info (end span) null ;

300 PART 37: ALIGNMENT TEXGPC x798798. hUpdate width entry for spanned columns 798 i �begin q cur span ;repeat incr (n); q link (link (q));until q = cur align ;if n > max quarterword then confusion ("256 spans"); f this can happen, but won't gq cur span ;while link (info (q)) < n do q info (q);if link (info (q)) > n thenbegin s get node (span node size); info (s) info (q); link (s) n; info (q) s; width (s) w;endelse if width (info (q)) < w then width (info (q)) w;endThis code is used in section 796.799. At the end of a row, we append an unset box to the current vlist (for \halign) or the current hlist(for \valign). This unset box contains the unset boxes for the columns, separated by the tabskip glue.Everything will be set later.procedure �n row ;var p: pointer ; f the new unset box gbegin if mode = �hmode thenbegin p hpack (link (head);natural); pop nest ; append to vlist (p);if cur head 6= cur tail thenbegin link (tail) link (cur head); tail cur tail ;end;endelse begin p vpack (link (head);natural); pop nest ; link (tail) p; tail p; space factor 1000;end;type (p) unset node ; glue stretch (p) 0;if every cr 6= null then begin token list (every cr ; every cr text);align peek ;end; f note that glue shrink (p) = 0 since glue shrink � shift amount g

x800 TEXGPC PART 37: ALIGNMENT 301800. Finally, we will reach the end of the alignment, and we can breathe a sigh of relief that memoryhasn't overowed. All the unset boxes will now be set so that the columns line up, taking due account ofspanned columns.procedure do assignments ; forward ;procedure resume after display ; forward ;procedure build page ; forward ;procedure �n align ;var p; q; r; s; u; v: pointer ; f registers for the list operations gt; w: scaled ; fwidth of column go: scaled ; f shift o�set for unset boxes gn: halfword ; fmatching span amount grule save : scaled ; f temporary storage for overfull rule gaux save : memory word ; f temporary storage for aux gbegin if cur group 6= align group then confusion ("align1");unsave ; f that align group was for individual entries gif cur group 6= align group then confusion ("align0");unsave ; f that align group was for the whole alignment gif nest [nest ptr � 1]:mode �eld = mmode then o display indentelse o 0;hGo through the preamble list, determining the column widths and changing the alignrecords to dummyunset boxes 801 i;hPackage the preamble list, to determine the actual tabskip glue amounts, and let p point to thisprototype box 804 i;h Set the glue in all the unset boxes of the current list 805 i;ush node list (p); pop alignment ; h Insert the current list into its environment 812 i;end;hDeclare the procedure called align peek 785 i

302 PART 37: ALIGNMENT TEXGPC x801801. It's time now to dismantle the preamble list and to compute the column widths. Let wij be themaximum of the natural widths of all entries that span columns i through j, inclusive. The alignrecord forcolumn i contains wii in its width �eld, and there is also a linked list of the nonzero wij for increasing j,accessible via the info �eld; these span nodes contain the value j � i+min quarterword in their link �elds.The values of wii were initialized to null ag , which we regard as �1.The �nal column widths are de�ned by the formulawj = max1�i�j�wij � Xi�k<j(tk + wk)�;where tk is the natural width of the tabskip glue between columns k and k + 1. However, if wij = �1 forall i in the range 1 � i � j (i.e., if every entry that involved column j also involved column j + 1), we letwj = 0, and we zero out the tabskip glue after column j.TEX computes these values by using the following scheme: First w1 = w11. Then replace w2j bymax(w2j ; w1j � t1 � w1), for all j > 1. Then w2 = w22. Then replace w3j by max(w3j ; w2j � t2 � w2)for all j > 2; and so on. If any wj turns out to be �1, its value is changed to zero and so is the nexttabskip.hGo through the preamble list, determining the column widths and changing the alignrecords to dummyunset boxes 801 i �q link (preamble);repeat ush list (u part (q)); ush list (v part (q)); p link (link (q));if width (q) = null ag then hNullify width (q) and the tabskip glue following this column 802 i;if info (q) 6= end span thenhMerge the widths in the span nodes of q with those of p, destroying the span nodes of q 803 i;type (q) unset node ; span count (q) min quarterword ; height (q) 0; depth (q) 0;glue order (q) normal ; glue sign (q) normal ; glue stretch (q) 0; glue shrink (q) 0; q p;until q = nullThis code is used in section 800.802. hNullify width (q) and the tabskip glue following this column 802 i �begin width (q) 0; r link (q); s glue ptr (r);if s 6= zero glue thenbegin add glue ref (zero glue); delete glue ref (s); glue ptr (r) zero glue ;end;endThis code is used in section 801.

x803 TEXGPC PART 37: ALIGNMENT 303803. Merging of two span-node lists is a typical exercise in the manipulation of linearly linked datastructures. The essential invariant in the following repeat loop is that we want to dispense with noder, in q's list, and u is its successor; all nodes of p's list up to and including s have been processed, and thesuccessor of s matches r or precedes r or follows r, according as link (r) = n or link (r) > n or link (r) < n.hMerge the widths in the span nodes of q with those of p, destroying the span nodes of q 803 i �begin t width (q) + width (glue ptr (link (q))); r info (q); s end span ; info (s) p;n min quarterword + 1;repeat width (r) width (r)� t; u info (r);while link (r) > n dobegin s info (s); n link (info (s)) + 1;end;if link (r) < n thenbegin info (r) info (s); info (s) r; decr (link (r)); s r;endelse begin if width (r) > width (info (s)) then width (info (s)) width (r);free node (r; span node size);end;r u;until r = end span ;endThis code is used in section 801.804. Now the preamble list has been converted to a list of alternating unset boxes and tabskip glue, wherethe box widths are equal to the �nal column sizes. In case of \valign, we change the widths to heights, sothat a correct error message will be produced if the alignment is overfull or underfull.hPackage the preamble list, to determine the actual tabskip glue amounts, and let p point to this prototypebox 804 i �save ptr save ptr � 2; pack begin line �mode line ;if mode = �vmode thenbegin rule save overfull rule ; overfull rule 0; f prevent rule from being packaged gp hpack (preamble ; saved (1); saved (0)); overfull rule rule save ;endelse begin q link (preamble);repeat height (q) width (q); width (q) 0; q link (link (q));until q = null ;p vpack (preamble ; saved (1); saved (0)); q link (preamble);repeat width (q) height (q); height (q) 0; q link (link (q));until q = null ;end;pack begin line 0This code is used in section 800.

304 PART 37: ALIGNMENT TEXGPC x805805. h Set the glue in all the unset boxes of the current list 805 i �q link (head); s head ;while q 6= null dobegin if :is char node (q) thenif type (q) = unset node then h Set the unset box q and the unset boxes in it 807 ielse if type (q) = rule node thenhMake the running dimensions in rule q extend to the boundaries of the alignment 806 i;s q; q link (q);endThis code is used in section 800.806. hMake the running dimensions in rule q extend to the boundaries of the alignment 806 i �begin if is running (width (q)) then width (q) width (p);if is running (height (q)) then height (q) height (p);if is running (depth (q)) then depth (q) depth (p);if o 6= 0 thenbegin r link (q); link (q) null ; q hpack (q;natural); shift amount (q) o; link (q) r;link (s) q;end;endThis code is used in section 805.807. The unset box q represents a row that contains one or more unset boxes, depending on how soon \croccurred in that row.h Set the unset box q and the unset boxes in it 807 i �begin if mode = �vmode thenbegin type (q) hlist node ; width (q) width (p);endelse begin type (q) vlist node ; height (q) height (p);end;glue order (q) glue order (p); glue sign (q) glue sign (p); glue set (q) glue set (p);shift amount (q) o; r link (list ptr (q)); s link (list ptr (p));repeat h Set the glue in node r and change it from an unset node 808 i;r link (link (r)); s link (link (s));until r = null ;endThis code is used in section 805.

x808 TEXGPC PART 37: ALIGNMENT 305808. A box made from spanned columns will be followed by tabskip glue nodes and by empty boxes as ifthere were no spanning. This permits perfect alignment of subsequent entries, and it prevents values thatdepend on oating point arithmetic from entering into the dimensions of any boxes.h Set the glue in node r and change it from an unset node 808 i �n span count (r); t width (s); w t; u hold head ;while n > min quarterword dobegin decr (n); hAppend tabskip glue and an empty box to list u, and update s and t as the prototypenodes are passed 809 i;end;if mode = �vmode thenhMake the unset node r into an hlist node of width w, setting the glue as if the width were t 810 ielse hMake the unset node r into a vlist node of height w, setting the glue as if the height were t 811 i;shift amount (r) 0;if u 6= hold head then f append blank boxes to account for spanned nodes gbegin link (u) link (r); link (r) link (hold head); r u;endThis code is used in section 807.809. hAppend tabskip glue and an empty box to list u, and update s and t as the prototype nodes arepassed 809 i �s link (s); v glue ptr (s); link (u) new glue (v); u link (u); subtype (u) tab skip code + 1;t t+ width (v);if glue sign (p) = stretching thenbegin if stretch order (v) = glue order (p) then t t+ round (oat (glue set (p)) � stretch (v));endelse if glue sign (p) = shrinking thenbegin if shrink order (v) = glue order (p) then t t� round (oat (glue set (p)) � shrink (v));end;s link (s); link (u) new null box ; u link (u); t t+ width (s);if mode = �vmode then width (u) width (s) else begin type (u) vlist node ; height (u) width (s);endThis code is used in section 808.810. hMake the unset node r into an hlist node of width w, setting the glue as if the width were t 810 i �begin height (r) height (q); depth (r) depth (q);if t = width (r) thenbegin glue sign (r) normal ; glue order (r) normal ; set glue ratio zero (glue set (r));endelse if t > width (r) thenbegin glue sign (r) stretching ;if glue stretch (r) = 0 then set glue ratio zero(glue set (r))else glue set (r) unoat ((t� width (r))=glue stretch (r));endelse begin glue order (r) glue sign (r); glue sign (r) shrinking ;if glue shrink (r) = 0 then set glue ratio zero (glue set (r))else if (glue order (r) = normal) ^ (width (r)� t > glue shrink (r)) thenset glue ratio one (glue set (r))else glue set (r) unoat ((width (r)� t)=glue shrink (r));end;width (r) w; type (r) hlist node ;endThis code is used in section 808.

306 PART 37: ALIGNMENT TEXGPC x811811. hMake the unset node r into a vlist node of height w, setting the glue as if the height were t 811 i �begin width (r) width (q);if t = height (r) thenbegin glue sign (r) normal ; glue order (r) normal ; set glue ratio zero (glue set (r));endelse if t > height (r) thenbegin glue sign (r) stretching ;if glue stretch (r) = 0 then set glue ratio zero(glue set (r))else glue set (r) unoat ((t� height (r))=glue stretch (r));endelse begin glue order (r) glue sign (r); glue sign (r) shrinking ;if glue shrink (r) = 0 then set glue ratio zero (glue set (r))else if (glue order (r) = normal) ^ (height (r)� t > glue shrink (r)) thenset glue ratio one (glue set (r))else glue set (r) unoat ((height (r)� t)=glue shrink (r));end;height (r) w; type (r) vlist node ;endThis code is used in section 808.812. We now have a completed alignment, in the list that starts at head and ends at tail . This list will bemerged with the one that encloses it. (In case the enclosing mode is mmode , for displayed formulas, we willneed to insert glue before and after the display; that part of the program will be deferred until we're morefamiliar with such operations.)In restricted horizontal mode, the clang part of aux is unde�ned; an over-cautious Pascal runtime systemmay complain about this.h Insert the current list into its environment 812 i �aux save aux ; p link (head); q tail ; pop nest ;if mode = mmode then hFinish an alignment in a display 1206 ielse begin aux aux save ; link (tail) p;if p 6= null then tail q;if mode = vmode then build page ;endThis code is used in section 800.

x813 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 307813. Breaking paragraphs into lines. We come now to what is probably the most interesting algo-rithm of TEX: the mechanism for choosing the \best possible" breakpoints that yield the individual lines ofa paragraph. TEX's line-breaking algorithm takes a given horizontal list and converts it to a sequence ofboxes that are appended to the current vertical list. In the course of doing this, it creates a special datastructure containing three kinds of records that are not used elsewhere in TEX. Such nodes are created whilea paragraph is being processed, and they are destroyed afterwards; thus, the other parts of TEX do not needto know anything about how line-breaking is done.The method used here is based on an approach devised by Michael F. Plass and the author in 1977,subsequently generalized and improved by the same two people in 1980. A detailed discussion appears inSOFTWARE|Practice & Experience 11 (1981), 1119{1184, where it is shown that the line-breaking problemcan be regarded as a special case of the problem of computing the shortest path in an acyclic network. Thecited paper includes numerous examples and describes the history of line breaking as it has been practicedby printers through the ages. The present implementation adds two new ideas to the algorithm of 1980:Memory space requirements are considerably reduced by using smaller records for inactive nodes than foractive ones, and arithmetic overow is avoided by using \delta distances" instead of keeping track of thetotal distance from the beginning of the paragraph to the current point.814. The line break procedure should be invoked only in horizontal mode; it leaves that mode and placesits output into the current vlist of the enclosing vertical mode (or internal vertical mode). There is oneexplicit parameter: �nal widow penalty is the amount of additional penalty to be inserted before the �nalline of the paragraph.There are also a number of implicit parameters: The hlist to be broken starts at link (head), and it isnonempty. The value of prev graf in the enclosing semantic level tells where the paragraph should beginin the sequence of line numbers, in case hanging indentation or \parshape are in use; prev graf is zerounless this paragraph is being continued after a displayed formula. Other implicit parameters, such as thepar shape ptr and various penalties to use for hyphenation, etc., appear in eqtb .After line break has acted, it will have updated the current vlist and the value of prev graf . Furthermore,the global variable just box will point to the �nal box created by line break , so that the width of this line canbe ascertained when it is necessary to decide whether to use above display skip or above display short skipbefore a displayed formula.hGlobal variables 13 i +�just box : pointer ; f the hlist node for the last line of the new paragraph g815. Since line break is a rather lengthy procedure|sort of a small world unto itself|we must build itup little by little, somewhat more cautiously than we have done with the simpler procedures of TEX. Hereis the general outline.hDeclare subprocedures for line break 826 iprocedure line break (�nal widow penalty : integer);label done ; done1 ; done2 ; done3 ; done4 ; done5 ; continue ;var hLocal variables for line breaking 862* ibegin pack begin line mode line ; f this is for over/underfull box messages ghGet ready to start line breaking 816* i;hFind optimal breakpoints 863 i;hBreak the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, andappend them to the current vertical list 876* i;hClean up the memory by removing the break nodes 865 i;pack begin line 0;end;

308 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x816816*. The �rst task is to move the list from head to temp head and go into the enclosing semantic level.We also append the \parfillskip glue to the end of the paragraph, removing a space (or other glue node)if it was there, since spaces usually precede blank lines and instances of `$$'. The par �ll skip is precededby an in�nite penalty, so it will never be considered as a potential breakpoint.This code assumes that a glue node and a penalty node occupy the same number of mem words.TEX82 prunes discardable nodes from the beginning of a new line until it reaches a nondiscardable node.E Now, if the last line of a paragraph contains discardables only, the \parfillskip glue at the end of theparagraph will also be removed, since it is a discardable. This will give you an empty \hbox. Finally TEXappends \rightskip glue. This gives you a nonempty \hbox, raising a Underfull \hbox warning.To avoid this happening, TEXGPC saves a pointer to the node immediately preceding the \parfillskipnode and quits pruning when it encounters this node several procedures later.hGet ready to start line breaking 816* i �link (temp head) link (head);if is char node (tail) then tail append (new penalty (inf penalty))else if type (tail) 6= glue node then tail append (new penalty (inf penalty))else begin type (tail) penalty node ; delete glue ref (glue ptr (tail)); ush node list (leader ptr (tail));penalty (tail) inf penalty ;end;non prunable p tail ; f points to the node immediately before \parfillskipglink (tail) new param glue (par �ll skip code); init cur lang prev graf mod �200000 ;init l hyf prev graf div �20000000 ; init r hyf (prev graf div �200000)mod �100 ; pop nest ;See also sections 827, 834, and 848.This code is used in section 815.817. When looking for optimal line breaks, TEX creates a \break node" for each break that is feasible,in the sense that there is a way to end a line at the given place without requiring any line to stretch morethan a given tolerance. A break node is characterized by three things: the position of the break (which isa pointer to a glue node , math node , penalty node , or disc node); the ordinal number of the line that willfollow this breakpoint; and the �tness classi�cation of the line that has just ended, i.e., tight �t , decent �t ,loose �t , or very loose �t .de�ne tight �t = 3 f �tness classi�cation for lines shrinking 0.5 to 1.0 of their shrinkability gde�ne loose �t = 1 f �tness classi�cation for lines stretching 0.5 to 1.0 of their stretchability gde�ne very loose �t = 0 f �tness classi�cation for lines stretching more than their stretchability gde�ne decent �t = 2 f �tness classi�cation for all other lines g818. The algorithm essentially determines the best possible way to achieve each feasible combination ofposition, line, and �tness. Thus, it answers questions like, \What is the best way to break the openingpart of the paragraph so that the fourth line is a tight line ending at such-and-such a place?" However, thefact that all lines are to be the same length after a certain point makes it possible to regard all su�cientlylarge line numbers as equivalent, when the looseness parameter is zero, and this makes it possible for thealgorithm to save space and time.An \active node" and a \passive node" are created in mem for each feasible breakpoint that needs to beconsidered. Active nodes are three words long and passive nodes are two words long. We need active nodesonly for breakpoints near the place in the paragraph that is currently being examined, so they are recycledwithin a comparatively short time after they are created.

x819 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 309819. An active node for a given breakpoint contains six �elds:link points to the next node in the list of active nodes; the last active node has link = last active .break node points to the passive node associated with this breakpoint.line number is the number of the line that follows this breakpoint.�tness is the �tness classi�cation of the line ending at this breakpoint.type is either hyphenated or unhyphenated , depending on whether this breakpoint is a disc node .total demerits is the minimum possible sum of demerits over all lines leading from the beginning of theparagraph to this breakpoint.The value of link (active) points to the �rst active node on a linked list of all currently active nodes. Thislist is in order by line number , except that nodes with line number > easy line may be in any order relativeto each other.de�ne active node size = 3 f number of words in active nodes gde�ne �tness � subtype f very loose �t : : tight �t on �nal line for this break gde�ne break node � rlink f pointer to the corresponding passive node gde�ne line number � llink f line that begins at this breakpoint gde�ne total demerits (#) � mem [#+ 2]:int f the quantity that TEX minimizes gde�ne unhyphenated = 0 f the type of a normal active break node gde�ne hyphenated = 1 f the type of an active node that breaks at a disc node gde�ne last active � active f the active list ends where it begins g820. h Initialize the special list heads and constant nodes 790 i +�type (last active) hyphenated ; line number (last active) max halfword ; subtype (last active) 0;f the subtype is never examined by the algorithm g821. The passive node for a given breakpoint contains only four �elds:link points to the passive node created just before this one, if any, otherwise it is null .cur break points to the position of this breakpoint in the horizontal list for the paragraph being broken.prev break points to the passive node that should precede this one in an optimal path to this breakpoint.serial is equal to n if this passive node is the nth one created during the current pass. (This �eld is usedonly when printing out detailed statistics about the line-breaking calculations.)There is a global variable called passive that points to the most recently created passive node. Anotherglobal variable, printed node , is used to help print out the paragraph when detailed information about theline-breaking computation is being displayed.de�ne passive node size = 2 f number of words in passive nodes gde�ne cur break � rlink f in passive node, points to position of this breakpoint gde�ne prev break � llink f points to passive node that should precede this one gde�ne serial � info f serial number for symbolic identi�cation ghGlobal variables 13 i +�passive : pointer ; fmost recent node on passive list gprinted node : pointer ; fmost recent node that has been printed gpass number : halfword ; f the number of passive nodes allocated on this pass g

310 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x822822. The active list also contains \delta" nodes that help the algorithm compute the badness of individuallines. Such nodes appear only between two active nodes, and they have type = delta node . If p and r areactive nodes and if q is a delta node between them, so that link (p) = q and link (q) = r, then q tells thespace di�erence between lines in the horizontal list that start after breakpoint p and lines that start afterbreakpoint r. In other words, if we know the length of the line that starts after p and ends at our currentposition, then the corresponding length of the line that starts after r is obtained by adding the amounts innode q. A delta node contains six scaled numbers, since it must record the net change in glue stretchabilitywith respect to all orders of in�nity. The natural width di�erence appears in mem [q + 1]:sc ; the stretchdi�erences in units of pt, �l, �ll, and �lll appear in mem [q+2 : : q+5]:sc ; and the shrink di�erence appearsin mem [q + 6]:sc . The subtype �eld of a delta node is not used.de�ne delta node size = 7 f number of words in a delta node gde�ne delta node = 2 f type �eld in a delta node g823. As the algorithm runs, it maintains a set of six delta-like registers for the length of the line followingthe �rst active breakpoint to the current position in the given hlist. When it makes a pass through the activelist, it also maintains a similar set of six registers for the length following the active breakpoint of currentinterest. A third set holds the length of an empty line (namely, the sum of \leftskip and \rightskip);and a fourth set is used to create new delta nodes.When we pass a delta node we want to do operations likefor k 1 to 6 do cur active width [k] cur active width [k] +mem [q + k]:sc ;and we want to do this without the overhead of for loops. The do all six macro makes such six-tuplesconvenient.de�ne do all six (#) � #(1); #(2); #(3); #(4); #(5); #(6)hGlobal variables 13 i +�active width : array [1 : : 6] of scaled ; f distance from �rst active node to cur p gcur active width : array [1 : : 6] of scaled ; f distance from current active node gbackground : array [1 : : 6] of scaled ; f length of an \empty" line gbreak width : array [1 : : 6] of scaled ; f length being computed after current break g

x824 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 311824. Let's state the principles of the delta nodes more precisely and concisely, so that the followingprograms will be less obscure. For each legal breakpoint p in the paragraph, we de�ne two quantities �(p)and �(p) such that the length of material in a line from breakpoint p to breakpoint q is + �(q)� �(p), forsome �xed . Intuitively, �(p) and �(q) are the total length of material from the beginning of the paragraphto a point \after" a break at p and to a point \before" a break at q; and is the width of an empty line,namely the length contributed by \leftskip and \rightskip.Suppose, for example, that the paragraph consists entirely of alternating boxes and glue skips; letthe boxes have widths x1 : : : xn and let the skips have widths y1 : : : yn, so that the paragraph can berepresented by x1y1 : : : xnyn. Let pi be the legal breakpoint at yi; then �(pi) = x1 + y1 + � � � + xi + yi,and �(pi) = x1 + y1 + � � � + xi. To check this, note that the length of material from p2 to p5, say, is + x3 + y3 + x4 + y4 + x5 = + �(p5)� �(p2).The quantities �, �, involve glue stretchability and shrinkability as well as a natural width. If we wereto compute �(p) and �(p) for each p, we would need multiple precision arithmetic, and the multiprecisenumbers would have to be kept in the active nodes. TEX avoids this problem by working entirely withrelative di�erences or \deltas." Suppose, for example, that the active list contains a1 �1 a2 �2 a3, where thea's are active breakpoints and the �'s are delta nodes. Then �1 = �(a1) � �(a2) and �2 = �(a2) � �(a3).If the line breaking algorithm is currently positioned at some other breakpoint p, the active width arraycontains the value + �(p) � �(a1). If we are scanning through the list of active nodes and considering atentative line that runs from a2 to p, say, the cur active width array will contain the value +�(p)��(a2).Thus, when we move from a2 to a3, we want to add �(a2) � �(a3) to cur active width ; and this is just �2,which appears in the active list between a2 and a3. The background array contains . The break width arraywill be used to calculate values of new delta nodes when the active list is being updated.825. Glue nodes in a horizontal list that is being paragraphed are not supposed to include \in�nite"shrinkability; that is why the algorithm maintains four registers for stretching but only one for shrinking. Ifthe user tries to introduce in�nite shrinkability, the shrinkability will be reset to �nite and an error messagewill be issued. A boolean variable no shrink error yet prevents this error message from appearing more thanonce per paragraph.de�ne check shrinkage (#) �if (shrink order (#) 6= normal) ^ (shrink (#) 6= 0) thenbegin # �nite shrink (#);endhGlobal variables 13 i +�no shrink error yet : boolean ; f have we complained about in�nite shrinkage? g826. hDeclare subprocedures for line break 826 i �function �nite shrink (p : pointer): pointer ; f recovers from in�nite shrinkage gvar q: pointer ; f new glue speci�cation gbegin if no shrink error yet thenbegin no shrink error yet false ; print err ("Infinite glue shrinkage found in a paragraph");help5 ("The paragraph just ended includes some glue that has")("infinite shrinkability, e.g., �\hskip 0pt minus 1fil�.")("Such glue doesn�t belong there---it allows a paragraph")("of any length to fit on one line. But it�s safe to proceed,")("since the offensive shrinkability has been made finite."); error ;end;q new spec(p); shrink order (q) normal ; delete glue ref (p); �nite shrink q;end;See also sections 829, 877*, 895, and 942.This code is used in section 815.

312 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x827827. hGet ready to start line breaking 816* i +�no shrink error yet true ;check shrinkage (left skip); check shrinkage (right skip);q left skip ; r right skip ; background [1] width (q) + width (r);background [2] 0; background [3] 0; background [4] 0; background [5] 0;background [2 + stretch order (q)] stretch (q);background [2 + stretch order (r)] background [2 + stretch order (r)] + stretch (r);background [6] shrink (q) + shrink (r);828. A pointer variable cur p runs through the given horizontal list as we look for breakpoints. Thisvariable is global, since it is used both by line break and by its subprocedure try break .Another global variable called threshold is used to determine the feasibility of individual lines: Breakpointsare feasible if there is a way to reach them without creating lines whose badness exceeds threshold . (Thebadness is compared to threshold before penalties are added, so that penalty values do not a�ect the feasibilityof breakpoints, except that no break is allowed when the penalty is 10000 or more.) If threshold is 10000or more, all legal breaks are considered feasible, since the badness function speci�ed above never returns avalue greater than 10000.Up to three passes might be made through the paragraph in an attempt to �nd at least one set of feasiblebreakpoints. On the �rst pass, we have threshold = pretolerance and second pass = �nal pass = false .If this pass fails to �nd a feasible solution, threshold is set to tolerance , second pass is set true , and anattempt is made to hyphenate as many words as possible. If that fails too, we add emergency stretch to thebackground stretchability and set �nal pass = true .hGlobal variables 13 i +�cur p : pointer ; f the current breakpoint under consideration gsecond pass : boolean ; f is this our second attempt to break this paragraph? g�nal pass : boolean ; f is this our �nal attempt to break this paragraph? gthreshold : integer ; fmaximum badness on feasible lines g

x829 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 313829. The heart of the line-breaking procedure is `try break ', a subroutine that tests if the current breakpointcur p is feasible, by running through the active list to see what lines of text can be made from active nodesto cur p . If feasible breaks are possible, new break nodes are created. If cur p is too far from an activenode, that node is deactivated.The parameter pi to try break is the penalty associated with a break at cur p ; we have pi = eject penaltyif the break is forced, and pi = inf penalty if the break is illegal.The other parameter, break type , is set to hyphenated or unhyphenated , depending on whether or notthe current break is at a disc node . The end of a paragraph is also regarded as `hyphenated '; this case isdistinguishable by the condition cur p = null .de�ne copy to cur active (#) � cur active width [#] active width [#]de�ne deactivate = 60 f go here when node r should be deactivated ghDeclare subprocedures for line break 826 i +�procedure try break (pi : integer ; break type : small number);label exit ; done ; done1 ; continue ; deactivate ;var r: pointer ; f runs through the active list gprev r : pointer ; f stays a step behind r gold l : halfword ; fmaximum line number in current equivalence class of lines gno break yet : boolean ; f have we found a feasible break at cur p? ghOther local variables for try break 830 ibegin hMake sure that pi is in the proper range 831 i;no break yet true ; prev r active ; old l 0; do all six (copy to cur active);loop begin continue : r link (prev r); h If node r is of type delta node , update cur active width , setprev r and prev prev r , then goto continue 832 i;h If a line number class has ended, create new active nodes for the best feasible breaks in that class;then return if r = last active , otherwise compute the new line width 835 i;hConsider the demerits for a line from r to cur p ; deactivate node r if it should no longer be active;then goto continue if a line from r to cur p is infeasible, otherwise record a new feasiblebreak 851 i;end;exit : stat hUpdate the value of printed node for symbolic displays 858 i tatsend;830. hOther local variables for try break 830 i �prev prev r : pointer ; f a step behind prev r , if type (prev r) = delta node gs: pointer ; f runs through nodes ahead of cur p gq: pointer ; f points to a new node being created gv: pointer ; f points to a glue speci�cation or a node ahead of cur p gt: integer ; f node count, if cur p is a discretionary node gf : internal font number ; f used in character width calculation gl: halfword ; f line number of current active node gnode r stays active : boolean ; f should node r remain in the active list? gline width : scaled ; f the current line will be justi�ed to this width g�t class : very loose �t : : tight �t ; f possible �tness class of test line gb: halfword ; f badness of test line gd: integer ; f demerits of test line garti�cial demerits : boolean ; f has d been forced to zero? gsave link : pointer ; f temporarily holds value of link (cur p) gshortfall : scaled ; f used in badness calculations gThis code is used in section 829.

314 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x831831. hMake sure that pi is in the proper range 831 i �if abs (pi) � inf penalty thenif pi > 0 then return f this breakpoint is inhibited by in�nite penalty gelse pi eject penalty f this breakpoint will be forced gThis code is used in section 829.832. The following code uses the fact that type (last active) 6= delta node .de�ne update width (#) � cur active width [#] cur active width [#] +mem [r + #]:sch If node r is of type delta node , update cur active width , set prev r and prev prev r , then gotocontinue 832 i �if type (r) = delta node thenbegin do all six (update width); prev prev r prev r ; prev r r; goto continue ;endThis code is used in section 829.833. As we consider various ways to end a line at cur p , in a given line number class, we keep track of thebest total demerits known, in an array with one entry for each of the �tness classi�cations. For example,minimal demerits [tight �t] contains the fewest total demerits of feasible line breaks ending at cur p witha tight �t line; best place [tight �t] points to the passive node for the break before cur p that achievessuch an optimum; and best pl line [tight �t] is the line number �eld in the active node corresponding tobest place [tight �t]. When no feasible break sequence is known, the minimal demerits entries will be equalto awful bad , which is 230 � 1. Another variable, minimum demerits , keeps track of the smallest value inthe minimal demerits array.de�ne awful bad � �7777777777 fmore than a billion demerits ghGlobal variables 13 i +�minimal demerits : array [very loose �t : : tight �t] of integer ;f best total demerits known for current line class and position, given the �tness gminimum demerits : integer ; f best total demerits known for current line class and position gbest place : array [very loose �t : : tight �t] of pointer ; f how to achieve minimal demerits gbest pl line : array [very loose �t : : tight �t] of halfword ; f corresponding line number g834. hGet ready to start line breaking 816* i +�minimum demerits awful bad ; minimal demerits [tight �t] awful bad ;minimal demerits [decent �t] awful bad ; minimal demerits [loose �t] awful bad ;minimal demerits [very loose �t] awful bad ;835. The �rst part of the following code is part of TEX's inner loop, so we don't want to waste any time.The current active node, namely node r, contains the line number that will be considered next. At the endof the list we have arranged the data structure so that r = last active and line number (last active) > old l .h If a line number class has ended, create new active nodes for the best feasible breaks in that class; thenreturn if r = last active , otherwise compute the new line width 835 i �begin l line number (r);if l > old l thenbegin f now we are no longer in the inner loop gif (minimum demerits < awful bad) ^ ((old l 6= easy line) _ (r = last active)) thenhCreate new active nodes for the best feasible breaks just found 836 i;if r = last active then return;hCompute the new line width 850 i;end;endThis code is used in section 829.

x836 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 315836. It is not necessary to create new active nodes having minimal demerits greater thanminimum demerits + abs (adj demerits), since such active nodes will never be chosen in the �nalparagraph breaks. This observation allows us to omit a substantial number of feasible breakpoints fromfurther consideration.hCreate new active nodes for the best feasible breaks just found 836 i �begin if no break yet then hCompute the values of break width 837 i;h Insert a delta node to prepare for breaks at cur p 843 i;if abs (adj demerits) � awful bad �minimum demerits then minimum demerits awful bad � 1else minimum demerits minimum demerits + abs (adj demerits);for �t class very loose �t to tight �t dobegin if minimal demerits [�t class] � minimum demerits thenh Insert a new active node from best place [�t class] to cur p 845 i;minimal demerits [�t class] awful bad ;end;minimum demerits awful bad ; h Insert a delta node to prepare for the next active node 844 i;endThis code is used in section 835.837. When we insert a new active node for a break at cur p , suppose this new node is to be placed justbefore active node a; then we essentially want to insert `� cur p �0' before a, where � = �(a)� �(cur p) and�0 = �(cur p)��(a) in the notation explained above. The cur active width array now holds +�(cur p)��(a); so � can be obtained by subtracting cur active width from the quantity + �(cur p)��(cur p). Thelatter quantity can be regarded as the length of a line \from cur p to cur p"; we call it the break width atcur p .The break width is usually negative, since it consists of the background (which is normally zero) minus thewidth of nodes following cur p that are eliminated after a break. If, for example, node cur p is a glue node,the width of this glue is subtracted from the background; and we also look ahead to eliminate all subsequentglue and penalty and kern and math nodes, subtracting their widths as well.Kern nodes do not disappear at a line break unless they are explicit .de�ne set break width to background (#) � break width [#] background [#]hCompute the values of break width 837 i �begin no break yet false ; do all six (set break width to background); s cur p ;if break type > unhyphenated thenif cur p 6= null then hCompute the discretionary break width values 840 i;while s 6= null dobegin if is char node (s) then goto done ;case type (s) ofglue node : h Subtract glue from break width 838 i;penalty node : do nothing ;math node : break width [1] break width [1]� width (s);kern node : if subtype (s) 6= explicit then goto doneelse break width [1] break width [1]� width (s);othercases goto doneendcases;s link (s);end;done : endThis code is used in section 836.

316 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x838838. h Subtract glue from break width 838 i �begin v glue ptr (s); break width [1] break width [1]� width (v);break width [2 + stretch order (v)] break width [2 + stretch order (v)]� stretch (v);break width [6] break width [6]� shrink (v);endThis code is used in section 837.839. When cur p is a discretionary break, the length of a line \from cur p to cur p" has to be de�nedproperly so that the other calculations work out. Suppose that the pre-break text at cur p has length l0,the post-break text has length l1, and the replacement text has length l. Suppose also that q is the nodefollowing the replacement text. Then length of a line from cur p to q will be computed as +�(q)��(cur p),where �(q) = �(cur p)� l0 + l. The actual length will be the background plus l1, so the length from cur pto cur p should be + l0 + l1 � l. If the post-break text of the discretionary is empty, a break may alsodiscard q; in that unusual case we subtract the length of q and any other nodes that will be discarded afterthe discretionary break.The value of l0 need not be computed, since line break will put it into the global variable disc width beforecalling try break .hGlobal variables 13 i +�disc width : scaled ; f the length of discretionary material preceding a break g840. hCompute the discretionary break width values 840 i �begin t replace count (cur p); v cur p ; s post break (cur p);while t > 0 dobegin decr (t); v link (v); h Subtract the width of node v from break width 841 i;end;while s 6= null dobegin hAdd the width of node s to break width 842 i;s link (s);end;break width [1] break width [1] + disc width ;if post break (cur p) = null then s link (v); f nodes may be discardable after the break gendThis code is used in section 837.841. Replacement texts and discretionary texts are supposed to contain only character nodes, kern nodes,ligature nodes, and box or rule nodes.h Subtract the width of node v from break width 841 i �if is char node (v) thenbegin f font (v); break width [1] break width [1]� char width (f)(char info (f)(character (v)));endelse case type (v) ofligature node : begin f font (lig char (v));break width [1] break width [1]� char width (f)(char info (f)(character (lig char (v))));end;hlist node ; vlist node ; rule node ; kern node : break width [1] break width [1]� width (v);othercases confusion ("disc1")endcasesThis code is used in section 840.

x842 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 317842. hAdd the width of node s to break width 842 i �if is char node (s) thenbegin f font (s); break width [1] break width [1] + char width (f)(char info (f)(character (s)));endelse case type (s) ofligature node : begin f font (lig char (s));break width [1] break width [1] + char width (f)(char info (f)(character (lig char (s))));end;hlist node ; vlist node ; rule node ; kern node : break width [1] break width [1] + width (s);othercases confusion ("disc2")endcasesThis code is used in section 840.843. We use the fact that type (active) 6= delta node .de�ne convert to break width (#) � mem [prev r + #]:sc mem [prev r + #]:sc � cur active width [#] + break width [#]de�ne store break width (#) � active width [#] break width [#]de�ne new delta to break width (#) � mem [q + #]:sc break width [#]� cur active width [#]h Insert a delta node to prepare for breaks at cur p 843 i �if type (prev r) = delta node then fmodify an existing delta node gbegin do all six (convert to break width);endelse if prev r = active then f no delta node needed at the beginning gbegin do all six (store break width);endelse begin q get node (delta node size); link (q) r; type (q) delta node ;subtype (q) 0; f the subtype is not used gdo all six (new delta to break width); link (prev r) q; prev prev r prev r ; prev r q;endThis code is used in section 836.844. When the following code is performed, we will have just inserted at least one active node before r,so type (prev r) 6= delta node .de�ne new delta from break width (#) � mem [q + #]:sc cur active width [#]� break width [#]h Insert a delta node to prepare for the next active node 844 i �if r 6= last active thenbegin q get node (delta node size); link (q) r; type (q) delta node ;subtype (q) 0; f the subtype is not used gdo all six (new delta from break width); link (prev r) q; prev prev r prev r ; prev r q;endThis code is used in section 836.

318 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x845845. When we create an active node, we also create the corresponding passive node.h Insert a new active node from best place [�t class] to cur p 845 i �begin q get node (passive node size); link (q) passive ; passive q; cur break (q) cur p ;stat incr (pass number); serial (q) pass number ; tatsprev break (q) best place [�t class];q get node (active node size); break node (q) passive ; line number (q) best pl line [�t class] + 1;�tness (q) �t class ; type (q) break type ; total demerits (q) minimal demerits [�t class];link (q) r; link (prev r) q; prev r q;stat if tracing paragraphs > 0 then hPrint a symbolic description of the new break node 846 i;tatsendThis code is used in section 836.846. hPrint a symbolic description of the new break node 846 i �begin print nl ("@@"); print int (serial (passive)); print (": line "); print int (line number (q)� 1);print char ("."); print int (�t class);if break type = hyphenated then print char ("-");print (" t="); print int (total demerits (q)); print (" -> @@");if prev break (passive) = null then print char ("0")else print int (serial (prev break (passive)));endThis code is used in section 845.847. The length of lines depends on whether the user has speci�ed \parshape or \hangindent. Ifpar shape ptr is not null, it points to a (2n + 1)-word record in mem , where the info in the �rst wordcontains the value of n, and the other 2n words contain the left margins and line lengths for the �rst n linesof the paragraph; the speci�cations for line n apply to all subsequent lines. If par shape ptr = null , theshape of the paragraph depends on the value of n = hang after ; if n � 0, hanging indentation takes placeon lines n + 1, n + 2, : : : , otherwise it takes place on lines 1, : : : , jnj. When hanging indentation is active,the left margin is hang indent , if hang indent � 0, else it is 0; the line length is hsize � jhang indent j. Thenormal setting is par shape ptr = null , hang after = 1, and hang indent = 0. Note that if hang indent = 0,the value of hang after is irrelevant.hGlobal variables 13 i +�easy line : halfword ; f line numbers > easy line are equivalent in break nodes glast special line : halfword ; f line numbers > last special line all have the same width g�rst width : scaled ; f the width of all lines � last special line , if no \parshape has been speci�ed gsecond width : scaled ; f the width of all lines > last special line g�rst indent : scaled ; f left margin to go with �rst width gsecond indent : scaled ; f left margin to go with second width g

x848 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 319848. We compute the values of easy line and the other local variables relating to line length when theline break procedure is initializing itself.hGet ready to start line breaking 816* i +�if par shape ptr = null thenif hang indent = 0 thenbegin last special line 0; second width hsize ; second indent 0;endelse h Set line length parameters in preparation for hanging indentation 849 ielse begin last special line info (par shape ptr)� 1;second width mem [par shape ptr + 2 � (last special line + 1)]:sc ;second indent mem [par shape ptr + 2 � last special line + 1]:sc ;end;if looseness = 0 then easy line last special lineelse easy line max halfword849. h Set line length parameters in preparation for hanging indentation 849 i �begin last special line abs (hang after);if hang after < 0 thenbegin �rst width hsize � abs (hang indent);if hang indent � 0 then �rst indent hang indentelse �rst indent 0;second width hsize ; second indent 0;endelse begin �rst width hsize ; �rst indent 0; second width hsize � abs (hang indent);if hang indent � 0 then second indent hang indentelse second indent 0;end;endThis code is used in section 848.850. When we come to the following code, we have just encountered the �rst active node r whoseline number �eld contains l. Thus we want to compute the length of the lth line of the current paragraph.Furthermore, we want to set old l to the last number in the class of line numbers equivalent to l.hCompute the new line width 850 i �if l > easy line thenbegin line width second width ; old l max halfword � 1;endelse begin old l l;if l > last special line then line width second widthelse if par shape ptr = null then line width �rst widthelse line width mem [par shape ptr + 2 � l]:sc ;endThis code is used in section 835.

320 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x851851. The remaining part of try break deals with the calculation of demerits for a break from r to cur p .The �rst thing to do is calculate the badness, b. This value will always be between zero and inf bad + 1;the latter value occurs only in the case of lines from r to cur p that cannot shrink enough to �t the necessarywidth. In such cases, node r will be deactivated. We also deactivate node r when a break at cur p is forced,since future breaks must go through a forced break.hConsider the demerits for a line from r to cur p ; deactivate node r if it should no longer be active; thengoto continue if a line from r to cur p is infeasible, otherwise record a new feasible break 851 i �begin arti�cial demerits false ;shortfall line width � cur active width [1]; fwe're this much too short gif shortfall > 0 thenh Set the value of b to the badness for stretching the line, and compute the corresponding �t class 852 ielse h Set the value of b to the badness for shrinking the line, and compute the corresponding �t class 853 i;if (b > inf bad) _ (pi = eject penalty) then hPrepare to deactivate node r, and goto deactivate unlessthere is a reason to consider lines of text from r to cur p 854 ielse begin prev r r;if b > threshold then goto continue ;node r stays active true ;end;hRecord a new feasible break 855 i;if node r stays active then goto continue ; f prev r has been set to r gdeactivate : hDeactivate node r 860 i;endThis code is used in section 829.852. When a line must stretch, the available stretchability can be found in the subarraycur active width [2 : : 5], in units of points, �l, �ll, and �lll.The present section is part of TEX's inner loop, and it is most often performed when the badness is in�nite;therefore it is worth while to make a quick test for large width excess and small stretchability, before callingthe badness subroutine.h Set the value of b to the badness for stretching the line, and compute the corresponding �t class 852 i �if (cur active width [3] 6= 0) _ (cur active width [4] 6= 0) _ (cur active width [5] 6= 0) thenbegin b 0; �t class decent �t ; f in�nite stretch gendelse begin if shortfall > 7230584 thenif cur active width [2] < 1663497 thenbegin b inf bad ; �t class very loose �t ; goto done1 ;end;b badness (shortfall ; cur active width [2]);if b > 12 thenif b > 99 then �t class very loose �telse �t class loose �telse �t class decent �t ;done1 : endThis code is used in section 851.

x853 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 321853. Shrinkability is never in�nite in a paragraph; we can shrink the line from r to cur p by at mostcur active width [6].h Set the value of b to the badness for shrinking the line, and compute the corresponding �t class 853 i �begin if �shortfall > cur active width [6] then b inf bad + 1else b badness (�shortfall ; cur active width [6]);if b > 12 then �t class tight �t else �t class decent �t ;endThis code is used in section 851.854. During the �nal pass, we dare not lose all active nodes, lest we lose touch with the line breaks alreadyfound. The code shown here makes sure that such a catastrophe does not happen, by permitting overfullboxes as a last resort. This particular part of TEX was a source of several subtle bugs before the correctprogram logic was �nally discovered; readers who seek to \improve" TEX should therefore think thrice beforedaring to make any changes here.hPrepare to deactivate node r, and goto deactivate unless there is a reason to consider lines of text from rto cur p 854 i �begin if �nal pass ^ (minimum demerits = awful bad) ^ (link (r) = last active) ^ (prev r = active) thenarti�cial demerits true f set demerits zero, this break is forced gelse if b > threshold then goto deactivate ;node r stays active false ;endThis code is used in section 851.855. When we get to this part of the code, the line from r to cur p is feasible, its badness is b, andits �tness classi�cation is �t class . We don't want to make an active node for this break yet, but we willcompute the total demerits and record them in the minimal demerits array, if such a break is the currentchampion among all ways to get to cur p in a given line-number class and �tness class.hRecord a new feasible break 855 i �if arti�cial demerits then d 0else hCompute the demerits, d, from r to cur p 859 i;stat if tracing paragraphs > 0 then hPrint a symbolic description of this feasible break 856 i;tatsd d+ total demerits (r); f this is the minimum total demerits from the beginning to cur p via r gif d � minimal demerits [�t class] thenbegin minimal demerits [�t class] d; best place [�t class] break node (r); best pl line [�t class] l;if d < minimum demerits then minimum demerits d;endThis code is used in section 851.

322 PART 38: BREAKING PARAGRAPHS INTO LINES TEXGPC x856856. hPrint a symbolic description of this feasible break 856 i �begin if printed node 6= cur p thenhPrint the list between printed node and cur p , then set printed node cur p 857 i;print nl ("@");if cur p = null then print esc("par")else if type (cur p) 6= glue node thenbegin if type (cur p) = penalty node then print esc ("penalty")else if type (cur p) = disc node then print esc("discretionary")else if type (cur p) = kern node then print esc("kern")else print esc ("math");end;print (" via @@");if break node (r) = null then print char ("0")else print int (serial (break node (r)));print (" b=");if b > inf bad then print char ("*") else print int (b);print (" p="); print int (pi); print (" d=");if arti�cial demerits then print char ("*") else print int (d);endThis code is used in section 855.857. hPrint the list between printed node and cur p , then set printed node cur p 857 i �begin print nl ("");if cur p = null then short display (link (printed node))else begin save link link (cur p); link (cur p) null ; print nl ("");short display (link (printed node)); link (cur p) save link ;end;printed node cur p ;endThis code is used in section 856.858. When the data for a discretionary break is being displayed, we will have printed the pre break andpost break lists; we want to skip over the third list, so that the discretionary data will not appear twice. Thefollowing code is performed at the very end of try break .hUpdate the value of printed node for symbolic displays 858 i �if cur p = printed node thenif cur p 6= null thenif type (cur p) = disc node thenbegin t replace count (cur p);while t > 0 dobegin decr (t); printed node link (printed node);end;endThis code is used in section 829.

x859 TEXGPC PART 38: BREAKING PARAGRAPHS INTO LINES 323859. hCompute the demerits, d, from r to cur p 859 i �begin d line penalty + b;if abs (d) � 10000 then d 100000000 else d d � d;if pi 6= 0 thenif pi > 0 then d d+ pi � pielse if pi > eject penalty then d d� pi � pi ;if (break type = hyphenated) ^ (type (r) = hyphenated) thenif cur p 6= null then d d+ double hyphen demeritselse d d+ �nal hyphen demerits ;if abs (�t class � �tness (r)) > 1 then d d+ adj demerits ;endThis code is used in section 855.860. When an active node disappears, we must delete an adjacent delta node if the active node was at thebeginning or the end of the active list, or if it was surrounded by delta nodes. We also must preserve theproperty that cur active width represents the length of material from link (prev r) to cur p .de�ne combine two deltas (#) � mem [prev r + #]:sc mem [prev r + #]:sc +mem [r + #]:scde�ne downdate width (#) � cur active width [#] cur active width [#]�mem [prev r + #]:schDeactivate node r 860 i �link (prev r) link (r); free node (r; active node size);if prev r = active then hUpdate the active widths, since the �rst active node has been deleted 861 ielse if type (prev r) = delta node thenbegin r link (prev r);if r = last active thenbegin do all six (downdate width); link (prev prev r) last active ;free node (prev r ; delta node size); prev r prev prev r ;endelse if type (r) = delta node thenbegin do all six (update width); do all six (combine two deltas); link (prev r) link (r);free node (r; delta node size);end;endThis code is used in section 851.861. The following code uses the fact that type (last active) 6= delta node . If the active list has just becomeempty, we do not need to update the active width array, since it will be initialized when an active node isnext inserted.de�ne update active (#) � active width [#] active width [#] +mem [r + #]:schUpdate the active widths, since the �rst active node has been deleted 861 i �begin r link (active);if type (r) = delta node thenbegin do all six (update active); do all six (copy to cur active); link (active) link (r);free node (r; delta node size);end;endThis code is used in section 860.

324 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXGPC x862862*. Breaking paragraphs into lines, continued. So far we have gotten a little way into theline break routine, having covered its important try break subroutine. Now let's consider the rest of theprocess.The main loop of line break traverses the given hlist, starting at link (temp head), and calls try break ateach legal breakpoint. A variable called auto breaking is set to true except within math formulas, since gluenodes are not legal breakpoints when they appear in formulas.The current node of interest in the hlist is pointed to by cur p . Another variable, prev p , is usually onestep behind cur p , but the real meaning of prev p is this: If type (cur p) = glue node then cur p is a legalbreakpoint if and only if auto breaking is true and prev p does not point to a glue node, penalty node,explicit kern node, or math node.The following declarations provide for a few other local variables that are used in special calculations.Declare the non prunable p pointer.E hLocal variables for line breaking 862* i �auto breaking : boolean ; f is node cur p outside a formula? gnon prunable p : pointer ; f pointer to the node before \parfillskipgprev p : pointer ; f helps to determine when glue nodes are breakpoints gq; r; s; prev s : pointer ; fmiscellaneous nodes of temporary interest gf : internal font number ; f used when calculating character widths gSee also section 893.This code is used in section 815.

x863 TEXGPC PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 325863. The `loop' in the following code is performed at most thrice per call of line break , since it is actuallya pass over the entire paragraph.hFind optimal breakpoints 863 i �threshold pretolerance ;if threshold � 0 thenbegin stat if tracing paragraphs > 0 thenbegin begin diagnostic ; print nl ("@firstpass"); end; tatssecond pass false ; �nal pass false ;endelse begin threshold tolerance ; second pass true ; �nal pass (emergency stretch � 0);stat if tracing paragraphs > 0 then begin diagnostic ;tatsend;loop begin if threshold > inf bad then threshold inf bad ;if second pass then h Initialize for hyphenating a paragraph 891 i;hCreate an active breakpoint representing the beginning of the paragraph 864 i;cur p link (temp head); auto breaking true ;prev p cur p ; f glue at beginning is not a legal breakpoint gwhile (cur p 6= null) ^ (link (active) 6= last active) do hCall try break if cur p is a legal breakpoint;on the second pass, also try to hyphenate the next word, if cur p is a glue node; then advancecur p to the next node of the paragraph that could possibly be a legal breakpoint 866 i;if cur p = null then hTry the �nal line break at the end of the paragraph, and goto done if thedesired breakpoints have been found 873 i;hClean up the memory by removing the break nodes 865 i;if :second pass thenbegin stat if tracing paragraphs > 0 then print nl ("@secondpass"); tatsthreshold tolerance ; second pass true ; �nal pass (emergency stretch � 0);end f if at �rst you don't succeed, : : : gelse begin stat if tracing paragraphs > 0 then print nl ("@emergencypass"); tatsbackground [2] background [2] + emergency stretch ; �nal pass true ;end;end;done : stat if tracing paragraphs > 0 thenbegin end diagnostic (true); normalize selector ;end;tatsThis code is used in section 815.864. The active node that represents the starting point does not need a corresponding passive node.de�ne store background (#) � active width [#] background [#]hCreate an active breakpoint representing the beginning of the paragraph 864 i �q get node (active node size); type (q) unhyphenated ; �tness (q) decent �t ; link (q) last active ;break node (q) null ; line number (q) prev graf + 1; total demerits (q) 0; link (active) q;do all six (store background);passive null ; printed node temp head ; pass number 0; font in short display null fontThis code is used in section 863.

326 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXGPC x865865. hClean up the memory by removing the break nodes 865 i �q link (active);while q 6= last active dobegin cur p link (q);if type (q) = delta node then free node (q; delta node size)else free node (q; active node size);q cur p ;end;q passive ;while q 6= null dobegin cur p link (q); free node (q; passive node size); q cur p ;endThis code is used in sections 815 and 863.866. Here is the main switch in the line break routine, where legal breaks are determined. As we movethrough the hlist, we need to keep the active width array up to date, so that the badness of individual linesis readily calculated by try break . It is convenient to use the short name act width for the component ofactive width that represents real width as opposed to glue.de�ne act width � active width [1] f length from �rst active node to current node gde�ne kern break �begin if :is char node (link (cur p)) ^ auto breaking thenif type (link (cur p)) = glue node then try break (0; unhyphenated);act width act width + width (cur p);endhCall try break if cur p is a legal breakpoint; on the second pass, also try to hyphenate the next word, ifcur p is a glue node; then advance cur p to the next node of the paragraph that could possibly be alegal breakpoint 866 i �begin if is char node (cur p) thenhAdvance cur p to the node following the present string of characters 867 i;case type (cur p) ofhlist node ; vlist node ; rule node : act width act width + width (cur p);whatsit node : hAdvance past a whatsit node in the line break loop 1362 i;glue node : begin h If node cur p is a legal breakpoint, call try break ; then update the active widths byincluding the glue in glue ptr (cur p) 868 i;if second pass ^ auto breaking then hTry to hyphenate the following word 894 i;end;kern node : if subtype (cur p) = explicit then kern breakelse act width act width + width (cur p);ligature node : begin f font (lig char (cur p));act width act width + char width (f)(char info (f)(character (lig char (cur p))));end;disc node : hTry to break after a discretionary fragment, then goto done5 869 i;math node : begin auto breaking (subtype (cur p) = after); kern break ;end;penalty node : try break (penalty (cur p); unhyphenated);mark node ; ins node ; adjust node : do nothing ;othercases confusion ("paragraph")endcases;prev p cur p ; cur p link (cur p);done5 : endThis code is used in section 863.

x867 TEXGPC PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 327867. The code that passes over the characters of words in a paragraph is part of TEX's inner loop, so it hasbeen streamlined for speed. We use the fact that `\parfillskip' glue appears at the end of each paragraph;it is therefore unnecessary to check if link (cur p) = null when cur p is a character node.hAdvance cur p to the node following the present string of characters 867 i �begin prev p cur p ;repeat f font (cur p); act width act width + char width (f)(char info (f)(character (cur p)));cur p link (cur p);until :is char node (cur p);endThis code is used in section 866.868. When node cur p is a glue node, we look at prev p to see whether or not a breakpoint is legal atcur p , as explained above.h If node cur p is a legal breakpoint, call try break ; then update the active widths by including the glue inglue ptr (cur p) 868 i �if auto breaking thenbegin if is char node (prev p) then try break (0; unhyphenated)else if precedes break (prev p) then try break (0; unhyphenated)else if (type (prev p) = kern node) ^ (subtype (prev p) 6= explicit) then try break (0; unhyphenated);end;check shrinkage (glue ptr (cur p)); q glue ptr (cur p); act width act width + width (q);active width [2 + stretch order (q)] active width [2 + stretch order (q)] + stretch (q);active width [6] active width [6] + shrink (q)This code is used in section 866.869. The following code knows that discretionary texts contain only character nodes, kern nodes, boxnodes, rule nodes, and ligature nodes.hTry to break after a discretionary fragment, then goto done5 869 i �begin s pre break (cur p); disc width 0;if s = null then try break (ex hyphen penalty ; hyphenated)else begin repeat hAdd the width of node s to disc width 870 i;s link (s);until s = null ;act width act width + disc width ; try break (hyphen penalty ; hyphenated);act width act width � disc width ;end;r replace count (cur p); s link (cur p);while r > 0 dobegin hAdd the width of node s to act width 871 i;decr (r); s link (s);end;prev p cur p ; cur p s; goto done5 ;endThis code is used in section 866.

328 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXGPC x870870. hAdd the width of node s to disc width 870 i �if is char node (s) thenbegin f font (s); disc width disc width + char width (f)(char info (f)(character (s)));endelse case type (s) ofligature node : begin f font (lig char (s));disc width disc width + char width (f)(char info (f)(character (lig char (s))));end;hlist node ; vlist node ; rule node ; kern node : disc width disc width + width (s);othercases confusion ("disc3")endcasesThis code is used in section 869.871. hAdd the width of node s to act width 871 i �if is char node (s) thenbegin f font (s); act width act width + char width (f)(char info (f)(character (s)));endelse case type (s) ofligature node : begin f font (lig char (s));act width act width + char width (f)(char info (f)(character (lig char (s))));end;hlist node ; vlist node ; rule node ; kern node : act width act width + width (s);othercases confusion ("disc4")endcasesThis code is used in section 869.872. The forced line break at the paragraph's end will reduce the list of breakpoints so that all activenodes represent breaks at cur p = null . On the �rst pass, we insist on �nding an active node that has thecorrect \looseness." On the �nal pass, there will be at least one active node, and we will match the desiredlooseness as well as we can.The global variable best bet will be set to the active node for the best way to break the paragraph, and afew other variables are used to help determine what is best.hGlobal variables 13 i +�best bet : pointer ; f use this passive node and its predecessors gfewest demerits : integer ; f the demerits associated with best bet gbest line : halfword ; f line number following the last line of the new paragraph gactual looseness : integer ; f the di�erence between line number (best bet) and the optimum best line gline di� : integer ; f the di�erence between the current line number and the optimum best line g873. hTry the �nal line break at the end of the paragraph, and goto done if the desired breakpoints havebeen found 873 i �begin try break (eject penalty ; hyphenated);if link (active) 6= last active thenbegin hFind an active node with fewest demerits 874 i;if looseness = 0 then goto done ;hFind the best active node for the desired looseness 875 i;if (actual looseness = looseness) _ �nal pass then goto done ;end;endThis code is used in section 863.

x874 TEXGPC PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 329874. hFind an active node with fewest demerits 874 i �r link (active); fewest demerits awful bad ;repeat if type (r) 6= delta node thenif total demerits (r) < fewest demerits thenbegin fewest demerits total demerits (r); best bet r;end;r link (r);until r = last active ;best line line number (best bet)This code is used in section 873.875. The adjustment for a desired looseness is a slightly more complicated version of the loop justconsidered. Note that if a paragraph is broken into segments by displayed equations, each segment willbe subject to the looseness calculation, independently of the other segments.hFind the best active node for the desired looseness 875 i �begin r link (active); actual looseness 0;repeat if type (r) 6= delta node thenbegin line di� line number (r)� best line ;if ((line di� < actual looseness) ^ (looseness � line di�)) _((line di� > actual looseness) ^ (looseness � line di�)) thenbegin best bet r; actual looseness line di� ; fewest demerits total demerits (r);endelse if (line di� = actual looseness) ^ (total demerits (r) < fewest demerits) thenbegin best bet r; fewest demerits total demerits (r);end;end;r link (r);until r = last active ;best line line number (best bet);endThis code is used in section 873.876*. Once the best sequence of breakpoints has been found (hurray), we call on the procedurepost line break to �nish the remainder of the work. (By introducing this subprocedure, we are able to keepline break from getting extremely long.)Pass non prunable p to the post line break procedure.E hBreak the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, andappend them to the current vertical list 876* i �post line break (�nal widow penalty ;non prunable p)This code is used in section 815.

330 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXGPC x877877*. The total number of lines that will be set by post line break is best line � prev graf � 1. The lastbreakpoint is speci�ed by break node (best bet), and this passive node points to the other breakpoints viathe prev break links. The �nishing-up phase starts by linking the relevant passive nodes in forward order,changing prev break to next break . (The next break �elds actually reside in the same memory space as theprev break �elds did, but we give them a new name because of their new signi�cance.) Then the lines arejusti�ed, one by one.Declare another parameter. It holds the pointer to the node immediately preceding \parfillskip.E de�ne next break � prev break f new name for prev break after links are reversed ghDeclare subprocedures for line break 826 i +�procedure post line break (�nal widow penalty : integer ; non prunable p : pointer);label done ; done1 ;var q; r; s: pointer ; f temporary registers for list manipulation gdisc break : boolean ; fwas the current break at a discretionary node? gpost disc break : boolean ; f and did it have a nonempty post-break part? gcur width : scaled ; fwidth of line number cur line gcur indent : scaled ; f left margin of line number cur line gt: quarterword ; f used for replacement counts in discretionary nodes gpen : integer ; f use when calculating penalties between lines gcur line : halfword ; f the current line number being justi�ed gbegin hReverse the links of the relevant passive nodes, setting cur p to the �rst breakpoint 878 i;cur line prev graf + 1;repeat h Justify the line ending at breakpoint cur p , and append it to the current vertical list, togetherwith associated penalties and other insertions 880 i;incr (cur line); cur p next break (cur p);if cur p 6= null thenif :post disc break then hPrune unwanted nodes at the beginning of the next line 879* i;until cur p = null ;if (cur line 6= best line) _ (link (temp head) 6= null) then confusion ("line breaking");prev graf best line � 1;end;878. The job of reversing links in a list is conveniently regarded as the job of taking items o� one stackand putting them on another. In this case we take them o� a stack pointed to by q and having prev break�elds; we put them on a stack pointed to by cur p and having next break �elds. Node r is the passive nodebeing moved from stack to stack.hReverse the links of the relevant passive nodes, setting cur p to the �rst breakpoint 878 i �q break node (best bet); cur p null ;repeat r q; q prev break (q); next break (r) cur p ; cur p r;until q = nullThis code is used in section 877*.

x879 TEXGPC PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 331879*. Glue and penalty and kern and math nodes are deleted at the beginning of a line, except in theanomalous case that the node to be deleted is actually one of the chosen breakpoints. Otherwise the pruningdone here is designed to match the lookahead computation in try break , where the break width values arecomputed for non-discretionary breakpoints.The pointer non prunable p references the node immediately preceding the \parfillskip node at the endE of the paragraph. Stop pruning at this node.hPrune unwanted nodes at the beginning of the next line 879* i �begin r temp head ;loop begin q link (r);if q = cur break (cur p) then goto done1 ; f cur break (cur p) is the next breakpoint gf now q cannot be null gif is char node (q) then goto done1 ;if non discardable (q) then goto done1 ;if q = non prunable p then goto done1 ; f retain \parfillskip glue gif type (q) = kern node thenif subtype (q) 6= explicit then goto done1 ;r q; f now type (q) = glue node , kern node , math node or penalty node gend;done1 : if r 6= temp head thenbegin link (r) null ; ush node list (link (temp head)); link (temp head) q;end;endThis code is used in section 877*.880. The current line to be justi�ed appears in a horizontal list starting at link (temp head) and ending atcur break (cur p). If cur break (cur p) is a glue node, we reset the glue to equal the right skip glue; otherwisewe append the right skip glue at the right. If cur break (cur p) is a discretionary node, we modify the list sothat the discretionary break is compulsory, and we set disc break to true . We also append the left skip glueat the left of the line, unless it is zero.h Justify the line ending at breakpoint cur p , and append it to the current vertical list, together withassociated penalties and other insertions 880 i �hModify the end of the line to reect the nature of the break and to include \rightskip; also set theproper value of disc break 881 i;hPut the \leftskip glue at the left and detach this line 887 i;hCall the packaging subroutine, setting just box to the justi�ed box 889 i;hAppend the new box to the current vertical list, followed by the list of special nodes taken out of thebox by the packager 888 i;hAppend a penalty node, if a nonzero penalty is appropriate 890 iThis code is used in section 877*.

332 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXGPC x881881. At the end of the following code, q will point to the �nal node on the list about to be justi�ed.hModify the end of the line to reect the nature of the break and to include \rightskip; also set theproper value of disc break 881 i �q cur break (cur p); disc break false ; post disc break false ;if q 6= null then f q cannot be a char node gif type (q) = glue node thenbegin delete glue ref (glue ptr (q)); glue ptr (q) right skip ; subtype (q) right skip code + 1;add glue ref (right skip); goto done ;endelse begin if type (q) = disc node thenhChange discretionary to compulsory and set disc break true 882 ielse if (type (q) = math node) _ (type (q) = kern node) then width (q) 0;endelse begin q temp head ;while link (q) 6= null do q link (q);end;hPut the \rightskip glue after node q 886 i;done :This code is used in section 880.882. hChange discretionary to compulsory and set disc break true 882 i �begin t replace count (q);hDestroy the t nodes following q, and make r point to the following node 883 i;if post break (q) 6= null then hTransplant the post-break list 884 i;if pre break (q) 6= null then hTransplant the pre-break list 885 i;link (q) r; disc break true ;endThis code is used in section 881.883. hDestroy the t nodes following q, and make r point to the following node 883 i �if t = 0 then r link (q)else begin r q;while t > 1 dobegin r link (r); decr (t);end;s link (r); r link (s); link (s) null ; ush node list (link (q)); replace count (q) 0;endThis code is used in section 882.884. We move the post-break list from inside node q to the main list by reattaching it just before thepresent node r, then resetting r.hTransplant the post-break list 884 i �begin s post break (q);while link (s) 6= null do s link (s);link (s) r; r post break (q); post break (q) null ; post disc break true ;endThis code is used in section 882.

x885 TEXGPC PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED 333885. We move the pre-break list from inside node q to the main list by reattaching it just after the presentnode q, then resetting q.hTransplant the pre-break list 885 i �begin s pre break (q); link (q) s;while link (s) 6= null do s link (s);pre break (q) null ; q s;endThis code is used in section 882.886. hPut the \rightskip glue after node q 886 i �r new param glue (right skip code); link (r) link (q); link (q) r; q rThis code is used in section 881.887. The following code begins with q at the end of the list to be justi�ed. It ends with q at the beginningof that list, and with link (temp head) pointing to the remainder of the paragraph, if any.hPut the \leftskip glue at the left and detach this line 887 i �r link (q); link (q) null ; q link (temp head); link (temp head) r;if left skip 6= zero glue thenbegin r new param glue (left skip code); link (r) q; q r;endThis code is used in section 880.888. hAppend the new box to the current vertical list, followed by the list of special nodes taken out ofthe box by the packager 888 i �append to vlist (just box);if adjust head 6= adjust tail thenbegin link (tail) link (adjust head); tail adjust tail ;end;adjust tail nullThis code is used in section 880.889. Now q points to the hlist that represents the current line of the paragraph. We need to compute theappropriate line width, pack the line into a box of this size, and shift the box by the appropriate amount ofindentation.hCall the packaging subroutine, setting just box to the justi�ed box 889 i �if cur line > last special line thenbegin cur width second width ; cur indent second indent ;endelse if par shape ptr = null thenbegin cur width �rst width ; cur indent �rst indent ;endelse begin cur width mem [par shape ptr + 2 � cur line]:sc ;cur indent mem [par shape ptr + 2 � cur line � 1]:sc ;end;adjust tail adjust head ; just box hpack (q; cur width ; exactly); shift amount (just box) cur indentThis code is used in section 880.

334 PART 39: BREAKING PARAGRAPHS INTO LINES, CONTINUED TEXGPC x890890. Penalties between the lines of a paragraph come from club and widow lines, from the inter line penaltyparameter, and from lines that end at discretionary breaks. Breaking between lines of a two-line paragraphgets both club-line and widow-line penalties. The local variable pen will be set to the sum of all relevantpenalties for the current line, except that the �nal line is never penalized.hAppend a penalty node, if a nonzero penalty is appropriate 890 i �if cur line + 1 6= best line thenbegin pen inter line penalty ;if cur line = prev graf + 1 then pen pen + club penalty ;if cur line + 2 = best line then pen pen + �nal widow penalty ;if disc break then pen pen + broken penalty ;if pen 6= 0 thenbegin r new penalty (pen); link (tail) r; tail r;end;endThis code is used in section 880.

x891 TEXGPC PART 40: PRE-HYPHENATION 335891. Pre-hyphenation. When the line-breaking routine is unable to �nd a feasible sequence of break-points, it makes a second pass over the paragraph, attempting to hyphenate the hyphenatable words. Thegoal of hyphenation is to insert discretionary material into the paragraph so that there are more potentialplaces to break.The general rules for hyphenation are somewhat complex and technical, because we want to be able tohyphenate words that are preceded or followed by punctuation marks, and because we want the rules towork for languages other than English. We also must contend with the fact that hyphens might radicallyalter the ligature and kerning structure of a word.A sequence of characters will be considered for hyphenation only if it belongs to a \potentially hyphenatablepart" of the current paragraph. This is a sequence of nodes p0p1 : : : pm where p0 is a glue node, p1 : : : pm�1are either character or ligature or whatsit or implicit kern nodes, and pm is a glue or penalty or insertionor adjust or mark or whatsit or explicit kern node. (Therefore hyphenation is disabled by boxes, mathformulas, and discretionary nodes already inserted by the user.) The ligature nodes among p1 : : : pm�1 aree�ectively expanded into the original non-ligature characters; the kern nodes and whatsits are ignored. Eachcharacter c is now classi�ed as either a nonletter (if lc code (c) = 0), a lowercase letter (if lc code (c) = c),or an uppercase letter (otherwise); an uppercase letter is treated as if it were lc code (c) for purposes ofhyphenation. The characters generated by p1 : : : pm�1 may begin with nonletters; let c1 be the �rst letterthat is not in the middle of a ligature. Whatsit nodes preceding c1 are ignored; a whatsit found after c1 willbe the terminating node pm. All characters that do not have the same font as c1 will be treated as nonletters.The hyphen char for that font must be between 0 and 255, otherwise hyphenation will not be attempted.TEX looks ahead for as many consecutive letters c1 : : : cn as possible; however, n must be less than 64, so acharacter that would otherwise be c64 is e�ectively not a letter. Furthermore cn must not be in the middleof a ligature. In this way we obtain a string of letters c1 : : : cn that are generated by nodes pa : : : pb, where1 � a � b + 1 � m. If n � l hyf + r hyf , this string quali�es for hyphenation; however, uc hyph must bepositive, if c1 is uppercase.The hyphenation process takes place in three stages. First, the candidate sequence c1 : : : cn is found; thenpotential positions for hyphens are determined by referring to hyphenation tables; and �nally, the nodespa : : : pb are replaced by a new sequence of nodes that includes the discretionary breaks found.Fortunately, we do not have to do all this calculation very often, because of the way it has been taken outof TEX's inner loop. For example, when the second edition of the author's 700-page book SeminumericalAlgorithms was typeset by TEX, only about 1.2 hyphenations needed to be tried per paragraph, since theline breaking algorithm needed to use two passes on only about 5 per cent of the paragraphs.h Initialize for hyphenating a paragraph 891 i �begin init if trie not ready then init trie ;tinicur lang init cur lang ; l hyf init l hyf ; r hyf init r hyf ;endThis code is used in section 863.

336 PART 40: PRE-HYPHENATION TEXGPC x892892. The letters c1 : : : cn that are candidates for hyphenation are placed into an array called hc ; the numbern is placed into hn ; pointers to nodes pa�1 and pb in the description above are placed into variables ha andhb ; and the font number is placed into hf .hGlobal variables 13 i +�hc : array [0 : : 65] of 0 : : 256; fword to be hyphenated ghn : small number ; f the number of positions occupied in hc gha ; hb : pointer ; f nodes ha : : hb should be replaced by the hyphenated result ghf : internal font number ; f font number of the letters in hc ghu : array [0 : : 63] of 0 : : 256; f like hc , before conversion to lowercase ghyf char : integer ; f hyphen character of the relevant font gcur lang ; init cur lang : ASCII code ; f current hyphenation table of interest gl hyf ; r hyf ; init l hyf ; init r hyf : integer ; f limits on fragment sizes ghyf bchar : halfword ; f boundary character after cn g893. Hyphenation routines need a few more local variables.hLocal variables for line breaking 862* i +�j: small number ; f an index into hc or hu gc: 0 : : 255; f character being considered for hyphenation g894. When the following code is activated, the line break procedure is in its second pass, and cur p pointsto a glue node.hTry to hyphenate the following word 894 i �begin prev s cur p ; s link (prev s);if s 6= null thenbegin h Skip to node ha , or goto done1 if no hyphenation should be attempted 896 i;if l hyf + r hyf > 63 then goto done1 ;h Skip to node hb , putting letters into hu and hc 897 i;hCheck that the nodes following hb permit hyphenation and that at least l hyf + r hyf letters havebeen found, otherwise goto done1 899 i;hyphenate ;end;done1 : endThis code is used in section 866.895. hDeclare subprocedures for line break 826 i +�hDeclare the function called reconstitute 906 iprocedure hyphenate ;label common ending ; done ; found ; found1 ; found2 ;not found ; exit ;var hLocal variables for hyphenation 901 ibegin hFind hyphen locations for the word in hc , or return 923 i;h If no hyphens were found, return 902 i;hReplace nodes ha : : hb by a sequence of nodes that includes the discretionary hyphens 903 i;exit : end;

x896 TEXGPC PART 40: PRE-HYPHENATION 337896. The �rst thing we need to do is �nd the node ha just before the �rst letter.h Skip to node ha , or goto done1 if no hyphenation should be attempted 896 i �loop begin if is char node (s) thenbegin c qo (character (s)); hf font (s);endelse if type (s) = ligature node thenif lig ptr (s) = null then goto continueelse begin q lig ptr (s); c qo (character (q)); hf font (q);endelse if (type (s) = kern node) ^ (subtype (s) = normal) then goto continueelse if type (s) = whatsit node thenbegin hAdvance past a whatsit node in the pre-hyphenation loop 1363 i;goto continue ;endelse goto done1 ;if lc code (c) 6= 0 thenif (lc code (c) = c) _ (uc hyph > 0) then goto done2else goto done1 ;continue : prev s s; s link (prev s);end;done2 : hyf char hyphen char [hf];if hyf char < 0 then goto done1 ;if hyf char > 255 then goto done1 ;ha prev sThis code is used in section 894.897. The word to be hyphenated is now moved to the hu and hc arrays.h Skip to node hb , putting letters into hu and hc 897 i �hn 0;loop begin if is char node (s) thenbegin if font (s) 6= hf then goto done3 ;hyf bchar character (s); c qo (hyf bchar);if lc code (c) = 0 then goto done3 ;if hn = 63 then goto done3 ;hb s; incr (hn); hu [hn] c; hc [hn] lc code (c); hyf bchar non char ;endelse if type (s) = ligature node then hMove the characters of a ligature node to hu and hc ; but gotodone3 if they are not all letters 898 ielse if (type (s) = kern node) ^ (subtype (s) = normal) thenbegin hb s; hyf bchar font bchar [hf];endelse goto done3 ;s link (s);end;done3 :This code is used in section 894.

338 PART 40: PRE-HYPHENATION TEXGPC x898898. We let j be the index of the character being stored when a ligature node is being expanded, sincewe do not want to advance hn until we are sure that the entire ligature consists of letters. Note that it ispossible to get to done3 with hn = 0 and hb not set to any value.hMove the characters of a ligature node to hu and hc ; but goto done3 if they are not all letters 898 i �begin if font (lig char (s)) 6= hf then goto done3 ;j hn ; q lig ptr (s); if q > null then hyf bchar character (q);while q > null dobegin c qo (character (q));if lc code (c) = 0 then goto done3 ;if j = 63 then goto done3 ;incr (j); hu [j] c; hc [j] lc code (c);q link (q);end;hb s; hn j;if odd (subtype (s)) then hyf bchar font bchar [hf] else hyf bchar non char ;endThis code is used in section 897.899. hCheck that the nodes following hb permit hyphenation and that at least l hyf + r hyf letters havebeen found, otherwise goto done1 899 i �if hn < l hyf + r hyf then goto done1 ; f l hyf and r hyf are � 1 gloop begin if :(is char node (s)) thencase type (s) ofligature node : do nothing ;kern node : if subtype (s) 6= normal then goto done4 ;whatsit node ; glue node ; penalty node ; ins node ; adjust node ;mark node : goto done4 ;othercases goto done1endcases;s link (s);end;done4 :This code is used in section 894.

x900 TEXGPC PART 41: POST-HYPHENATION 339900. Post-hyphenation. If a hyphen may be inserted between hc [j] and hc [j + 1], the hyphenationprocedure will set hyf [j] to some small odd number. But before we look at TEX's hyphenation procedure,which is independent of the rest of the line-breaking algorithm, let us consider what we will do with thehyphens it �nds, since it is better to work on this part of the program before forgetting what ha and hb ,etc., are all about.hGlobal variables 13 i +�hyf : array [0 : : 64] of 0 : : 9; f odd values indicate discretionary hyphens ginit list : pointer ; f list of punctuation characters preceding the word ginit lig : boolean ; f does init list represent a ligature? ginit lft : boolean ; f if so, did the ligature involve a left boundary? g901. hLocal variables for hyphenation 901 i �i; j; l: 0 : : 65; f indices into hc or hu gq; r; s: pointer ; f temporary registers for list manipulation gbchar : halfword ; f right boundary character of hyphenated word, or non char gSee also sections 912, 922, and 929.This code is used in section 895.902. TEX will never insert a hyphen that has fewer than \lefthyphenmin letters before it or fewer than\righthyphenmin after it; hence, a short word has comparatively little chance of being hyphenated. If nohyphens have been found, we can save time by not having to make any changes to the paragraph.h If no hyphens were found, return 902 i �for j l hyf to hn � r hyf doif odd (hyf [j]) then goto found1 ;return;found1 :This code is used in section 895.

340 PART 41: POST-HYPHENATION TEXGPC x903903. If hyphens are in fact going to be inserted, TEX �rst deletes the subsequence of nodes between haand hb . An attempt is made to preserve the e�ect that implicit boundary characters and punctuation markshad on ligatures inside the hyphenated word, by storing a left boundary or preceding character in hu [0] andby storing a possible right boundary in bchar . We set j 0 if hu [0] is to be part of the reconstruction;otherwise j 1. The variable s will point to the tail of the current hlist, and q will point to the nodefollowing hb , so that things can be hooked up after we reconstitute the hyphenated word.hReplace nodes ha : : hb by a sequence of nodes that includes the discretionary hyphens 903 i �q link (hb); link (hb) null ; r link (ha); link (ha) null ; bchar hyf bchar ;if is char node (ha) thenif font (ha) 6= hf then goto found2else begin init list ha ; init lig false ; hu [0] qo (character (ha));endelse if type (ha) = ligature node thenif font (lig char (ha)) 6= hf then goto found2else begin init list lig ptr (ha); init lig true ; init lft (subtype (ha) > 1);hu [0] qo (character (lig char (ha)));if init list = null thenif init lft thenbegin hu [0] 256; init lig false ;end; f in this case a ligature will be reconstructed from scratch gfree node (ha ; small node size);endelse begin f no punctuation found; look for left boundary gif :is char node (r) thenif type (r) = ligature node thenif subtype (r) > 1 then goto found2 ;j 1; s ha ; init list null ; goto common ending ;end;s cur p ; fwe have cur p 6= ha because type (cur p) = glue node gwhile link (s) 6= ha do s link (s);j 0; goto common ending ;found2 : s ha ; j 0; hu [0] 256; init lig false ; init list null ;common ending : ush node list (r);hReconstitute nodes for the hyphenated word, inserting discretionary hyphens 913 i;ush list (init list)This code is used in section 895.904. We must now face the fact that the battle is not over, even though the hyphens have been found: Theprocess of reconstituting a word can be nontrivial because ligatures might change when a hyphen is present.The TEXbook discusses the di�culties of the word \di�cult", and the discretionary material surrounding ahyphen can be considerably more complex than that. Suppose abcdef is a word in a font for which the onlyligatures are bc, cd, de, and ef. If this word permits hyphenation between b and c, the two patterns withand without hyphenation are ab -cdef and abcdef. Thus the insertion of a hyphen might cause e�ects toripple arbitrarily far into the rest of the word. A further complication arises if additional hyphens appeartogether with such rippling, e.g., if the word in the example just given could also be hyphenated between cand d; TEX avoids this by simply ignoring the additional hyphens in such weird cases.Still further complications arise in the presence of ligatures that do not delete the original characters.When punctuation precedes the word being hyphenated, TEX's method is not perfect under all possiblescenarios, because punctuation marks and letters can propagate information back and forth. For example,suppose the original pre-hyphenation pair *a changes to *y via a |=: ligature, which changes to xy via a=:| ligature; if pa�1 = x and pa = y, the reconstitution procedure isn't smart enough to obtain xy again. Insuch cases the font designer should include a ligature that goes from xa to xy.

x905 TEXGPC PART 41: POST-HYPHENATION 341905. The processing is facilitated by a subroutine called reconstitute . Given a string of characters xj : : : xn,there is a smallest index m � j such that the \translation" of xj : : : xn by ligatures and kerning has the formy1 : : : yt followed by the translation of xm+1 : : : xn, where y1 : : : yt is some nonempty sequence of character,ligature, and kern nodes. We call xj : : : xm a \cut pre�x" of xj : : : xn. For example, if x1x2x3 = fly, and ifthe font contains `' as a ligature and a kern between `' and `y', then m = 2, t = 2, and y1 will be a ligaturenode for `' followed by an appropriate kern node y2. In the most common case, xj forms no ligature withxj+1 and we simply have m = j, y1 = xj . If m < n we can repeat the procedure on xm+1 : : : xn until theentire translation has been found.The reconstitute function returns the integer m and puts the nodes y1 : : : yt into a linked list starting atlink (hold head), getting the input xj : : : xn from the hu array. If xj = 256, we consider xj to be an implicitleft boundary character; in this case j must be strictly less than n. There is a parameter bchar , whichis either 256 or an implicit right boundary character assumed to be present just following xn. (The valuehu [n+ 1] is never explicitly examined, but the algorithm imagines that bchar is there.)If there exists an index k in the range j � k � m such that hyf [k] is odd and such that the result ofreconstitute would have been di�erent if xk+1 had been hchar , then reconstitute sets hyphen passed to thesmallest such k. Otherwise it sets hyphen passed to zero.A special convention is used in the case j = 0: Then we assume that the translation of hu [0] appearsin a special list of charnodes starting at init list ; moreover, if init lig is true , then hu [0] will be a ligaturecharacter, involving a left boundary if init lft is true . This facility is provided for cases when a hyphenatedword is preceded by punctuation (like single or double quotes) that might a�ect the translation of thebeginning of the word.hGlobal variables 13 i +�hyphen passed : small number ; f �rst hyphen in a ligature, if any g906. hDeclare the function called reconstitute 906 i �function reconstitute(j; n : small number ; bchar ; hchar : halfword): small number ;label continue ; done ;var p: pointer ; f temporary register for list manipulation gt: pointer ; f a node being appended to gq: four quarters ; f character information or a lig/kern instruction gcur rh : halfword ; f hyphen character for ligature testing gtest char : halfword ; f hyphen or other character for ligature testing gw: scaled ; f amount of kerning gk: font index ; f position of current lig/kern instruction gbegin hyphen passed 0; t hold head ; w 0; link (hold head) null ;f at this point ligature present = lft hit = rt hit = false gh Set up data structures with the cursor following position j 908 i;continue : h If there's a ligature or kern at the cursor position, update the data structures, possiblyadvancing j; continue until the cursor moves 909 i;hAppend a ligature and/or kern to the translation; goto continue if the stack of inserted ligatures isnonempty 910 i;reconstitute j;end;This code is used in section 895.

342 PART 41: POST-HYPHENATION TEXGPC x907907. The reconstitution procedure shares many of the global data structures by which TEX has processedthe words before they were hyphenated. There is an implied \cursor" between characters cur l and cur r ;these characters will be tested for possible ligature activity. If ligature present then cur l is a ligaturecharacter formed from the original characters following cur q in the current translation list. There is a\ligature stack" between the cursor and character j + 1, consisting of pseudo-ligature nodes linked togetherby their link �elds. This stack is normally empty unless a ligature command has created a new character thatwill need to be processed later. A pseudo-ligature is a special node having a character �eld that representsa potential ligature and a lig ptr �eld that points to a char node or is null . We havecur r = 8<: character (lig stack); if lig stack > null ;qi (hu [j+1]); if lig stack = null and j < n;bchar; if lig stack = null and j = n.hGlobal variables 13 i +�cur l ; cur r : halfword ; f characters before and after the cursor gcur q : pointer ; fwhere a ligature should be detached glig stack : pointer ; f un�nished business to the right of the cursor gligature present : boolean ; f should a ligature node be made for cur l ? glft hit ; rt hit : boolean ; f did we hit a ligature with a boundary character? g908. de�ne append charnode to t (#) �begin link (t) get avail ; t link (t); font (t) hf ; character (t) #;endde�ne set cur r �begin if j < n then cur r qi (hu [j + 1]) else cur r bchar ;if odd (hyf [j]) then cur rh hchar else cur rh non char ;endh Set up data structures with the cursor following position j 908 i �cur l qi (hu [j]); cur q t;if j = 0 thenbegin ligature present init lig ; p init list ;if ligature present then lft hit init lft ;while p > null dobegin append charnode to t (character (p)); p link (p);end;endelse if cur l < non char then append charnode to t (cur l);lig stack null ; set cur rThis code is used in section 906.

x909 TEXGPC PART 41: POST-HYPHENATION 343909. We may want to look at the lig/kern program twice, once for a hyphen and once for a normal letter.(The hyphen might appear after the letter in the program, so we'd better not try to look for both at once.)h If there's a ligature or kern at the cursor position, update the data structures, possibly advancing j;continue until the cursor moves 909 i �if cur l = non char thenbegin k bchar label [hf];if k = non address then goto done else q font info [k]:qqqq ;endelse begin q char info (hf)(cur l);if char tag (q) 6= lig tag then goto done ;k lig kern start (hf)(q); q font info [k]:qqqq ;if skip byte (q) > stop ag thenbegin k lig kern restart (hf)(q); q font info [k]:qqqq ;end;end; f now k is the starting address of the lig/kern program gif cur rh < non char then test char cur rh else test char cur r ;loop begin if next char (q) = test char thenif skip byte (q) � stop ag thenif cur rh < non char thenbegin hyphen passed j; hchar non char ; cur rh non char ; goto continue ;endelse begin if hchar < non char thenif odd (hyf [j]) thenbegin hyphen passed j; hchar non char ;end;if op byte (q) < kern ag thenhCarry out a ligature replacement, updating the cursor structure and possibly advancing j;goto continue if the cursor doesn't advance, otherwise goto done 911 i;w char kern (hf)(q); goto done ; f this kern will be inserted below gend;if skip byte (q) � stop ag thenif cur rh = non char then goto doneelse begin cur rh non char ; goto continue ;end;k k + qo (skip byte (q)) + 1; q font info [k]:qqqq ;end;done :This code is used in section 906.

344 PART 41: POST-HYPHENATION TEXGPC x910910. de�ne wrap lig (#) �if ligature present thenbegin p new ligature (hf ; cur l ; link (cur q));if lft hit thenbegin subtype (p) 2; lft hit false ;end;if # thenif lig stack = null thenbegin incr (subtype (p)); rt hit false ;end;link (cur q) p; t p; ligature present false ;endde�ne pop lig stack �begin if lig ptr (lig stack) > null thenbegin link (t) lig ptr (lig stack); f this is a charnode for hu [j + 1] gt link (t); incr (j);end;p lig stack ; lig stack link (p); free node (p; small node size);if lig stack = null then set cur r else cur r character (lig stack);end f if lig stack isn't null we have cur rh = non char ghAppend a ligature and/or kern to the translation; goto continue if the stack of inserted ligatures isnonempty 910 i �wrap lig (rt hit);if w 6= 0 thenbegin link (t) new kern (w); t link (t); w 0;end;if lig stack > null thenbegin cur q t; cur l character (lig stack); ligature present true ; pop lig stack ; goto continue ;endThis code is used in section 906.

x911 TEXGPC PART 41: POST-HYPHENATION 345911. hCarry out a ligature replacement, updating the cursor structure and possibly advancing j; gotocontinue if the cursor doesn't advance, otherwise goto done 911 i �begin if cur l = non char then lft hit true ;if j = n thenif lig stack = null then rt hit true ;check interrupt ; f allow a way out in case there's an in�nite ligature loop gcase op byte (q) ofqi (1); qi (5): begin cur l rem byte (q); f =:|, =:|> gligature present true ;end;qi (2); qi (6): begin cur r rem byte (q); f |=:, |=:>gif lig stack > null then character (lig stack) cur relse begin lig stack new lig item (cur r);if j = n then bchar non charelse begin p get avail ; lig ptr (lig stack) p; character (p) qi (hu [j + 1]); font (p) hf ;end;end;end;qi (3): begin cur r rem byte (q); f |=:|gp lig stack ; lig stack new lig item (cur r); link (lig stack) p;end;qi (7); qi (11): begin wrap lig (false); f |=:|>, |=:|>>gcur q t; cur l rem byte (q); ligature present true ;end;othercases begin cur l rem byte (q); ligature present true ; f =:gif lig stack > null then pop lig stackelse if j = n then goto doneelse begin append charnode to t (cur r); incr (j); set cur r ;end;endendcases;if op byte (q) > qi (4) thenif op byte (q) 6= qi (7) then goto done ;goto continue ;endThis code is used in section 909.912. Okay, we're ready to insert the potential hyphenations that were found. When the following programis executed, we want to append the word hu [1 : : hn] after node ha , and node q should be appended tothe result. During this process, the variable i will be a temporary index into hu ; the variable j will be anindex to our current position in hu ; the variable l will be the counterpart of j, in a discretionary branch; thevariable r will point to new nodes being created; and we need a few new local variables:hLocal variables for hyphenation 901 i +�major tail ;minor tail : pointer ;f the end of lists in the main and discretionary branches being reconstructed gc: ASCII code ; f character temporarily replaced by a hyphen gc loc : 0 : : 63; fwhere that character came from gr count : integer ; f replacement count for discretionary ghyf node : pointer ; f the hyphen, if it exists g

346 PART 41: POST-HYPHENATION TEXGPC x913913. When the following code is performed, hyf [0] and hyf [hn] will be zero.hReconstitute nodes for the hyphenated word, inserting discretionary hyphens 913 i �repeat l j; j reconstitute(j; hn ; bchar ; qi (hyf char)) + 1;if hyphen passed = 0 thenbegin link (s) link (hold head);while link (s) > null do s link (s);if odd (hyf [j � 1]) thenbegin l j; hyphen passed j � 1; link (hold head) null ;end;end;if hyphen passed > 0 then hCreate and append a discretionary node as an alternative to theunhyphenated word, and continue to develop both branches until they become equivalent 914 i;until j > hn ;link (s) qThis code is used in section 903.914. In this repeat loop we will insert another discretionary if hyf [j�1] is odd, when both branches of theprevious discretionary end at position j � 1. Strictly speaking, we aren't justi�ed in doing this, because wedon't know that a hyphen after j � 1 is truly independent of those branches. But in almost all applicationswe would rather not lose a potentially valuable hyphenation point. (Consider the word `di�cult', where theletter `c' is in position j.)de�ne advance major tail �begin major tail link (major tail); incr (r count);endhCreate and append a discretionary node as an alternative to the unhyphenated word, and continue todevelop both branches until they become equivalent 914 i �repeat r get node (small node size); link (r) link (hold head); type (r) disc node ; major tail r;r count 0;while link (major tail) > null do advance major tail ;i hyphen passed ; hyf [i] 0; hPut the characters hu [l : : i] and a hyphen into pre break (r) 915 i;hPut the characters hu [i + 1 : :] into post break (r), appending to this list and to major tail untilsynchronization has been achieved 916 i;hMove pointer s to the end of the current list, and set replace count (r) appropriately 918 i;hyphen passed j � 1; link (hold head) null ;until :odd (hyf [j � 1])This code is used in section 913.

x915 TEXGPC PART 41: POST-HYPHENATION 347915. The new hyphen might combine with the previous character via ligature or kern. At this point wehave l� 1 � i < j and i < hn .hPut the characters hu [l : : i] and a hyphen into pre break (r) 915 i �minor tail null ; pre break (r) null ; hyf node new character (hf ; hyf char);if hyf node 6= null thenbegin incr (i); c hu [i]; hu [i] hyf char ; free avail (hyf node);end;while l � i dobegin l reconstitute(l; i; font bchar [hf];non char) + 1;if link (hold head) > null thenbegin if minor tail = null then pre break (r) link (hold head)else link (minor tail) link (hold head);minor tail link (hold head);while link (minor tail) > null do minor tail link (minor tail);end;end;if hyf node 6= null thenbegin hu [i] c; f restore the character in the hyphen position gl i; decr (i);endThis code is used in section 914.916. The synchronization algorithm begins with l = i+ 1 � j.hPut the characters hu [i + 1 : :] into post break (r), appending to this list and to major tail untilsynchronization has been achieved 916 i �minor tail null ; post break (r) null ; c loc 0;if bchar label [hf] 6= non address then f put left boundary at beginning of new line gbegin decr (l); c hu [l]; c loc l; hu [l] 256;end;while l < j dobegin repeat l reconstitute(l; hn ; bchar ;non char) + 1;if c loc > 0 thenbegin hu [c loc] c; c loc 0;end;if link (hold head) > null thenbegin if minor tail = null then post break (r) link (hold head)else link (minor tail) link (hold head);minor tail link (hold head);while link (minor tail) > null do minor tail link (minor tail);end;until l � j;while l > j do hAppend characters of hu [j : :] to major tail , advancing j 917 i;endThis code is used in section 914.917. hAppend characters of hu [j : :] to major tail , advancing j 917 i �begin j reconstitute(j; hn ; bchar ;non char) + 1; link (major tail) link (hold head);while link (major tail) > null do advance major tail ;endThis code is used in section 916.

348 PART 41: POST-HYPHENATION TEXGPC x918918. Ligature insertion can cause a word to grow exponentially in size. Therefore we must test the size ofr count here, even though the hyphenated text was at most 63 characters long.hMove pointer s to the end of the current list, and set replace count (r) appropriately 918 i �if r count > 127 then fwe have to forget the discretionary hyphen gbegin link (s) link (r); link (r) null ; ush node list (r);endelse begin link (s) r; replace count (r) r count ;end;s major tailThis code is used in section 914.

x919 TEXGPC PART 42: HYPHENATION 349919. Hyphenation. When a word hc [1 : : hn] has been set up to contain a candidate for hyphenation,TEX �rst looks to see if it is in the user's exception dictionary. If not, hyphens are inserted based on patternsthat appear within the given word, using an algorithm due to Frank M. Liang.Let's consider Liang's method �rst, since it is much more interesting than the exception-lookup routine.The algorithm begins by setting hyf [j] to zero for all j, and invalid characters are inserted into hc [0] andhc [hn+1] to serve as delimiters. Then a reasonably fast method is used to see which of a given set of patternsoccurs in the word hc [0 : : (hn + 1)]. Each pattern p1 : : : pk of length k has an associated sequence of k + 1numbers n0 : : : nk; and if the pattern occurs in hc [(j+1) : : (j+k)], TEX will set hyf [j+i] max(hyf [j+i]; ni)for 0 � i � k. After this has been done for each pattern that occurs, a discretionary hyphen will be insertedbetween hc [j] and hc [j + 1] when hyf [j] is odd, as we have already seen.The set of patterns p1 : : : pk and associated numbers n0 : : : nk depends, of course, on the language whosewords are being hyphenated, and on the degree of hyphenation that is desired. A method for �ndingappropriate p's and n's, from a given dictionary of words and acceptable hyphenations, is discussed inLiang's Ph.D. thesis (Stanford University, 1983); TEX simply starts with the patterns and works from there.920. The patterns are stored in a compact table that is also e�cient for retrieval, using a variant of\trie memory" [cf. The Art of Computer Programming 3 (1973), 481{505]. We can �nd each patternp1 : : : pk by letting z0 be one greater than the relevant language index and then, for 1 � i � k, settingzi trie link (zi�1) + pi; the pattern will be identi�ed by the number zk. Since all the pattern informationis packed together into a single trie link array, it is necessary to prevent confusion between the data frominequivalent patterns, so another table is provided such that trie char (zi) = pi for all i. There is also a tabletrie op (zk) to identify the numbers n0 : : : nk associated with p1 : : : pk.Comparatively few di�erent number sequences n0 : : : nk actually occur, since most of the n's are generallyzero. Therefore the number sequences are encoded in such a way that trie op (zk) is only one byte long. Iftrie op (zk) 6= min quarterword , when p1 : : : pk has matched the letters in hc [(l�k+1) : : l] of language t, weperform all of the required operations for this pattern by carrying out the following little program: Set v trie op (zk). Then set v v+op start [t], hyf [l�hyf distance [v]] max(hyf [l�hyf distance [v]]; hyf num [v]),and v hyf next [v]; repeat, if necessary, until v = min quarterword .hTypes in the outer block 18 i +�trie pointer = 0 : : trie size ; f an index into trie g921. de�ne trie link (#) � trie [#]:rh f \downward" link in a trie gde�ne trie char (#) � trie [#]:b1 f character matched at this trie location gde�ne trie op (#) � trie [#]:b0 f program for hyphenation at this trie location ghGlobal variables 13 i +�trie : array [trie pointer] of two halves ; f trie link , trie char , trie op ghyf distance : array [1 : : trie op size] of small number ; f position k � j of nj ghyf num : array [1 : : trie op size] of small number ; f value of nj ghyf next : array [1 : : trie op size] of quarterword ; f continuation code gop start : array [ASCII code] of 0 : : trie op size ; f o�set for current language g922. hLocal variables for hyphenation 901 i +�z: trie pointer ; f an index into trie gv: integer ; f an index into hyf distance , etc. g

350 PART 42: HYPHENATION TEXGPC x923923. Assuming that these auxiliary tables have been set up properly, the hyphenation algorithm is quiteshort. In the following code we set hc [hn + 2] to the impossible value 256, in order to guarantee thathc [hn + 3] will never be fetched.hFind hyphen locations for the word in hc , or return 923 i �for j 0 to hn do hyf [j] 0;hLook for the word hc [1 : : hn] in the exception table, and goto found (with hyf containing the hyphens)if an entry is found 930 i;if trie char (cur lang + 1) 6= qi (cur lang) then return; f no patterns for cur lang ghc [0] 0; hc [hn + 1] 0; hc [hn + 2] 256; f insert delimiters gfor j 0 to hn � r hyf + 1 dobegin z trie link (cur lang + 1) + hc [j]; l j;while hc [l] = qo (trie char (z)) dobegin if trie op (z) 6= min quarterword then h Store maximum values in the hyf table 924 i;incr (l); z trie link (z) + hc [l];end;end;found : for j 0 to l hyf � 1 do hyf [j] 0;for j 0 to r hyf � 1 do hyf [hn � j] 0This code is used in section 895.924. h Store maximum values in the hyf table 924 i �begin v trie op (z);repeat v v + op start [cur lang]; i l � hyf distance [v];if hyf num [v] > hyf [i] then hyf [i] hyf num [v];v hyf next [v];until v = min quarterword ;endThis code is used in section 923.925. The exception table that is built by TEX's \hyphenation primitive is organized as an ordered hashtable [cf. Amble and Knuth, The Computer Journal 17 (1974), 135{142] using linear probing. If � and �are words, we will say that � < � if j�j < j�j or if j�j = j�j and � is lexicographically smaller than �. (Thenotation j�j stands for the length of �.) The idea of ordered hashing is to arrange the table so that a givenword � can be sought by computing a hash address h = h(�) and then looking in table positions h, h� 1,: : : , until encountering the �rst word � �. If this word is di�erent from �, we can conclude that � is not inthe table.The words in the table point to lists in mem that specify hyphen positions in their info �elds. The listfor c1 : : : cn contains the number k if the word c1 : : : cn has a discretionary hyphen between ck and ck+1.hTypes in the outer block 18 i +�hyph pointer = 0 : : hyph size ; f an index into the ordered hash table g926. hGlobal variables 13 i +�hyph word : array [hyph pointer] of str number ; f exception words ghyph list : array [hyph pointer] of pointer ; f lists of hyphen positions ghyph count : hyph pointer ; f the number of words in the exception dictionary g927. hLocal variables for initialization 19 i +�z: hyph pointer ; f runs through the exception dictionary g

x928 TEXGPC PART 42: HYPHENATION 351928. h Set initial values of key variables 21 i +�for z 0 to hyph size dobegin hyph word [z] 0; hyph list [z] null ;end;hyph count 0;929. The algorithm for exception lookup is quite simple, as soon as we have a few more local variables towork with.hLocal variables for hyphenation 901 i +�h: hyph pointer ; f an index into hyph word and hyph list gk: str number ; f an index into str start gu: pool pointer ; f an index into str pool g930. First we compute the hash code h, then we search until we either �nd the word or we don't. Wordsfrom di�erent languages are kept separate by appending the language code to the string.hLook for the word hc [1 : : hn] in the exception table, and goto found (with hyf containing the hyphens) ifan entry is found 930 i �h hc [1]; incr (hn); hc [hn] cur lang ;for j 2 to hn do h (h+ h+ hc [j])mod hyph size ;loop begin h If the string hyph word [h] is less than hc [1 : : hn], goto not found ; but if the two stringsare equal, set hyf to the hyphen positions and goto found 931 i;if h > 0 then decr (h) else h hyph size ;end;not found : decr (hn)This code is used in section 923.931. h If the string hyph word [h] is less than hc [1 : : hn], goto not found ; but if the two strings are equal,set hyf to the hyphen positions and goto found 931 i �k hyph word [h];if k = 0 then goto not found ;if length (k) < hn then goto not found ;if length (k) = hn thenbegin j 1; u str start [k];repeat if so (str pool [u]) < hc [j] then goto not found ;if so(str pool [u]) > hc [j] then goto done ;incr (j); incr (u);until j > hn ;h Insert hyphens as speci�ed in hyph list [h] 932 i;decr (hn); goto found ;end;done :This code is used in section 930.932. h Insert hyphens as speci�ed in hyph list [h] 932 i �s hyph list [h];while s 6= null dobegin hyf [info (s)] 1; s link (s);endThis code is used in section 931.

352 PART 42: HYPHENATION TEXGPC x933933. h Search hyph list for pointers to p 933 i �for q 0 to hyph size dobegin if hyph list [q] = p thenbegin print nl ("HYPH("); print int (q); print char (")");end;endThis code is used in section 172.934. We have now completed the hyphenation routine, so the line break procedure is �nished at last. Sincethe hyphenation exception table is fresh in our minds, it's a good time to deal with the routine that addsnew entries to it.When TEX has scanned `\hyphenation', it calls on a procedure named new hyph exceptions to do theright thing.de�ne set cur lang �if language � 0 then cur lang 0else if language > 255 then cur lang 0else cur lang languageprocedure new hyph exceptions ; f enters new exceptions glabel reswitch ; exit ; found ;not found ;var n: 0 : : 64; f length of current word; not always a small number gj: 0 : : 64; f an index into hc gh: hyph pointer ; f an index into hyph word and hyph list gk: str number ; f an index into str start gp: pointer ; f head of a list of hyphen positions gq: pointer ; f used when creating a new node for list p gs; t: str number ; f strings being compared or stored gu; v: pool pointer ; f indices into str pool gbegin scan left brace ; f a left brace must follow \hyphenationgset cur lang ;hEnter as many hyphenation exceptions as are listed, until coming to a right brace; then return 935 i;exit : end;935. hEnter as many hyphenation exceptions as are listed, until coming to a right brace; thenreturn 935 i �n 0; p null ;loop begin get x token ;reswitch : case cur cmd ofletter ; other char ; char given : hAppend a new letter or hyphen 937 i;char num : begin scan char num ; cur chr cur val ; cur cmd char given ; goto reswitch ;end;spacer ; right brace : begin if n > 1 then hEnter a hyphenation exception 939 i;if cur cmd = right brace then return;n 0; p null ;end;othercases hGive improper \hyphenation error 936 iendcases;endThis code is used in section 934.

x936 TEXGPC PART 42: HYPHENATION 353936. hGive improper \hyphenation error 936 i �begin print err ("Improper "); print esc("hyphenation"); print (" will be flushed");help2 ("Hyphenation exceptions must contain only letters")("and hyphens. But continue; I�ll forgive and forget."); error ;endThis code is used in section 935.937. hAppend a new letter or hyphen 937 i �if cur chr = "-" then hAppend the value n to list p 938 ielse begin if lc code (cur chr) = 0 thenbegin print err ("Not a letter");help2 ("Letters in \hyphenation words must have \lccode>0.")("Proceed; I�ll ignore the character I just read."); error ;endelse if n < 63 thenbegin incr (n); hc [n] lc code (cur chr);end;endThis code is used in section 935.938. hAppend the value n to list p 938 i �begin if n < 63 thenbegin q get avail ; link (q) p; info (q) n; p q;end;endThis code is used in section 937.939. hEnter a hyphenation exception 939 i �begin incr (n); hc [n] cur lang ; str room (n); h 0;for j 1 to n dobegin h (h+ h+ hc [j])mod hyph size ; append char (hc [j]);end;s make string ; h Insert the pair (s; p) into the exception table 940 i;endThis code is used in section 935.940. h Insert the pair (s; p) into the exception table 940 i �if hyph count = hyph size then overow ("exception dictionary"; hyph size);incr (hyph count);while hyph word [h] 6= 0 dobegin h If the string hyph word [h] is less than or equal to s, interchange (hyph word [h]; hyph list [h])with (s; p) 941 i;if h > 0 then decr (h) else h hyph size ;end;hyph word [h] s; hyph list [h] pThis code is used in section 939.

354 PART 42: HYPHENATION TEXGPC x941941. h If the string hyph word [h] is less than or equal to s, interchange (hyph word [h]; hyph list [h]) with(s; p) 941 i �k hyph word [h];if length (k) < length (s) then goto found ;if length (k) > length (s) then goto not found ;u str start [k]; v str start [s];repeat if str pool [u] < str pool [v] then goto found ;if str pool [u] > str pool [v] then goto not found ;incr (u); incr (v);until u = str start [k + 1];found : q hyph list [h]; hyph list [h] p; p q;t hyph word [h]; hyph word [h] s; s t;not found :This code is used in section 940.

x942 TEXGPC PART 43: INITIALIZING THE HYPHENATION TABLES 355942. Initializing the hyphenation tables. The trie for TEX's hyphenation algorithm is built from asequence of patterns following a \patterns speci�cation. Such a speci�cation is allowed only in INITEX,since the extra memory for auxiliary tables and for the initialization program itself would only clutter upthe production version of TEX with a lot of deadwood.The �rst step is to build a trie that is linked, instead of packed into sequential storage, so that insertionsare readily made. After all patterns have been processed, INITEX compresses the linked trie by identifyingcommon subtries. Finally the trie is packed into the e�cient sequential form that the hyphenation algorithmactually uses.hDeclare subprocedures for line break 826 i +�init hDeclare procedures for preprocessing hyphenation patterns 944 itini943. Before we discuss trie building in detail, let's consider the simpler problem of creating the hyf distance ,hyf num , and hyf next arrays.Suppose, for example, that TEX reads the pattern `ab2cde1'. This is a pattern of length 5, with n0 : : : n5 =00 2 0 0 1 in the notation above. We want the corresponding trie op code v to have hyf distance [v] = 3,hyf num [v] = 2, and hyf next [v] = v0, where the auxiliary trie op code v0 has hyf distance [v0] = 0,hyf num [v0] = 1, and hyf next [v0] = min quarterword .TEX computes an appropriate value v with the new trie op subroutine below, by settingv0 new trie op (0; 1;min quarterword), v new trie op (3; 2; v0).This subroutine looks up its three parameters in a special hash table, assigning a new value only if thesethree have not appeared before for the current language.The hash table is called trie op hash , and the number of entries it contains is trie op ptr .hGlobal variables 13 i +�init trie op hash : array [�trie op size : : trie op size] of 0 : : trie op size ;f trie op codes for quadruples gtrie used : array [ASCII code] of quarterword ; f largest opcode used so far for this language gtrie op lang : array [1 : : trie op size] of ASCII code ; f language part of a hashed quadruple gtrie op val : array [1 : : trie op size] of quarterword ; f opcode corresponding to a hashed quadruple gtrie op ptr : 0 : : trie op size ; f number of stored ops so far gtini

356 PART 43: INITIALIZING THE HYPHENATION TABLES TEXGPC x944944. It's tempting to remove the overow stops in the following procedure; new trie op could returnmin quarterword (thereby simply ignoring part of a hyphenation pattern) instead of aborting the job.However, that would lead to di�erent hyphenation results on di�erent installations of TEX using the samepatterns. The overow stops are necessary for portability of patterns.hDeclare procedures for preprocessing hyphenation patterns 944 i �function new trie op (d; n : small number ; v : quarterword): quarterword ;label exit ;var h: �trie op size : : trie op size ; f trial hash location gu: quarterword ; f trial op code gl: 0 : : trie op size ; f pointer to stored data gbegin h abs (n+ 313 � d+ 361 � v + 1009 � cur lang)mod (trie op size + trie op size)� trie op size ;loop begin l trie op hash [h];if l = 0 then f empty position found for a new op gbegin if trie op ptr = trie op size then overow ("pattern memory ops"; trie op size);u trie used [cur lang];if u = max quarterword thenoverow ("pattern memory ops per language";max quarterword �min quarterword);incr (trie op ptr); incr (u); trie used [cur lang] u; hyf distance [trie op ptr] d;hyf num [trie op ptr] n; hyf next [trie op ptr] v; trie op lang [trie op ptr] cur lang ;trie op hash [h] trie op ptr ; trie op val [trie op ptr] u; new trie op u; return;end;if (hyf distance [l] = d) ^ (hyf num [l] = n) ^ (hyf next [l] = v) ^ (trie op lang [l] = cur lang) thenbegin new trie op trie op val [l]; return;end;if h > �trie op size then decr (h) else h trie op size ;end;exit : end;See also sections 948, 949, 953, 957, 959, 960, and 966.This code is used in section 942.945. After new trie op has compressed the necessary opcode information, plenty of information is availableto unscramble the data into the �nal form needed by our hyphenation algorithm.h Sort the hyphenation op tables into proper order 945 i �op start [0] �min quarterword ;for j 1 to 255 do op start [j] op start [j � 1] + qo (trie used [j � 1]);for j 1 to trie op ptr do trie op hash [j] op start [trie op lang [j]] + trie op val [j]; f destination gfor j 1 to trie op ptr dowhile trie op hash [j] > j dobegin k trie op hash [j];t hyf distance [k]; hyf distance [k] hyf distance [j]; hyf distance [j] t;t hyf num [k]; hyf num [k] hyf num [j]; hyf num [j] t;t hyf next [k]; hyf next [k] hyf next [j]; hyf next [j] t;trie op hash [j] trie op hash [k]; trie op hash [k] k;endThis code is used in section 952.

x946 TEXGPC PART 43: INITIALIZING THE HYPHENATION TABLES 357946. Before we forget how to initialize the data structures that have been mentioned so far, let's writedown the code that gets them started.h Initialize table entries (done by INITEX only) 164 i +�for k �trie op size to trie op size do trie op hash [k] 0;for k 0 to 255 do trie used [k] min quarterword ;trie op ptr 0;947. The linked trie that is used to preprocess hyphenation patterns appears in several global arrays. Eachnode represents an instruction of the form \if you see character c, then perform operation o, move to thenext character, and go to node l; otherwise go to node r." The four quantities c, o, l, and r are stored in fourarrays trie c , trie o , trie l , and trie r . The root of the trie is trie l [0], and the number of nodes is trie ptr .Null trie pointers are represented by zero. To initialize the trie, we simply set trie l [0] and trie ptr to zero.We also set trie c [0] to some arbitrary value, since the algorithm may access it.The algorithms maintain the conditiontrie c [trie r [z]] > trie c [z] whenever z 6= 0 and trie r [z] 6= 0;in other words, sibling nodes are ordered by their c �elds.de�ne trie root � trie l [0] f root of the linked trie ghGlobal variables 13 i +�init trie c : packed array [trie pointer] of packed ASCII code ; f characters to match gtrie o : packed array [trie pointer] of quarterword ; f operations to perform gtrie l : packed array [trie pointer] of trie pointer ; f left subtrie links gtrie r : packed array [trie pointer] of trie pointer ; f right subtrie links gtrie ptr : trie pointer ; f the number of nodes in the trie gtrie hash : packed array [trie pointer] of trie pointer ; f used to identify equivalent subtries gtini948. Let us suppose that a linked trie has already been constructed. Experience shows that we can oftenreduce its size by recognizing common subtries; therefore another hash table is introduced for this purpose,somewhat similar to trie op hash . The new hash table will be initialized to zero.The function trie node (p) returns p if p is distinct from other nodes that it has seen, otherwise it returnsthe number of the �rst equivalent node that it has seen.Notice that we might make subtries equivalent even if they correspond to patterns for di�erent languages,in which the trie ops might mean quite di�erent things. That's perfectly all right.hDeclare procedures for preprocessing hyphenation patterns 944 i +�function trie node (p : trie pointer): trie pointer ; f converts to a canonical form glabel exit ;var h: trie pointer ; f trial hash location gq: trie pointer ; f trial trie node gbegin h abs (trie c [p] + 1009 � trie o [p] + 2718 � trie l [p] + 3142 � trie r [p])mod trie size ;loop begin q trie hash [h];if q = 0 thenbegin trie hash [h] p; trie node p; return;end;if (trie c [q] = trie c [p]) ^ (trie o [q] = trie o [p]) ^ (trie l [q] = trie l [p]) ^ (trie r [q] = trie r [p]) thenbegin trie node q; return;end;if h > 0 then decr (h) else h trie size ;end;exit : end;

358 PART 43: INITIALIZING THE HYPHENATION TABLES TEXGPC x949949. A neat recursive procedure is now able to compress a trie by traversing it and applying trie node toits nodes in \bottom up" fashion. We will compress the entire trie by clearing trie hash to zero and thensaying `trie root compress trie (trie root)'.hDeclare procedures for preprocessing hyphenation patterns 944 i +�function compress trie (p : trie pointer): trie pointer ;begin if p = 0 then compress trie 0else begin trie l [p] compress trie (trie l [p]); trie r [p] compress trie (trie r [p]);compress trie trie node (p);end;end;950. The compressed trie will be packed into the trie array using a \top-down �rst-�t" procedure. Thisis a little tricky, so the reader should pay close attention: The trie hash array is cleared to zero again andrenamed trie ref for this phase of the operation; later on, trie ref [p] will be nonzero only if the linked trienode p is the smallest character in a family and if the characters c of that family have been allocated tolocations trie ref [p] + c in the trie array. Locations of trie that are in use will have trie link = 0, whilethe unused holes in trie will be doubly linked with trie link pointing to the next larger vacant location andtrie back pointing to the next smaller one. This double linking will have been carried out only as far astrie max , where trie max is the largest index of trie that will be needed. To save time at the low end ofthe trie, we maintain array entries trie min [c] pointing to the smallest hole that is greater than c. Anotherarray trie taken tells whether or not a given location is equal to trie ref [p] for some p; this array is used toensure that distinct nodes in the compressed trie will have distinct trie ref entries.de�ne trie ref � trie hash fwhere linked trie families go into trie gde�ne trie back (#) � trie [#]:lh f backward links in trie holes ghGlobal variables 13 i +�init trie taken : packed array [1 : : trie size] of boolean ; f does a family start here? gtrie min : array [ASCII code] of trie pointer ; f the �rst possible slot for each character gtrie max : trie pointer ; f largest location used in trie gtrie not ready : boolean ; f is the trie still in linked form? gtini951. Each time \patterns appears, it contributes further patterns to the future trie, which will be builtonly when hyphenation is attempted or when a format �le is dumped. The boolean variable trie not readywill change to false when the trie is compressed; this will disable further patterns.h Initialize table entries (done by INITEX only) 164 i +�trie not ready true ; trie root 0; trie c [0] si (0); trie ptr 0;952. Here is how the trie-compression data structures are initialized. If storage is tight, it would be possibleto overlap trie op hash , trie op lang , and trie op val with trie , trie hash , and trie taken , because we �nishwith the former just before we need the latter.hGet ready to compress the trie 952 i �h Sort the hyphenation op tables into proper order 945 i;for p 0 to trie size do trie hash [p] 0;trie root compress trie (trie root); f identify equivalent subtries gfor p 0 to trie ptr do trie ref [p] 0;for p 0 to 255 do trie min [p] p+ 1;trie link (0) 1; trie max 0This code is used in section 966.

x953 TEXGPC PART 43: INITIALIZING THE HYPHENATION TABLES 359953. The �rst �t procedure �nds the smallest hole z in trie such that a trie family starting at a givennode p will �t into vacant positions starting at z. If c = trie c [p], this means that location z � c must notalready be taken by some other family, and that z� c+ c0 must be vacant for all characters c0 in the family.The procedure sets trie ref [p] to z � c when the �rst �t has been found.hDeclare procedures for preprocessing hyphenation patterns 944 i +�procedure �rst �t (p : trie pointer); f packs a family into trie glabel not found ; found ;var h: trie pointer ; f candidate for trie ref [p] gz: trie pointer ; f runs through holes gq: trie pointer ; f runs through the family starting at p gc: ASCII code ; f smallest character in the family gl; r: trie pointer ; f left and right neighbors gll : 1 : : 256; f upper limit of trie min updating gbegin c so (trie c [p]); z trie min [c]; f get the �rst conceivably good hole gloop begin h z � c;hEnsure that trie max � h+ 256 954 i;if trie taken [h] then goto not found ;h If all characters of the family �t relative to h, then goto found , otherwise goto not found 955 i;not found : z trie link (z); fmove to the next hole gend;found : hPack the family into trie relative to h 956 i;end;954. By making sure that trie max is at least h+256, we can be sure that trie max > z, since h = z� c.It follows that location trie max will never be occupied in trie , and we will have trie max � trie link (z).hEnsure that trie max � h+ 256 954 i �if trie max < h+ 256 thenbegin if trie size � h+ 256 then overow ("pattern memory"; trie size);repeat incr (trie max); trie taken [trie max] false ; trie link (trie max) trie max + 1;trie back (trie max) trie max � 1;until trie max = h+ 256;endThis code is used in section 953.955. h If all characters of the family �t relative to h, then goto found , otherwise goto not found 955 i �q trie r [p];while q > 0 dobegin if trie link (h+ so (trie c [q])) = 0 then goto not found ;q trie r [q];end;goto foundThis code is used in section 953.

360 PART 43: INITIALIZING THE HYPHENATION TABLES TEXGPC x956956. hPack the family into trie relative to h 956 i �trie taken [h] true ; trie ref [p] h; q p;repeat z h+ so(trie c [q]); l trie back (z); r trie link (z); trie back (r) l; trie link (l) r;trie link (z) 0;if l < 256 thenbegin if z < 256 then ll z else ll 256;repeat trie min [l] r; incr (l);until l = ll ;end;q trie r [q];until q = 0This code is used in section 953.957. To pack the entire linked trie, we use the following recursive procedure.hDeclare procedures for preprocessing hyphenation patterns 944 i +�procedure trie pack (p : trie pointer); f pack subtries of a family gvar q: trie pointer ; f a local variable that need not be saved on recursive calls gbegin repeat q trie l [p];if (q > 0) ^ (trie ref [q] = 0) thenbegin �rst �t (q); trie pack (q);end;p trie r [p];until p = 0;end;958. When the whole trie has been allocated into the sequential table, we must go through it once again sothat trie contains the correct information. Null pointers in the linked trie will be represented by the value 0,which properly implements an \empty" family.hMove the data into trie 958 i �h:rh 0; h:b0 min quarterword ; h:b1 min quarterword ;f trie link 0, trie op min quarterword , trie char qi (0) gif trie root = 0 then f no patterns were given gbegin for r 0 to 256 do trie [r] h;trie max 256;endelse begin trie �x (trie root); f this �xes the non-holes in trie gr 0; f now we will zero out all the holes grepeat s trie link (r); trie [r] h; r s;until r > trie max ;end;trie char (0) qi ("?"); fmake trie char (c) 6= c for all c gThis code is used in section 966.

x959 TEXGPC PART 43: INITIALIZING THE HYPHENATION TABLES 361959. The �xing-up procedure is, of course, recursive. Since the linked trie usually has overlapping subtries,the same data may be moved several times; but that causes no harm, and at most as much work is done asit took to build the uncompressed trie.hDeclare procedures for preprocessing hyphenation patterns 944 i +�procedure trie �x (p : trie pointer); fmoves p and its siblings into trie gvar q: trie pointer ; f a local variable that need not be saved on recursive calls gc: ASCII code ; f another one that need not be saved gz: trie pointer ; f trie reference; this local variable must be saved gbegin z trie ref [p];repeat q trie l [p]; c so (trie c [p]); trie link (z + c) trie ref [q]; trie char (z + c) qi (c);trie op (z + c) trie o [p];if q > 0 then trie �x (q);p trie r [p];until p = 0;end;960. Now let's go back to the easier problem, of building the linked trie. When INITEX has scanned the`\patterns' control sequence, it calls on new patterns to do the right thing.hDeclare procedures for preprocessing hyphenation patterns 944 i +�procedure new patterns ; f initializes the hyphenation pattern data glabel done ; done1 ;var k; l: 0 : : 64; f indices into hc and hyf ; not always in small number range gdigit sensed : boolean ; f should the next digit be treated as a letter? gv: quarterword ; f trie op code gp; q: trie pointer ; f nodes of trie traversed during insertion g�rst child : boolean ; f is p = trie l [q]? gc: ASCII code ; f character being inserted gbegin if trie not ready thenbegin set cur lang ; scan left brace ; f a left brace must follow \patternsghEnter all of the patterns into a linked trie, until coming to a right brace 961 i;endelse begin print err ("Too late for "); print esc("patterns");help1 ("All patterns must be given before typesetting begins."); error ;link (garbage) scan toks (false ; false); ush list (def ref);end;end;

362 PART 43: INITIALIZING THE HYPHENATION TABLES TEXGPC x961961. Novices are not supposed to be using \patterns, so the error messages are terse. (Note that all errormessages appear in TEX's string pool, even if they are used only by INITEX.)hEnter all of the patterns into a linked trie, until coming to a right brace 961 i �k 0; hyf [0] 0; digit sensed false ;loop begin get x token ;case cur cmd ofletter ; other char : hAppend a new letter or a hyphen level 962 i;spacer ; right brace : begin if k > 0 then h Insert a new pattern into the linked trie 963 i;if cur cmd = right brace then goto done ;k 0; hyf [0] 0; digit sensed false ;end;othercases begin print err ("Bad "); print esc("patterns"); help1 ("(See Appendix H.)"); error ;endendcases;end;done :This code is used in section 960.962. hAppend a new letter or a hyphen level 962 i �if digit sensed _ (cur chr < "0") _ (cur chr > "9") thenbegin if cur chr = "." then cur chr 0 f edge-of-word delimiter gelse begin cur chr lc code (cur chr);if cur chr = 0 thenbegin print err ("Nonletter"); help1 ("(See Appendix H.)"); error ;end;end;if k < 63 thenbegin incr (k); hc [k] cur chr ; hyf [k] 0; digit sensed false ;end;endelse if k < 63 thenbegin hyf [k] cur chr � "0"; digit sensed true ;endThis code is used in section 961.

x963 TEXGPC PART 43: INITIALIZING THE HYPHENATION TABLES 363963. When the following code comes into play, the pattern p1 : : : pk appears in hc [1 : : k], and thecorresponding sequence of numbers n0 : : : nk appears in hyf [0 : : k].h Insert a new pattern into the linked trie 963 i �begin hCompute the trie op code, v, and set l 0 965 i;q 0; hc [0] cur lang ;while l � k dobegin c hc [l]; incr (l); p trie l [q]; �rst child true ;while (p > 0) ^ (c > so (trie c [p])) dobegin q p; p trie r [q]; �rst child false ;end;if (p = 0) _ (c < so (trie c [p])) thenh Insert a new trie node between q and p, and make p point to it 964 i;q p; f now node q represents p1 : : : pl�1 gend;if trie o [q] 6= min quarterword thenbegin print err ("Duplicate pattern"); help1 ("(See Appendix H.)"); error ;end;trie o [q] v;endThis code is used in section 961.964. h Insert a new trie node between q and p, and make p point to it 964 i �begin if trie ptr = trie size then overow ("pattern memory"; trie size);incr (trie ptr); trie r [trie ptr] p; p trie ptr ; trie l [p] 0;if �rst child then trie l [q] p else trie r [q] p;trie c [p] si (c); trie o [p] min quarterword ;endThis code is used in section 963.965. hCompute the trie op code, v, and set l 0 965 i �if hc [1] = 0 then hyf [0] 0;if hc [k] = 0 then hyf [k] 0;l k; v min quarterword ;loop begin if hyf [l] 6= 0 then v new trie op (k � l; hyf [l]; v);if l > 0 then decr (l) else goto done1 ;end;done1 :This code is used in section 963.

364 PART 43: INITIALIZING THE HYPHENATION TABLES TEXGPC x966966. Finally we put everything together: Here is how the trie gets to its �nal, e�cient form. The followingpacking routine is rigged so that the root of the linked tree gets mapped into location 1 of trie , as requiredby the hyphenation algorithm. This happens because the �rst call of �rst �t will \take" location 1.hDeclare procedures for preprocessing hyphenation patterns 944 i +�procedure init trie ;var p: trie pointer ; f pointer for initialization gj; k; t: integer ; f all-purpose registers for initialization gr; s: trie pointer ; f used to clean up the packed trie gh: two halves ; f template used to zero out trie 's holes gbegin hGet ready to compress the trie 952 i;if trie root 6= 0 thenbegin �rst �t (trie root); trie pack (trie root);end;hMove the data into trie 958 i;trie not ready false ;end;

x967 TEXGPC PART 44: BREAKING VERTICAL LISTS INTO PAGES 365967. Breaking vertical lists into pages. The vsplit procedure, which implements TEX's \vsplitoperation, is considerably simpler than line break because it doesn't have to worry about hyphenation, andbecause its mission is to discover a single break instead of an optimum sequence of breakpoints. But beforewe get into the details of vsplit , we need to consider a few more basic things.968. A subroutine called prune page top takes a pointer to a vlist and returns a pointer to a modi�ed vlistin which all glue, kern, and penalty nodes have been deleted before the �rst box or rule node. However, the�rst box or rule is actually preceded by a newly created glue node designed so that the topmost baseline willbe at distance split top skip from the top, whenever this is possible without backspacing.In this routine and those that follow, we make use of the fact that a vertical list contains no characternodes, hence the type �eld exists for each node in the list.function prune page top (p : pointer): pointer ; f adjust top after page break gvar prev p : pointer ; f lags one step behind p gq: pointer ; f temporary variable for list manipulation gbegin prev p temp head ; link (temp head) p;while p 6= null docase type (p) ofhlist node ; vlist node ; rule node : h Insert glue for split top skip and set p null 969 i;whatsit node ;mark node ; ins node : begin prev p p; p link (prev p);end;glue node ; kern node ; penalty node : begin q p; p link (q); link (q) null ; link (prev p) p;ush node list (q);end;othercases confusion ("pruning")endcases;prune page top link (temp head);end;969. h Insert glue for split top skip and set p null 969 i �begin q new skip param (split top skip code); link (prev p) q; link (q) p;f now temp ptr = glue ptr (q) gif width (temp ptr) > height (p) then width (temp ptr) width (temp ptr)� height (p)else width (temp ptr) 0;p null ;endThis code is used in section 968.

366 PART 44: BREAKING VERTICAL LISTS INTO PAGES TEXGPC x970970. The next subroutine �nds the best place to break a given vertical list so as to obtain a box ofheight h, with maximum depth d. A pointer to the beginning of the vertical list is given, and a pointer tothe optimum breakpoint is returned. The list is e�ectively followed by a forced break, i.e., a penalty nodewith the eject penalty ; if the best break occurs at this arti�cial node, the value null is returned.An array of six scaled distances is used to keep track of the height from the beginning of the list to thecurrent place, just as in line break . In fact, we use one of the same arrays, only changing its name to reectits new signi�cance.de�ne active height � active width f new name for the six distance variables gde�ne cur height � active height [1] f the natural height gde�ne set height zero (#) � active height [#] 0 f initialize the height to zero gde�ne update heights = 90 f go here to record glue in the active height table gfunction vert break (p : pointer ; h; d : scaled): pointer ; f �nds optimum page break glabel done ;not found ; update heights ;var prev p : pointer ; f if p is a glue node, type (prev p) determines whether p is a legal breakpoint gq; r: pointer ; f glue speci�cations gpi : integer ; f penalty value gb: integer ; f badness at a trial breakpoint gleast cost : integer ; f the smallest badness plus penalties found so far gbest place : pointer ; f the most recent break that leads to least cost gprev dp : scaled ; f depth of previous box in the list gt: small number ; f type of the node following a kern gbegin prev p p; f an initial glue node is not a legal breakpoint gleast cost awful bad ; do all six (set height zero); prev dp 0;loop begin h If node p is a legal breakpoint, check if this break is the best known, and goto done if p isnull or if the page-so-far is already too full to accept more stu� 972 i;prev p p; p link (prev p);end;done : vert break best place ;end;971. A global variable best height plus depth will be set to the natural size of the box that corresponds tothe optimum breakpoint found by vert break . (This value is used by the insertion-splitting algorithm of thepage builder.)hGlobal variables 13 i +�best height plus depth : scaled ; f height of the best box, without stretching or shrinking g

x972 TEXGPC PART 44: BREAKING VERTICAL LISTS INTO PAGES 367972. A subtle point to be noted here is that the maximum depth d might be negative, so cur height andprev dp might need to be corrected even after a glue or kern node.h If node p is a legal breakpoint, check if this break is the best known, and goto done if p is null or if thepage-so-far is already too full to accept more stu� 972 i �if p = null then pi eject penaltyelse hUse node p to update the current height and depth measurements; if this node is not a legalbreakpoint, goto not found or update heights , otherwise set pi to the associated penalty at thebreak 973 i;hCheck if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-faris already too full 974 i;if (type (p) < glue node) _ (type (p) > kern node) then goto not found ;update heights : hUpdate the current height and depth measurements with respect to a glue or kernnode p 976 i;not found : if prev dp > d thenbegin cur height cur height + prev dp � d; prev dp d;end;This code is used in section 970.973. hUse node p to update the current height and depth measurements; if this node is not a legalbreakpoint, goto not found or update heights , otherwise set pi to the associated penalty at thebreak 973 i �case type (p) ofhlist node ; vlist node ; rule node : begincur height cur height + prev dp + height (p); prev dp depth (p); goto not found ;end;whatsit node : hProcess whatsit p in vert break loop, goto not found 1365 i;glue node : if precedes break (prev p) then pi 0else goto update heights ;kern node : begin if link (p) = null then t penalty nodeelse t type (link (p));if t = glue node then pi 0 else goto update heights ;end;penalty node : pi penalty (p);mark node ; ins node : goto not found ;othercases confusion ("vertbreak")endcasesThis code is used in section 972.

368 PART 44: BREAKING VERTICAL LISTS INTO PAGES TEXGPC x974974. de�ne deplorable � 100000 fmore than inf bad , but less than awful bad ghCheck if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-faris already too full 974 i �if pi < inf penalty thenbegin hCompute the badness, b, using awful bad if the box is too full 975 i;if b < awful bad thenif pi � eject penalty then b pielse if b < inf bad then b b+ pielse b deplorable ;if b � least cost thenbegin best place p; least cost b; best height plus depth cur height + prev dp ;end;if (b = awful bad) _ (pi � eject penalty) then goto done ;endThis code is used in section 972.975. hCompute the badness, b, using awful bad if the box is too full 975 i �if cur height < h thenif (active height [3] 6= 0) _ (active height [4] 6= 0) _ (active height [5] 6= 0) then b 0else b badness (h� cur height ; active height [2])else if cur height � h > active height [6] then b awful badelse b badness (cur height � h; active height [6])This code is used in section 974.976. Vertical lists that are subject to the vert break procedure should not contain in�nite shrinkability,since that would permit any amount of information to \�t" on one page.hUpdate the current height and depth measurements with respect to a glue or kern node p 976 i �if type (p) = kern node then q pelse begin q glue ptr (p);active height [2 + stretch order (q)] active height [2 + stretch order (q)] + stretch (q);active height [6] active height [6] + shrink (q);if (shrink order (q) 6= normal) ^ (shrink (q) 6= 0) thenbeginprint err ("Infinite glue shrinkage found in box being split");help4 ("The box you are \vsplitting contains some infinitely")("shrinkable glue, e.g., �\vss� or �\vskip 0pt minus 1fil�.")("Such glue doesn�t belong there; but you can safely proceed,")("since the offensive shrinkability has been made finite."); error ; r new spec (q);shrink order (r) normal ; delete glue ref (q); glue ptr (p) r; q r;end;end;cur height cur height + prev dp + width (q); prev dp 0This code is used in section 972.

x977 TEXGPC PART 44: BREAKING VERTICAL LISTS INTO PAGES 369977. Now we are ready to consider vsplit itself. Most of its work is accomplished by the two subroutinesthat we have just considered.Given the number of a vlist box n, and given a desired page height h, the vsplit function �nds the bestinitial segment of the vlist and returns a box for a page of height h. The remainder of the vlist, if any,replaces the original box, after removing glue and penalties and adjusting for split top skip . Mark nodesin the split-o� box are used to set the values of split �rst mark and split bot mark ; we use the fact thatsplit �rst mark = null if and only if split bot mark = null .The original box becomes \void" if and only if it has been entirely extracted. The extracted box is \void"if and only if the original box was void (or if it was, erroneously, an hlist box).function vsplit (n : eight bits ; h : scaled): pointer ; f extracts a page of height h from box n glabel exit ; done ;var v: pointer ; f the box to be split gp: pointer ; f runs through the vlist gq: pointer ; f points to where the break occurs gbegin v box (n);if split �rst mark 6= null thenbegin delete token ref (split �rst mark); split �rst mark null ; delete token ref (split bot mark);split bot mark null ;end;hDispense with trivial cases of void or bad boxes 978 i;q vert break (list ptr (v); h; split max depth);hLook at all the marks in nodes before the break, and set the �nal link to null at the break 979 i;q prune page top (q); p list ptr (v); free node (v; box node size);if q = null then box (n) null f the eq level of the box stays the same gelse box (n) vpack (q;natural);vsplit vpackage (p; h; exactly ; split max depth);exit : end;978. hDispense with trivial cases of void or bad boxes 978 i �if v = null thenbegin vsplit null ; return;end;if type (v) 6= vlist node thenbegin print err (""); print esc("vsplit"); print (" needs a "); print esc ("vbox");help2 ("The box you are trying to split is an \hbox.")("I can�t split such a box, so I�ll leave it alone."); error ; vsplit null ; return;endThis code is used in section 977.

370 PART 44: BREAKING VERTICAL LISTS INTO PAGES TEXGPC x979979. It's possible that the box begins with a penalty node that is the \best" break, so we must be carefulto handle this special case correctly.hLook at all the marks in nodes before the break, and set the �nal link to null at the break 979 i �p list ptr (v);if p = q then list ptr (v) nullelse loop begin if type (p) = mark node thenif split �rst mark = null thenbegin split �rst mark mark ptr (p); split bot mark split �rst mark ;token ref count (split �rst mark) token ref count (split �rst mark) + 2;endelse begin delete token ref (split bot mark); split bot mark mark ptr (p);add token ref (split bot mark);end;if link (p) = q thenbegin link (p) null ; goto done ;end;p link (p);end;done :This code is used in section 977.

x980 TEXGPC PART 45: THE PAGE BUILDER 371980. The page builder. When TEX appends new material to its main vlist in vertical mode, it uses amethod something like vsplit to decide where a page ends, except that the calculations are done \on line"as new items come in. The main complication in this process is that insertions must be put into their boxesand removed from the vlist, in a more-or-less optimum manner.We shall use the term \current page" for that part of the main vlist that is being considered as a candidatefor being broken o� and sent to the user's output routine. The current page starts at link (page head), andit ends at page tail . We have page head = page tail if this list is empty.Utter chaos would reign if the user kept changing page speci�cations while a page is being constructed,so the page builder keeps the pertinent speci�cations frozen as soon as the page receives its �rst box orinsertion. The global variable page contents is empty when the current page contains only mark nodes andcontent-less whatsit nodes; it is inserts only if the page contains only insertion nodes in addition to marksand whatsits. Glue nodes, kern nodes, and penalty nodes are discarded until a box or rule node appears, atwhich time page contents changes to box there . As soon as page contents becomes non-empty , the currentvsize and max depth are squirreled away into page goal and page max depth ; the latter values will be useduntil the page has been forwarded to the user's output routine. The \topskip adjustment is made whenpage contents changes to box there .Although page goal starts out equal to vsize , it is decreased by the scaled natural height-plus-depth of theinsertions considered so far, and by the \skip corrections for those insertions. Therefore it represents thesize into which the non-inserted material should �t, assuming that all insertions in the current page havebeen made.The global variables best page break and least page cost correspond respectively to the local variablesbest place and least cost in the vert break routine that we have already studied; i.e., they record the locationand value of the best place currently known for breaking the current page. The value of page goal at thetime of the best break is stored in best size .de�ne inserts only = 1 f page contents when an insert node has been contributed, but no boxes gde�ne box there = 2 f page contents when a box or rule has been contributed ghGlobal variables 13 i +�page tail : pointer ; f the �nal node on the current page gpage contents : empty : : box there ; fwhat is on the current page so far? gpage max depth : scaled ; fmaximum box depth on page being built gbest page break : pointer ; f break here to get the best page known so far gleast page cost : integer ; f the score for this currently best page gbest size : scaled ; f its page goal g

372 PART 45: THE PAGE BUILDER TEXGPC x981981. The page builder has another data structure to keep track of insertions. This is a list of four-word nodes, starting and ending at page ins head . That is, the �rst element of the list is node r1 =link (page ins head); node rj is followed by rj+1 = link (rj); and if there are n items we have rn+1 =page ins head . The subtype �eld of each node in this list refers to an insertion number; for example,`\insert 250' would correspond to a node whose subtype is qi (250) (the same as the subtype �eld of therelevant ins node). These subtype �elds are in increasing order, and subtype (page ins head) = qi (255), sopage ins head serves as a convenient sentinel at the end of the list. A record is present for each insertionnumber that appears in the current page.The type �eld in these nodes distinguishes two possibilities that might occur as we look ahead beforedeciding on the optimum page break. If type (r) = inserting , then height (r) contains the total of the height-plus-depth dimensions of the box and all its inserts seen so far. If type (r) = split up , then no more insertionswill be made into this box, because at least one previous insertion was too big to �t on the current page;broken ptr (r) points to the node where that insertion will be split, if TEX decides to split it, broken ins (r)points to the insertion node that was tentatively split, and height (r) includes also the natural height plusdepth of the part that would be split o�.In both cases, last ins ptr (r) points to the last ins node encountered for box qo (subtype (r)) that would beat least partially inserted on the next page; and best ins ptr (r) points to the last such ins node that shouldactually be inserted, to get the page with minimum badness among all page breaks considered so far. Wehave best ins ptr (r) = null if and only if no insertion for this box should be made to produce this optimumpage.The data structure de�nitions here use the fact that the height �eld appears in the fourth word of a boxnode.de�ne page ins node size = 4 f number of words for a page insertion node gde�ne inserting = 0 f an insertion class that has not yet overowed gde�ne split up = 1 f an overowed insertion class gde�ne broken ptr (#) � link (#+ 1) f an insertion for this class will break here if anywhere gde�ne broken ins (#) � info (#+ 1) f this insertion might break at broken ptr gde�ne last ins ptr (#) � link (#+ 2) f the most recent insertion for this subtype gde�ne best ins ptr (#) � info (#+ 2) f the optimum most recent insertion gh Initialize the special list heads and constant nodes 790 i +�subtype (page ins head) qi (255); type (page ins head) split up ; link (page ins head) page ins head ;

x982 TEXGPC PART 45: THE PAGE BUILDER 373982. An array page so far records the heights and depths of everything on the current page. This arraycontains six scaled numbers, like the similar arrays already considered in line break and vert break ; and italso contains page goal and page depth , since these values are all accessible to the user via set page dimencommands. The value of page so far [1] is also called page total . The stretch and shrink components of the\skip corrections for each insertion are included in page so far , but the natural space components of thesecorrections are not, since they have been subtracted from page goal .The variable page depth records the depth of the current page; it has been adjusted so that it is at mostpage max depth . The variable last glue points to the glue speci�cation of the most recent node contributedfrom the contribution list, if this was a glue node; otherwise last glue = max halfword . (If the contributionlist is nonempty, however, the value of last glue is not necessarily accurate.) The variables last penalty andlast kern are similar. And �nally, insert penalties holds the sum of the penalties associated with all splitand oating insertions.de�ne page goal � page so far [0] f desired height of information on page being built gde�ne page total � page so far [1] f height of the current page gde�ne page shrink � page so far [6] f shrinkability of the current page gde�ne page depth � page so far [7] f depth of the current page ghGlobal variables 13 i +�page so far : array [0 : : 7] of scaled ; f height and glue of the current page glast glue : pointer ; f used to implement \lastskipglast penalty : integer ; f used to implement \lastpenaltyglast kern : scaled ; f used to implement \lastkernginsert penalties : integer ; f sum of the penalties for held-over insertions g983. hPut each of TEX's primitives into the hash table 226 i +�primitive ("pagegoal"; set page dimen ; 0); primitive ("pagetotal"; set page dimen ; 1);primitive ("pagestretch"; set page dimen ; 2); primitive ("pagefilstretch"; set page dimen ; 3);primitive ("pagefillstretch"; set page dimen ; 4); primitive ("pagefilllstretch"; set page dimen ; 5);primitive ("pageshrink"; set page dimen ; 6); primitive ("pagedepth"; set page dimen ; 7);984. hCases of print cmd chr for symbolic printing of primitives 227 i +�set page dimen : case chr code of0: print esc ("pagegoal");1: print esc ("pagetotal");2: print esc ("pagestretch");3: print esc ("pagefilstretch");4: print esc ("pagefillstretch");5: print esc ("pagefilllstretch");6: print esc ("pageshrink");othercases print esc ("pagedepth")endcases;

374 PART 45: THE PAGE BUILDER TEXGPC x985985. de�ne print plus end (#) � print (#); endde�ne print plus (#) �if page so far [#] 6= 0 thenbegin print (" plus "); print scaled (page so far [#]); print plus endprocedure print totals ;begin print scaled (page total); print plus (2)(""); print plus (3)("fil"); print plus (4)("fill");print plus (5)("filll");if page shrink 6= 0 thenbegin print (" minus "); print scaled (page shrink);end;end;986. h Show the status of the current page 986 i �if page head 6= page tail thenbegin print nl ("### current page:");if output active then print (" (held over for next output)");show box (link (page head));if page contents > empty thenbegin print nl ("total height "); print totals ; print nl (" goal height ");print scaled (page goal); r link (page ins head);while r 6= page ins head dobegin print ln ; print esc("insert"); t qo (subtype (r)); print int (t); print (" adds ");if count (t) = 1000 then t height (r)else t x over n (height (r); 1000) � count (t);print scaled (t);if type (r) = split up thenbegin q page head ; t 0;repeat q link (q);if (type (q) = ins node) ^ (subtype (q) = subtype (r)) then incr (t);until q = broken ins (r);print (", #"); print int (t); print (" might split");end;r link (r);end;end;endThis code is used in section 218.987. Here is a procedure that is called when the page contents is changing from empty to inserts only orbox there .de�ne set page so far zero (#) � page so far [#] 0procedure freeze page specs (s : small number);begin page contents s; page goal vsize ; page max depth max depth ; page depth 0;do all six (set page so far zero); least page cost awful bad ;stat if tracing pages > 0 thenbegin begin diagnostic ; print nl ("%% goal height="); print scaled (page goal);print (", max depth="); print scaled (page max depth); end diagnostic (false);end; tatsend;

x988 TEXGPC PART 45: THE PAGE BUILDER 375988. Pages are built by appending nodes to the current list in TEX's vertical mode, which is at theoutermost level of the semantic nest. This vlist is split into two parts; the \current page" that we have beentalking so much about already, and the \contribution list" that receives new nodes as they are created. Thecurrent page contains everything that the page builder has accounted for in its data structures, as describedabove, while the contribution list contains other things that have been generated by other parts of TEX buthave not yet been seen by the page builder. The contribution list starts at link (contrib head), and it endsat the current node in TEX's vertical mode.When TEX has appended new material in vertical mode, it calls the procedure build page , which tries tocatch up by moving nodes from the contribution list to the current page. This procedure will succeed in itsgoal of emptying the contribution list, unless a page break is discovered, i.e., unless the current page hasgrown to the point where the optimum next page break has been determined. In the latter case, the nodesafter the optimum break will go back onto the contribution list, and control will e�ectively pass to the user'soutput routine.We make type (page head) = glue node , so that an initial glue node on the current page will not beconsidered a valid breakpoint.h Initialize the special list heads and constant nodes 790 i +�type (page head) glue node ; subtype (page head) normal ;989. The global variable output active is true during the time the user's output routine is driving TEX.hGlobal variables 13 i +�output active : boolean ; f are we in the midst of an output routine? g990. h Set initial values of key variables 21 i +�output active false ; insert penalties 0;991. The page builder is ready to start a fresh page if we initialize the following state variables. (However,the page insertion list is initialized elsewhere.)h Start a new current page 991 i �page contents empty ; page tail page head ; link (page head) null ;last glue max halfword ; last penalty 0; last kern 0; page depth 0; page max depth 0This code is used in sections 215 and 1017.992. At certain times box 255 is supposed to be void (i.e., null), or an insertion box is supposed to beready to accept a vertical list. If not, an error message is printed, and the following subroutine ushes theunwanted contents, reporting them to the user.procedure box error (n : eight bits);begin error ; begin diagnostic ; print nl ("The following box has been deleted:");show box (box (n)); end diagnostic (true); ush node list (box (n)); box (n) null ;end;

376 PART 45: THE PAGE BUILDER TEXGPC x993993. The following procedure guarantees that a given box register does not contain an \hbox.procedure ensure vbox (n : eight bits);var p: pointer ; f the box register contents gbegin p box (n);if p 6= null thenif type (p) = hlist node thenbegin print err ("Insertions can only be added to a vbox");help3 ("Tut tut: You�re trying to \insert into a")("\box register that now contains an \hbox.")("Proceed, and I�ll discard its present contents."); box error (n);end;end;994. TEX is not always in vertical mode at the time build page is called; the current mode reects what TEXshould return to, after the contribution list has been emptied. A call on build page should be immediatelyfollowed by `goto big switch ', which is TEX's central control point.de�ne contribute = 80 f go here to link a node into the current page ghDeclare the procedure called �re up 1012 iprocedure build page ; f append contributions to the current page glabel exit ; done ; done1 ; continue ; contribute ; update heights ;var p: pointer ; f the node being appended gq; r: pointer ; f nodes being examined gb; c: integer ; f badness and cost of current page gpi : integer ; f penalty to be added to the badness gn: min quarterword : : 255; f insertion box number gdelta ; h; w: scaled ; f sizes used for insertion calculations gbegin if (link (contrib head) = null) _ output active then return;repeat continue : p link (contrib head);hUpdate the values of last glue , last penalty , and last kern 996 i;hMove node p to the current page; if it is time for a page break, put the nodes following the breakback onto the contribution list, and return to the user's output routine if there is one 997 i;until link (contrib head) = null ;hMake the contribution list empty by setting its tail to contrib head 995 i;exit : end;995. de�ne contrib tail � nest [0]:tail �eld f tail of the contribution list ghMake the contribution list empty by setting its tail to contrib head 995 i �if nest ptr = 0 then tail contrib head f vertical mode gelse contrib tail contrib head f other modes gThis code is used in section 994.

x996 TEXGPC PART 45: THE PAGE BUILDER 377996. hUpdate the values of last glue , last penalty , and last kern 996 i �if last glue 6= max halfword then delete glue ref (last glue);last penalty 0; last kern 0;if type (p) = glue node thenbegin last glue glue ptr (p); add glue ref (last glue);endelse begin last glue max halfword ;if type (p) = penalty node then last penalty penalty (p)else if type (p) = kern node then last kern width (p);endThis code is used in section 994.997. The code here is an example of a many-way switch into routines that merge together in di�erentplaces. Some people call this unstructured programming, but the author doesn't see much wrong with it, aslong as the various labels have a well-understood meaning.hMove node p to the current page; if it is time for a page break, put the nodes following the break backonto the contribution list, and return to the user's output routine if there is one 997 i �h If the current page is empty and node p is to be deleted, goto done1 ; otherwise use node p to updatethe state of the current page; if this node is an insertion, goto contribute ; otherwise if this node isnot a legal breakpoint, goto contribute or update heights ; otherwise set pi to the penalty associatedwith this breakpoint 1000 i;hCheck if node p is a new champion breakpoint; then if it is time for a page break, prepare for output,and either �re up the user's output routine and return or ship out the page and goto done 1005 i;if (type (p) < glue node) _ (type (p) > kern node) then goto contribute ;update heights : hUpdate the current page measurements with respect to the glue or kern speci�ed bynode p 1004 i;contribute : hMake sure that page max depth is not exceeded 1003 i;hLink node p into the current page and goto done 998 i;done1 : hRecycle node p 999 i;done :This code is used in section 994.998. hLink node p into the current page and goto done 998 i �link (page tail) p; page tail p; link (contrib head) link (p); link (p) null ; goto doneThis code is used in section 997.999. hRecycle node p 999 i �link (contrib head) link (p); link (p) null ; ush node list (p)This code is used in section 997.

378 PART 45: THE PAGE BUILDER TEXGPC x10001000. The title of this section is already so long, it seems best to avoid making it more accurate but stilllonger, by mentioning the fact that a kern node at the end of the contribution list will not be contributeduntil we know its successor.h If the current page is empty and node p is to be deleted, goto done1 ; otherwise use node p to update thestate of the current page; if this node is an insertion, goto contribute ; otherwise if this node is not alegal breakpoint, goto contribute or update heights ; otherwise set pi to the penalty associated withthis breakpoint 1000 i �case type (p) ofhlist node ; vlist node ; rule node : if page contents < box there thenh Initialize the current page, insert the \topskip glue ahead of p, and goto continue 1001 ielse hPrepare to move a box or rule node to the current page, then goto contribute 1002 i;whatsit node : hPrepare to move whatsit p to the current page, then goto contribute 1364 i;glue node : if page contents < box there then goto done1else if precedes break (page tail) then pi 0else goto update heights ;kern node : if page contents < box there then goto done1else if link (p) = null then returnelse if type (link (p)) = glue node then pi 0else goto update heights ;penalty node : if page contents < box there then goto done1 else pi penalty (p);mark node : goto contribute ;ins node : hAppend an insertion to the current page and goto contribute 1008 i;othercases confusion ("page")endcasesThis code is used in section 997.1001. h Initialize the current page, insert the \topskip glue ahead of p, and goto continue 1001 i �begin if page contents = empty then freeze page specs (box there)else page contents box there ;q new skip param (top skip code); f now temp ptr = glue ptr (q) gif width (temp ptr) > height (p) then width (temp ptr) width (temp ptr)� height (p)else width (temp ptr) 0;link (q) p; link (contrib head) q; goto continue ;endThis code is used in section 1000.1002. hPrepare to move a box or rule node to the current page, then goto contribute 1002 i �begin page total page total + page depth + height (p); page depth depth (p); goto contribute ;endThis code is used in section 1000.1003. hMake sure that page max depth is not exceeded 1003 i �if page depth > page max depth thenbegin page total page total + page depth � page max depth ;page depth page max depth ;end;This code is used in section 997.

x1004 TEXGPC PART 45: THE PAGE BUILDER 3791004. hUpdate the current page measurements with respect to the glue or kern speci�ed by node p 1004 i �if type (p) = kern node then q pelse begin q glue ptr (p);page so far [2 + stretch order (q)] page so far [2 + stretch order (q)] + stretch (q);page shrink page shrink + shrink (q);if (shrink order (q) 6= normal) ^ (shrink (q) 6= 0) thenbeginprint err ("Infinite glue shrinkage found on current page");help4 ("The page about to be output contains some infinitely")("shrinkable glue, e.g., �\vss� or �\vskip 0pt minus 1fil�.")("Such glue doesn�t belong there; but you can safely proceed,")("since the offensive shrinkability has been made finite."); error ; r new spec (q);shrink order (r) normal ; delete glue ref (q); glue ptr (p) r; q r;end;end;page total page total + page depth + width (q); page depth 0This code is used in section 997.1005. hCheck if node p is a new champion breakpoint; then if it is time for a page break, prepare foroutput, and either �re up the user's output routine and return or ship out the page and gotodone 1005 i �if pi < inf penalty thenbegin hCompute the badness, b, of the current page, using awful bad if the box is too full 1007 i;if b < awful bad thenif pi � eject penalty then c pielse if b < inf bad then c b+ pi + insert penaltieselse c deplorableelse c b;if insert penalties � 10000 then c awful bad ;stat if tracing pages > 0 then hDisplay the page break cost 1006 i;tatsif c � least page cost thenbegin best page break p; best size page goal ; least page cost c; r link (page ins head);while r 6= page ins head dobegin best ins ptr (r) last ins ptr (r); r link (r);end;end;if (c = awful bad) _ (pi � eject penalty) thenbegin �re up(p); f output the current page at the best place gif output active then return; f user's output routine will act ggoto done ; f the page has been shipped out by default output routine gend;endThis code is used in section 997.

380 PART 45: THE PAGE BUILDER TEXGPC x10061006. hDisplay the page break cost 1006 i �begin begin diagnostic ; print nl ("%"); print (" t="); print totals ;print (" g="); print scaled (page goal);print (" b=");if b = awful bad then print char ("*") else print int (b);print (" p="); print int (pi); print (" c=");if c = awful bad then print char ("*") else print int (c);if c � least page cost then print char ("#");end diagnostic (false);endThis code is used in section 1005.1007. hCompute the badness, b, of the current page, using awful bad if the box is too full 1007 i �if page total < page goal thenif (page so far [3] 6= 0) _ (page so far [4] 6= 0) _ (page so far [5] 6= 0) then b 0else b badness (page goal � page total ; page so far [2])else if page total � page goal > page shrink then b awful badelse b badness (page total � page goal ; page shrink)This code is used in section 1005.1008. hAppend an insertion to the current page and goto contribute 1008 i �begin if page contents = empty then freeze page specs (inserts only);n subtype (p); r page ins head ;while n � subtype (link (r)) do r link (r);n qo (n);if subtype (r) 6= qi (n) then hCreate a page insertion node with subtype (r) = qi (n), and include the gluecorrection for box n in the current page state 1009 i;if type (r) = split up then insert penalties insert penalties + oat cost (p)else begin last ins ptr (r) p; delta page goal � page total � page depth + page shrink ;f this much room is left if we shrink the maximum gif count (n) = 1000 then h height (p)else h x over n (height (p); 1000) � count (n); f this much room is needed gif ((h � 0) _ (h � delta)) ^ (height (p) + height (r) � dimen (n)) thenbegin page goal page goal � h; height (r) height (r) + height (p);endelse hFind the best way to split the insertion, and change type (r) to split up 1010 i;end;goto contribute ;endThis code is used in section 1000.

x1009 TEXGPC PART 45: THE PAGE BUILDER 3811009. We take note of the value of \skip n and the height plus depth of \box n only when the �rst\insert n node is encountered for a new page. A user who changes the contents of \box n after that �rst\insert n had better be either extremely careful or extremely lucky, or both.hCreate a page insertion node with subtype (r) = qi (n), and include the glue correction for box n in thecurrent page state 1009 i �begin q get node (page ins node size); link (q) link (r); link (r) q; r q; subtype (r) qi (n);type (r) inserting ; ensure vbox (n);if box (n) = null then height (r) 0else height (r) height (box (n)) + depth (box (n));best ins ptr (r) null ;q skip (n);if count (n) = 1000 then h height (r)else h x over n (height (r); 1000) � count (n);page goal page goal � h� width (q);page so far [2 + stretch order (q)] page so far [2 + stretch order (q)] + stretch (q);page shrink page shrink + shrink (q);if (shrink order (q) 6= normal) ^ (shrink (q) 6= 0) thenbegin print err ("Infinite glue shrinkage inserted from "); print esc("skip"); print int (n);help3 ("The correction glue for page breaking with insertions")("must have finite shrinkability. But you may proceed,")("since the offensive shrinkability has been made finite."); error ;end;endThis code is used in section 1008.1010. Here is the code that will split a long footnote between pages, in an emergency. The current situationdeserves to be recapitulated: Node p is an insertion into box n; the insertion will not �t, in its entirety, eitherbecause it would make the total contents of box n greater than \dimen n, or because it would make theincremental amount of growth h greater than the available space delta , or both. (This amount h has beenweighted by the insertion scaling factor, i.e., by \count n over 1000.) Now we will choose the best way tobreak the vlist of the insertion, using the same criteria as in the \vsplit operation.hFind the best way to split the insertion, and change type (r) to split up 1010 i �begin if count (n) � 0 then w max dimenelse begin w page goal � page total � page depth ;if count (n) 6= 1000 then w x over n (w; count (n)) � 1000;end;if w > dimen (n)� height (r) then w dimen (n)� height (r);q vert break (ins ptr (p); w; depth (p)); height (r) height (r) + best height plus depth ;stat if tracing pages > 0 then hDisplay the insertion split cost 1011 i;tatsif count (n) 6= 1000 then best height plus depth x over n (best height plus depth ; 1000) � count (n);page goal page goal � best height plus depth ; type (r) split up ; broken ptr (r) q;broken ins (r) p;if q = null then insert penalties insert penalties + eject penaltyelse if type (q) = penalty node then insert penalties insert penalties + penalty (q);endThis code is used in section 1008.

382 PART 45: THE PAGE BUILDER TEXGPC x10111011. hDisplay the insertion split cost 1011 i �begin begin diagnostic ; print nl ("% split"); print int (n); print (" to "); print scaled (w);print char (","); print scaled (best height plus depth);print (" p=");if q = null then print int (eject penalty)else if type (q) = penalty node then print int (penalty (q))else print char ("0");end diagnostic (false);endThis code is used in section 1010.1012. When the page builder has looked at as much material as could appear before the next page break,it makes its decision. The break that gave minimum badness will be used to put a completed \page" intobox 255, with insertions appended to their other boxes.We also set the values of top mark , �rst mark , and bot mark . The program uses the fact that bot mark 6=null implies �rst mark 6= null ; it also knows that bot mark = null implies top mark = �rst mark = null .The �re up subroutine prepares to output the current page at the best place; then it �res up the user'soutput routine, if there is one, or it simply ships out the page. There is one parameter, c, which representsthe node that was being contributed to the page when the decision to force an output was made.hDeclare the procedure called �re up 1012 i �procedure �re up (c : pointer);label exit ;var p; q; r; s: pointer ; f nodes being examined and/or changed gprev p : pointer ; f predecessor of p gn: min quarterword : : 255; f insertion box number gwait : boolean ; f should the present insertion be held over? gsave vbadness : integer ; f saved value of vbadness gsave vfuzz : scaled ; f saved value of vfuzz gsave split top skip : pointer ; f saved value of split top skip gbegin h Set the value of output penalty 1013 i;if bot mark 6= null thenbegin if top mark 6= null then delete token ref (top mark);top mark bot mark ; add token ref (top mark); delete token ref (�rst mark); �rst mark null ;end;hPut the optimal current page into box 255, update �rst mark and bot mark , append insertions to theirboxes, and put the remaining nodes back on the contribution list 1014 i;if (top mark 6= null) ^ (�rst mark = null) thenbegin �rst mark top mark ; add token ref (top mark);end;if output routine 6= null thenif dead cycles � max dead cycles thenhExplain that too many dead cycles have occurred in a row 1024 ielse hFire up the user's output routine and return 1025 i;hPerform the default output routine 1023 i;exit : end;This code is used in section 994.

x1013 TEXGPC PART 45: THE PAGE BUILDER 3831013. h Set the value of output penalty 1013 i �if type (best page break) = penalty node thenbegin geq word de�ne (int base + output penalty code ; penalty (best page break));penalty (best page break) inf penalty ;endelse geq word de�ne (int base + output penalty code ; inf penalty)This code is used in section 1012.1014. As the page is �nally being prepared for output, pointer p runs through the vlist, with prev p trailingbehind; pointer q is the tail of a list of insertions that are being held over for a subsequent page.hPut the optimal current page into box 255, update �rst mark and bot mark , append insertions to theirboxes, and put the remaining nodes back on the contribution list 1014 i �if c = best page break then best page break null ; f c not yet linked in ghEnsure that box 255 is empty before output 1015 i;insert penalties 0; f this will count the number of insertions held over gsave split top skip split top skip ;if holding inserts � 0 then hPrepare all the boxes involved in insertions to act as queues 1018 i;q hold head ; link (q) null ; prev p page head ; p link (prev p);while p 6= best page break dobegin if type (p) = ins node thenbegin if holding inserts � 0 then hEither insert the material speci�ed by node p into theappropriate box, or hold it for the next page; also delete node p from the current page 1020 i;endelse if type (p) = mark node then hUpdate the values of �rst mark and bot mark 1016 i;prev p p; p link (prev p);end;split top skip save split top skip ; hBreak the current page at node p, put it in box 255, and put theremaining nodes on the contribution list 1017 i;hDelete the page-insertion nodes 1019 iThis code is used in section 1012.1015. hEnsure that box 255 is empty before output 1015 i �if box (255) 6= null thenbegin print err (""); print esc("box"); print ("255 is not void");help2 ("You shouldn�t use \box255 except in \output routines.")("Proceed, and I�ll discard its present contents."); box error (255);endThis code is used in section 1014.1016. hUpdate the values of �rst mark and bot mark 1016 i �begin if �rst mark = null thenbegin �rst mark mark ptr (p); add token ref (�rst mark);end;if bot mark 6= null then delete token ref (bot mark);bot mark mark ptr (p); add token ref (bot mark);endThis code is used in section 1014.

384 PART 45: THE PAGE BUILDER TEXGPC x10171017. When the following code is executed, the current page runs from node link (page head) to nodeprev p , and the nodes from p to page tail are to be placed back at the front of the contribution list.Furthermore the heldover insertions appear in a list from link (hold head) to q; we will put them into thecurrent page list for safekeeping while the user's output routine is active. We might have q = hold head ; andp = null if and only if prev p = page tail . Error messages are suppressed within vpackage , since the boxmight appear to be overfull or underfull simply because the stretch and shrink from the \skip registers forinserts are not actually present in the box.hBreak the current page at node p, put it in box 255, and put the remaining nodes on the contributionlist 1017 i �if p 6= null thenbegin if link (contrib head) = null thenif nest ptr = 0 then tail page tailelse contrib tail page tail ;link (page tail) link (contrib head); link (contrib head) p; link (prev p) null ;end;save vbadness vbadness ; vbadness inf bad ; save vfuzz vfuzz ; vfuzz max dimen ;f inhibit error messages gbox (255) vpackage (link (page head); best size ; exactly ; page max depth); vbadness save vbadness ;vfuzz save vfuzz ;if last glue 6= max halfword then delete glue ref (last glue);h Start a new current page 991 i; f this sets last glue max halfword gif q 6= hold head thenbegin link (page head) link (hold head); page tail q;endThis code is used in section 1014.1018. If many insertions are supposed to go into the same box, we want to know the position of thelast node in that box, so that we don't need to waste time when linking further information into it. Thelast ins ptr �elds of the page insertion nodes are therefore used for this purpose during the packaging phase.hPrepare all the boxes involved in insertions to act as queues 1018 i �begin r link (page ins head);while r 6= page ins head dobegin if best ins ptr (r) 6= null thenbegin n qo (subtype (r)); ensure vbox (n);if box (n) = null then box (n) new null box ;p box (n) + list o�set ;while link (p) 6= null do p link (p);last ins ptr (r) p;end;r link (r);end;endThis code is used in section 1014.1019. hDelete the page-insertion nodes 1019 i �r link (page ins head);while r 6= page ins head dobegin q link (r); free node (r; page ins node size); r q;end;link (page ins head) page ins headThis code is used in section 1014.

x1020 TEXGPC PART 45: THE PAGE BUILDER 3851020. We will set best ins ptr null and package the box corresponding to insertion node r, just aftermaking the �nal insertion into that box. If this �nal insertion is `split up ', the remainder after splitting andpruning (if any) will be carried over to the next page.hEither insert the material speci�ed by node p into the appropriate box, or hold it for the next page; alsodelete node p from the current page 1020 i �begin r link (page ins head);while subtype (r) 6= subtype (p) do r link (r);if best ins ptr (r) = null then wait trueelse begin wait false ; s last ins ptr (r); link (s) ins ptr (p);if best ins ptr (r) = p then hWrap up the box speci�ed by node r, splitting node p if called for; setwait true if node p holds a remainder after splitting 1021 ielse begin while link (s) 6= null do s link (s);last ins ptr (r) s;end;end;hEither append the insertion node p after node q, and remove it from the current page, or deletenode (p) 1022 i;endThis code is used in section 1014.1021. hWrap up the box speci�ed by node r, splitting node p if called for; set wait true if node pholds a remainder after splitting 1021 i �begin if type (r) = split up thenif (broken ins (r) = p) ^ (broken ptr (r) 6= null) thenbegin while link (s) 6= broken ptr (r) do s link (s);link (s) null ; split top skip split top ptr (p); ins ptr (p) prune page top (broken ptr (r));if ins ptr (p) 6= null thenbegin temp ptr vpack (ins ptr (p);natural); height (p) height (temp ptr) + depth (temp ptr);free node (temp ptr ; box node size); wait true ;end;end;best ins ptr (r) null ; n qo (subtype (r)); temp ptr list ptr (box (n));free node (box (n); box node size); box (n) vpack (temp ptr ;natural);endThis code is used in section 1020.1022. hEither append the insertion node p after node q, and remove it from the current page, or deletenode (p) 1022 i �link (prev p) link (p); link (p) null ;if wait thenbegin link (q) p; q p; incr (insert penalties);endelse begin delete glue ref (split top ptr (p)); free node (p; ins node size);end;p prev pThis code is used in section 1020.

386 PART 45: THE PAGE BUILDER TEXGPC x10231023. The list of heldover insertions, running from link (page head) to page tail , must be moved to thecontribution list when the user has speci�ed no output routine.hPerform the default output routine 1023 i �begin if link (page head) 6= null thenbegin if link (contrib head) = null thenif nest ptr = 0 then tail page tail else contrib tail page tailelse link (page tail) link (contrib head);link (contrib head) link (page head); link (page head) null ; page tail page head ;end;ship out (box (255)); box (255) null ;endThis code is used in section 1012.1024. hExplain that too many dead cycles have occurred in a row 1024 i �begin print err ("Output loop---"); print int (dead cycles); print (" consecutive dead cycles");help3 ("I�ve concluded that your \output is awry; it never does a")("\shipout, so I�m shipping \box255 out myself. Next time")("increase \maxdeadcycles if you want me to be more patient!"); error ;endThis code is used in section 1012.1025. hFire up the user's output routine and return 1025 i �begin output active true ; incr (dead cycles); push nest ; mode �vmode ;prev depth ignore depth ; mode line �line ; begin token list (output routine ; output text);new save level (output group); normal paragraph ; scan left brace ; return;endThis code is used in section 1012.1026. When the user's output routine �nishes, it has constructed a vlist in internal vertical mode, andTEX will do the following:hResume the page builder after an output routine has come to an end 1026 i �begin if (loc 6= null) _ ((token type 6= output text) ^ (token type 6= backed up)) thenhRecover from an unbalanced output routine 1027 i;end token list ; f conserve stack space in case more outputs are triggered gend graf ; unsave ; output active false ; insert penalties 0;hEnsure that box 255 is empty after output 1028 i;if tail 6= head then f current list goes after heldover insertions gbegin link (page tail) link (head); page tail tail ;end;if link (page head) 6= null then f and both go before heldover contributions gbegin if link (contrib head) = null then contrib tail page tail ;link (page tail) link (contrib head); link (contrib head) link (page head); link (page head) null ;page tail page head ;end;pop nest ; build page ;endThis code is used in section 1100.

x1027 TEXGPC PART 45: THE PAGE BUILDER 3871027. hRecover from an unbalanced output routine 1027 i �begin print err ("Unbalanced output routine");help2 ("Your sneaky output routine has problematic {�s and/or }�s.")("I can�t handle that very well; good luck."); error ;repeat get token ;until loc = null ;end f loops forever if reading from a �le, since null = min halfword � 0 gThis code is used in section 1026.1028. hEnsure that box 255 is empty after output 1028 i �if box (255) 6= null thenbegin print err ("Output routine didn�t use all of "); print esc("box"); print int (255);help3 ("Your \output commands should empty \box255,")("e.g., by saying �\shipout\box255�.")("Proceed; I�ll discard its present contents."); box error (255);endThis code is used in section 1026.

388 PART 46: THE CHIEF EXECUTIVE TEXGPC x10291029. The chief executive. We come now to the main control routine, which contains the masterswitch that causes all the various pieces of TEX to do their things, in the right order.In a sense, this is the grand climax of the program: It applies all the tools that we have worked so hardto construct. In another sense, this is the messiest part of the program: It necessarily refers to other piecesof code all over the place, so that a person can't fully understand what is going on without paging backand forth to be reminded of conventions that are de�ned elsewhere. We are now at the hub of the web, thecentral nervous system that touches most of the other parts and ties them together.The structure of main control itself is quite simple. There's a label called big switch , at which point thenext token of input is fetched using get x token . Then the program branches at high speed into one of about100 possible directions, based on the value of the current mode and the newly fetched command code; thesum abs (mode) + cur cmd indicates what to do next. For example, the case `vmode + letter ' arises when aletter occurs in vertical mode (or internal vertical mode); this case leads to instructions that initialize a newparagraph and enter horizontal mode.The big case statement that contains this multiway switch has been labeled reswitch , so that the programcan goto reswitch when the next token has already been fetched. Most of the cases are quite short; theycall an \action procedure" that does the work for that case, and then they either goto reswitch or they \fallthrough" to the end of the case statement, which returns control back to big switch . Thus, main control isnot an extremely large procedure, in spite of the multiplicity of things it must do; it is small enough to behandled by Pascal compilers that put severe restrictions on procedure size.One case is singled out for special treatment, because it accounts for most of TEX's activities in typicalapplications. The process of reading simple text and converting it into char node records, while looking forligatures and kerns, is part of TEX's \inner loop"; the whole program runs e�ciently when its inner loop isfast, so this part has been written with particular care.

x1030 TEXGPC PART 46: THE CHIEF EXECUTIVE 3891030. We shall concentrate �rst on the inner loop of main control , deferring consideration of the othercases until later.de�ne big switch = 60 f go here to branch on the next token of input gde�ne main loop = 70 f go here to typeset a string of consecutive characters gde�ne main loop wrapup = 80 f go here to �nish a character or ligature gde�ne main loop move = 90 f go here to advance the ligature cursor gde�ne main loop move lig = 95 f same, when advancing past a generated ligature gde�ne main loop lookahead = 100 f go here to bring in another character, if any gde�ne main lig loop = 110 f go here to check for ligatures or kerning gde�ne append normal space = 120 f go here to append a normal space between words ghDeclare action procedures for use by main control 1043 ihDeclare the procedure called handle right brace 1068 iprocedure main control ; f governs TEX's activities glabel big switch ; reswitch ;main loop ;main loop wrapup ;main loop move ;main loop move + 1;main loop move + 2;main loop move lig ;main loop lookahead ;main loop lookahead + 1;main lig loop ;main lig loop + 1;main lig loop + 2; append normal space ; exit ;var t: integer ; f general-purpose temporary variable gbegin if every job 6= null then begin token list (every job ; every job text);big switch : get x token ;reswitch : hGive diagnostic information, if requested 1031 i;case abs (mode) + cur cmd ofhmode + letter ; hmode + other char ; hmode + char given : goto main loop ;hmode + char num : begin scan char num ; cur chr cur val ; goto main loop ; end;hmode + no boundary : begin get x token ;if (cur cmd = letter) _ (cur cmd = other char) _ (cur cmd = char given) _ (cur cmd = char num)then cancel boundary true ;goto reswitch ;end;hmode + spacer : if space factor = 1000 then goto append normal spaceelse app space ;hmode + ex space ;mmode + ex space : goto append normal space ;hCases of main control that are not part of the inner loop 1045 iend; f of the big case statement ggoto big switch ;main loop : hAppend character cur chr and the following characters (if any) to the current hlist in thecurrent font; goto reswitch when a non-character has been fetched 1034 i;append normal space : hAppend a normal inter-word space to the current list, then goto big switch 1041 i;exit : end;1031. When a new token has just been fetched at big switch , we have an ideal place to monitor TEX'sactivity.hGive diagnostic information, if requested 1031 i �if interrupt 6= 0 thenif OK to interrupt thenbegin back input ; check interrupt ; goto big switch ;end;debug if panicking then check mem (false); gubedif tracing commands > 0 then show cur cmd chrThis code is used in section 1030.

390 PART 46: THE CHIEF EXECUTIVE TEXGPC x10321032. The following part of the program was �rst written in a structured manner, according to thephilosophy that \premature optimization is the root of all evil." Then it was rearranged into pieces ofspaghetti so that the most common actions could proceed with little or no redundancy.The original unoptimized form of this algorithm resembles the reconstitute procedure, which was describedearlier in connection with hyphenation. Again we have an implied \cursor" between characters cur l andcur r . The main di�erence is that the lig stack can now contain a charnode as well as pseudo-ligatures; thatstack is now usually nonempty, because the next character of input (if any) has been appended to it. Inmain control we have cur r = � character (lig stack); if lig stack > null ;font bchar [cur font]; otherwise;except when character (lig stack) = font false bchar [cur font]. Several additional global variables are needed.hGlobal variables 13 i +�main f : internal font number ; f the current font gmain i : four quarters ; f character information bytes for cur l gmain j : four quarters ; f ligature/kern command gmain k : font index ; f index into font info gmain p : pointer ; f temporary register for list manipulation gmain s : integer ; f space factor value gbchar : halfword ; f right boundary character of current font, or non char gfalse bchar : halfword ; f nonexistent character matching bchar , or non char gcancel boundary : boolean ; f should the left boundary be ignored? gins disc : boolean ; f should we insert a discretionary node? g1033. The boolean variables of the main loop are normally false, and always reset to false before the loopis left. That saves us the extra work of initializing each time.h Set initial values of key variables 21 i +�ligature present false ; cancel boundary false ; lft hit false ; rt hit false ; ins disc false ;

x1034 TEXGPC PART 46: THE CHIEF EXECUTIVE 3911034. We leave the space factor unchanged if sf code (cur chr) = 0; otherwise we set it equal tosf code (cur chr), except that it should never change from a value less than 1000 to a value exceeding 1000.The most common case is sf code (cur chr) = 1000, so we want that case to be fast.The overall structure of the main loop is presented here. Some program labels are inside the individualsections.de�ne adjust space factor �main s sf code (cur chr);if main s = 1000 then space factor 1000else if main s < 1000 thenbegin if main s > 0 then space factor main s ;endelse if space factor < 1000 then space factor 1000else space factor main shAppend character cur chr and the following characters (if any) to the current hlist in the current font;goto reswitch when a non-character has been fetched 1034 i �adjust space factor ;main f cur font ; bchar font bchar [main f]; false bchar font false bchar [main f];if mode > 0 thenif language 6= clang then �x language ;fast get avail (lig stack); font (lig stack) main f ; cur l qi (cur chr); character (lig stack) cur l ;cur q tail ;if cancel boundary thenbegin cancel boundary false ; main k non address ;endelse main k bchar label [main f];if main k = non address then goto main loop move + 2; f no left boundary processing gcur r cur l ; cur l non char ; goto main lig loop + 1; f begin with cursor after left boundary gmain loop wrapup : hMake a ligature node, if ligature present ; insert a null discretionary, ifappropriate 1035 i;main loop move : h If the cursor is immediately followed by the right boundary, goto reswitch ; if it'sfollowed by an invalid character, goto big switch ; otherwise move the cursor one step to the rightand goto main lig loop 1036 i;main loop lookahead : hLook ahead for another character, or leave lig stack empty if there's none there 1038 i;main lig loop : h If there's a ligature/kern command relevant to cur l and cur r , adjust the textappropriately; exit to main loop wrapup 1039 i;main loop move lig : hMove the cursor past a pseudo-ligature, then goto main loop lookahead ormain lig loop 1037 iThis code is used in section 1030.

392 PART 46: THE CHIEF EXECUTIVE TEXGPC x10351035. If link (cur q) is nonnull when wrapup is invoked, cur q points to the list of characters that wereconsumed while building the ligature character cur l .A discretionary break is not inserted for an explicit hyphen when we are in restricted horizontal mode. Inparticular, this avoids putting discretionary nodes inside of other discretionaries.de�ne pack lig (#) � f the parameter is either rt hit or false gbegin main p new ligature (main f ; cur l ; link (cur q));if lft hit thenbegin subtype (main p) 2; lft hit false ;end;if # thenif lig stack = null thenbegin incr (subtype (main p)); rt hit false ;end;link (cur q) main p ; tail main p ; ligature present false ;endde�ne wrapup (#) �if cur l < non char thenbegin if link (cur q) > null thenif character (tail) = qi (hyphen char [main f]) then ins disc true ;if ligature present then pack lig (#);if ins disc thenbegin ins disc false ;if mode > 0 then tail append (new disc);end;endhMake a ligature node, if ligature present ; insert a null discretionary, if appropriate 1035 i �wrapup (rt hit)This code is used in section 1034.1036. h If the cursor is immediately followed by the right boundary, goto reswitch ; if it's followed byan invalid character, goto big switch ; otherwise move the cursor one step to the right and gotomain lig loop 1036 i �if lig stack = null then goto reswitch ;cur q tail ; cur l character (lig stack);main loop move + 1: if :is char node (lig stack) then goto main loop move lig ;main loop move + 2: if (cur chr < font bc [main f]) _ (cur chr > font ec [main f]) thenbegin char warning (main f ; cur chr); free avail (lig stack); goto big switch ;end;main i char info (main f)(cur l);if :char exists (main i) thenbegin char warning (main f ; cur chr); free avail (lig stack); goto big switch ;end;link (tail) lig stack ; tail lig stack fmain loop lookahead is next gThis code is used in section 1034.

x1037 TEXGPC PART 46: THE CHIEF EXECUTIVE 3931037. Here we are at main loop move lig . When we begin this code we have cur q = tail and cur l =character (lig stack).hMove the cursor past a pseudo-ligature, then goto main loop lookahead or main lig loop 1037 i �main p lig ptr (lig stack);if main p > null then tail append (main p); f append a single character gtemp ptr lig stack ; lig stack link (temp ptr); free node (temp ptr ; small node size);main i char info (main f)(cur l); ligature present true ;if lig stack = null thenif main p > null then goto main loop lookaheadelse cur r bcharelse cur r character (lig stack);goto main lig loopThis code is used in section 1034.1038. The result of \char can participate in a ligature or kern, so we must look ahead for it.hLook ahead for another character, or leave lig stack empty if there's none there 1038 i �get next ; f set only cur cmd and cur chr , for speed gif cur cmd = letter then goto main loop lookahead + 1;if cur cmd = other char then goto main loop lookahead + 1;if cur cmd = char given then goto main loop lookahead + 1;x token ; f now expand and set cur cmd , cur chr , cur tok gif cur cmd = letter then goto main loop lookahead + 1;if cur cmd = other char then goto main loop lookahead + 1;if cur cmd = char given then goto main loop lookahead + 1;if cur cmd = char num thenbegin scan char num ; cur chr cur val ; goto main loop lookahead + 1;end;if cur cmd = no boundary then bchar non char ;cur r bchar ; lig stack null ; goto main lig loop ;main loop lookahead + 1: adjust space factor ; fast get avail (lig stack); font (lig stack) main f ;cur r qi (cur chr); character (lig stack) cur r ;if cur r = false bchar then cur r non char f this prevents spurious ligatures gThis code is used in section 1034.

394 PART 46: THE CHIEF EXECUTIVE TEXGPC x10391039. Even though comparatively few characters have a lig/kern program, several of the instructions herecount as part of TEX's inner loop, since a potentially long sequential search must be performed. For example,tests with Computer Modern Roman showed that about 40 per cent of all characters actually encounteredin practice had a lig/kern program, and that about four lig/kern commands were investigated for every suchcharacter.At the beginning of this code we have main i = char info (main f)(cur l).h If there's a ligature/kern command relevant to cur l and cur r , adjust the text appropriately; exit tomain loop wrapup 1039 i �if char tag (main i) 6= lig tag then goto main loop wrapup ;if cur r = non char then goto main loop wrapup ;main k lig kern start (main f)(main i); main j font info [main k]:qqqq ;if skip byte (main j) � stop ag then goto main lig loop + 2;main k lig kern restart (main f)(main j);main lig loop + 1: main j font info [main k]:qqqq ;main lig loop + 2: if next char (main j) = cur r thenif skip byte (main j) � stop ag then hDo ligature or kern command, returning to main lig loop ormain loop wrapup or main loop move 1040 i;if skip byte (main j) = qi (0) then incr (main k)else begin if skip byte (main j) � stop ag then goto main loop wrapup ;main k main k + qo (skip byte (main j)) + 1;end;goto main lig loop + 1This code is used in section 1034.

x1040 TEXGPC PART 46: THE CHIEF EXECUTIVE 3951040. When a ligature or kern instruction matches a character, we know from read font info that thecharacter exists in the font, even though we haven't veri�ed its existence in the normal way.This section could be made into a subroutine, if the code inside main control needs to be shortened.hDo ligature or kern command, returning to main lig loop or main loop wrapup or main loop move 1040 i �begin if op byte (main j) � kern ag thenbegin wrapup (rt hit); tail append (new kern (char kern (main f)(main j))); goto main loop move ;end;if cur l = non char then lft hit trueelse if lig stack = null then rt hit true ;check interrupt ; f allow a way out in case there's an in�nite ligature loop gcase op byte (main j) ofqi (1); qi (5): begin cur l rem byte (main j); f =:|, =:|>gmain i char info (main f)(cur l); ligature present true ;end;qi (2); qi (6): begin cur r rem byte (main j); f |=:, |=:> gif lig stack = null then f right boundary character is being consumed gbegin lig stack new lig item (cur r); bchar non char ;endelse if is char node (lig stack) then f link (lig stack) = null gbegin main p lig stack ; lig stack new lig item (cur r); lig ptr (lig stack) main p ;endelse character (lig stack) cur r ;end;qi (3): begin cur r rem byte (main j); f |=:|gmain p lig stack ; lig stack new lig item (cur r); link (lig stack) main p ;end;qi (7); qi (11): begin wrapup (false); f |=:|>, |=:|>>gcur q tail ; cur l rem byte (main j); main i char info (main f)(cur l);ligature present true ;end;othercases begin cur l rem byte (main j); ligature present true ; f =:gif lig stack = null then goto main loop wrapupelse goto main loop move + 1;endendcases;if op byte (main j) > qi (4) thenif op byte (main j) 6= qi (7) then goto main loop wrapup ;if cur l < non char then goto main lig loop ;main k bchar label [main f]; goto main lig loop + 1;endThis code is used in section 1039.

396 PART 46: THE CHIEF EXECUTIVE TEXGPC x10411041. The occurrence of blank spaces is almost part of TEX's inner loop, since we usually encounterabout one space for every �ve non-blank characters. Therefore main control gives second-highest priority toordinary spaces.When a glue parameter like \spaceskip is set to `0pt', we will see to it later that the corresponding gluespeci�cation is precisely zero glue , not merely a pointer to some speci�cation that happens to be full ofzeroes. Therefore it is simple to test whether a glue parameter is zero or not.hAppend a normal inter-word space to the current list, then goto big switch 1041 i �if space skip = zero glue thenbegin hFind the glue speci�cation, main p , for text spaces in the current font 1042 i;temp ptr new glue (main p);endelse temp ptr new param glue (space skip code);link (tail) temp ptr ; tail temp ptr ; goto big switchThis code is used in section 1030.1042. Having font glue allocated for each text font saves both time and memory. If any of the three spacingparameters are subsequently changed by the use of \fontdimen, the �nd font dimen procedure deallocatesthe font glue speci�cation allocated here.hFind the glue speci�cation, main p , for text spaces in the current font 1042 i �begin main p font glue [cur font];if main p = null thenbegin main p new spec(zero glue); main k param base [cur font] + space code ;width (main p) font info [main k]:sc ; f that's space (cur font) gstretch (main p) font info [main k + 1]:sc ; f and space stretch (cur font) gshrink (main p) font info [main k + 2]:sc ; f and space shrink (cur font) gfont glue [cur font] main p ;end;endThis code is used in sections 1041 and 1043.1043. hDeclare action procedures for use by main control 1043 i �procedure app space ; f handle spaces when space factor 6= 1000 gvar q: pointer ; f glue node gbegin if (space factor � 2000)^ (xspace skip 6= zero glue) then q new param glue (xspace skip code)else begin if space skip 6= zero glue then main p space skipelse hFind the glue speci�cation, main p , for text spaces in the current font 1042 i;main p new spec(main p);hModify the glue speci�cation in main p according to the space factor 1044 i;q new glue (main p); glue ref count (main p) null ;end;link (tail) q; tail q;end;See also sections 1047, 1049, 1050, 1051, 1054, 1060, 1061, 1064, 1069, 1070, 1075, 1079, 1084, 1086, 1091, 1093, 1095, 1096,1099, 1101, 1103, 1105, 1110, 1113, 1117, 1119, 1123, 1127, 1129, 1131, 1135, 1136, 1138, 1142, 1151, 1155, 1159, 1160,1163, 1165, 1172, 1174, 1176, 1181, 1191, 1194, 1200, 1211, 1270, 1275, 1279, 1288, 1293, 1302, 1348, and 1376.This code is used in section 1030.1044. hModify the glue speci�cation in main p according to the space factor 1044 i �if space factor � 2000 then width (main p) width (main p) + extra space (cur font);stretch (main p) xn over d (stretch (main p); space factor ; 1000);shrink (main p) xn over d (shrink (main p); 1000; space factor)This code is used in section 1043.

x1045 TEXGPC PART 46: THE CHIEF EXECUTIVE 3971045. Whew|that covers the main loop. We can now proceed at a leisurely pace through the othercombinations of possibilities.de�ne any mode (#) � vmode + #; hmode + #;mmode + # f for mode-independent commands ghCases of main control that are not part of the inner loop 1045 i �any mode (relax); vmode + spacer ;mmode + spacer ;mmode + no boundary : do nothing ;any mode (ignore spaces): begin hGet the next non-blank non-call token 406 i;goto reswitch ;end;vmode + stop : if its all over then return; f this is the only way out ghForbidden cases detected in main control 1048 i any mode (mac param): report illegal case ;hMath-only cases in non-math modes, or vice versa 1046 i: insert dollar sign ;hCases of main control that build boxes and lists 1056 ihCases of main control that don't depend on mode 1210 ihCases of main control that are for extensions to TEX 1347 iThis code is used in section 1030.1046. Here is a list of cases where the user has probably gotten into or out of math mode by mistake. TEXwill insert a dollar sign and rescan the current token.de�ne non math (#) � vmode + #; hmode + #hMath-only cases in non-math modes, or vice versa 1046 i �non math (sup mark);non math (sub mark);non math (math char num);non math (math given);non math (math comp);non math (delim num);non math (left right);non math (above);non math (radical);non math (math style);non math (math choice);non math (vcenter);non math (non script);non math (mkern);non math (limit switch);non math (mskip);non math (math accent);mmode + endv ;mmode + par end ;mmode + stop ;mmode + vskip ;mmode + un vbox ;mmode + valign ;mmode + hruleThis code is used in section 1045.1047. hDeclare action procedures for use by main control 1043 i +�procedure insert dollar sign ;begin back input ; cur tok math shift token + "$"; print err ("Missing $ inserted");help2 ("I�ve inserted a begin-math/end-math symbol since I think")("you left one out. Proceed, with fingers crossed."); ins error ;end;1048. When erroneous situations arise, TEX usually issues an error message speci�c to the particular error.For example, `\noalign' should not appear in any mode, since it is recognized by the align peek routine inall of its legitimate appearances; a special error message is given when `\noalign' occurs elsewhere. Butsometimes the most appropriate error message is simply that the user is not allowed to do what he or shehas attempted. For example, `\moveleft' is allowed only in vertical mode, and `\lower' only in non-verticalmodes. Such cases are enumerated here and in the other sections referred to under `See also : : : .'hForbidden cases detected in main control 1048 i �vmode + vmove ; hmode + hmove ;mmode + hmove ; any mode (last item);See also sections 1098, 1111, and 1144.This code is used in section 1045.

398 PART 46: THE CHIEF EXECUTIVE TEXGPC x10491049. The `you cant ' procedure prints a line saying that the current command is illegal in the currentmode; it identi�es these things symbolically.hDeclare action procedures for use by main control 1043 i +�procedure you cant ;begin print err ("You can�t use �"); print cmd chr (cur cmd ; cur chr); print ("� in ");print mode (mode);end;1050. hDeclare action procedures for use by main control 1043 i +�procedure report illegal case ;begin you cant ; help4 ("Sorry, but I�m not programmed to handle this case;")("I�ll just pretend that you didn�t ask for it.")("If you�re in the wrong mode, you might be able to")("return to the right one by typing �I}� or �I$� or �I\par�.");error ;end;1051. Some operations are allowed only in privileged modes, i.e., in cases that mode > 0. The privilegedfunction is used to detect violations of this rule; it issues an error message and returns false if the currentmode is negative.hDeclare action procedures for use by main control 1043 i +�function privileged : boolean ;begin if mode > 0 then privileged trueelse begin report illegal case ; privileged false ;end;end;1052. Either \dump or \end will cause main control to enter the endgame, since both of them have `stop 'as their command code.hPut each of TEX's primitives into the hash table 226 i +�primitive ("end"; stop ; 0);primitive ("dump"; stop ; 1);1053. hCases of print cmd chr for symbolic printing of primitives 227 i +�stop : if chr code = 1 then print esc("dump") else print esc("end");

x1054 TEXGPC PART 46: THE CHIEF EXECUTIVE 3991054. We don't want to leave main control immediately when a stop command is sensed, because it maybe necessary to invoke an \output routine several times before things really grind to a halt. (The outputroutine might even say `\gdef\end{...}', to prolong the life of the job.) Therefore its all over is true onlywhen the current page and contribution list are empty, and when the last output was not a \dead cycle."hDeclare action procedures for use by main control 1043 i +�function its all over : boolean ; f do this when \end or \dump occurs glabel exit ;begin if privileged thenbegin if (page head = page tail) ^ (head = tail) ^ (dead cycles = 0) thenbegin its all over true ; return;end;back input ; fwe will try to end again after ejecting residual material gtail append (new null box); width (tail) hsize ; tail append (new glue (�ll glue));tail append (new penalty (��10000000000));build page ; f append \hbox to \hsize{}\vfill\penalty-'10000000000gend;its all over false ;exit : end;

400 PART 47: BUILDING BOXES AND LISTS TEXGPC x10551055. Building boxes and lists. The most important parts of main control are concerned with TEX'schief mission of box-making. We need to control the activities that put entries on vlists and hlists, as well asthe activities that convert those lists into boxes. All of the necessary machinery has already been developed;it remains for us to \push the buttons" at the right times.1056. As an introduction to these routines, let's consider one of the simplest cases: What happens when`\hrule' occurs in vertical mode, or `\vrule' in horizontal mode or math mode? The code in main controlis short, since the scan rule spec routine already does most of what is required; thus, there is no need for aspecial action procedure.Note that baselineskip calculations are disabled after a rule in vertical mode, by setting prev depth ignore depth .hCases of main control that build boxes and lists 1056 i �vmode + hrule ; hmode + vrule ;mmode + vrule : begin tail append (scan rule spec);if abs (mode) = vmode then prev depth ignore depthelse if abs (mode) = hmode then space factor 1000;end;See also sections 1057, 1063, 1067, 1073, 1090, 1092, 1094, 1097, 1102, 1104, 1109, 1112, 1116, 1122, 1126, 1130, 1134, 1137,1140, 1150, 1154, 1158, 1162, 1164, 1167, 1171, 1175, 1180, 1190, and 1193.This code is used in section 1045.1057. The processing of things like \hskip and \vskip is slightly more complicated. But the code inmain control is very short, since it simply calls on the action routine append glue . Similarly, \kern activatesappend kern .hCases of main control that build boxes and lists 1056 i +�vmode + vskip ; hmode + hskip ;mmode + hskip ;mmode +mskip : append glue ;any mode (kern);mmode +mkern : append kern ;1058. The hskip and vskip command codes are used for control sequences like \hss and \vfil as well asfor \hskip and \vskip. The di�erence is in the value of cur chr .de�ne �l code = 0 f identi�es \hfil and \vfilgde�ne �ll code = 1 f identi�es \hfill and \vfillgde�ne ss code = 2 f identi�es \hss and \vssgde�ne �l neg code = 3 f identi�es \hfilneg and \vfilneggde�ne skip code = 4 f identi�es \hskip and \vskipgde�ne mskip code = 5 f identi�es \mskipghPut each of TEX's primitives into the hash table 226 i +�primitive ("hskip"; hskip ; skip code);primitive ("hfil"; hskip ;�l code); primitive ("hfill"; hskip ;�ll code);primitive ("hss"; hskip ; ss code); primitive ("hfilneg"; hskip ;�l neg code);primitive ("vskip"; vskip ; skip code);primitive ("vfil"; vskip ;�l code); primitive ("vfill"; vskip ;�ll code);primitive ("vss"; vskip ; ss code); primitive ("vfilneg"; vskip ;�l neg code);primitive ("mskip";mskip ;mskip code);primitive ("kern"; kern ; explicit); primitive ("mkern";mkern ;mu glue);

x1059 TEXGPC PART 47: BUILDING BOXES AND LISTS 4011059. hCases of print cmd chr for symbolic printing of primitives 227 i +�hskip : case chr code ofskip code : print esc("hskip");�l code : print esc("hfil");�ll code : print esc("hfill");ss code : print esc("hss");othercases print esc ("hfilneg")endcases;vskip : case chr code ofskip code : print esc("vskip");�l code : print esc("vfil");�ll code : print esc("vfill");ss code : print esc("vss");othercases print esc ("vfilneg")endcases;mskip : print esc("mskip");kern : print esc ("kern");mkern : print esc ("mkern");1060. All the work relating to glue creation has been relegated to the following subroutine. It does notcall build page , because it is used in at least one place where that would be a mistake.hDeclare action procedures for use by main control 1043 i +�procedure append glue ;var s: small number ; fmodi�er of skip command gbegin s cur chr ;case s of�l code : cur val �l glue ;�ll code : cur val �ll glue ;ss code : cur val ss glue ;�l neg code : cur val �l neg glue ;skip code : scan glue (glue val);mskip code : scan glue (mu val);end; f now cur val points to the glue speci�cation gtail append (new glue (cur val));if s � skip code thenbegin decr (glue ref count (cur val));if s > skip code then subtype (tail) mu glue ;end;end;1061. hDeclare action procedures for use by main control 1043 i +�procedure append kern ;var s: quarterword ; f subtype of the kern node gbegin s cur chr ; scan dimen (s = mu glue ; false ; false); tail append (new kern (cur val));subtype (tail) s;end;

402 PART 47: BUILDING BOXES AND LISTS TEXGPC x10621062. Many of the actions related to box-making are triggered by the appearance of braces in theinput. For example, when the user says `\hbox to 100pt{h hlist i}' in vertical mode, the informationabout the box size (100pt, exactly) is put onto save stack with a level boundary word just above it, andcur group adjusted hbox group ; TEX enters restricted horizontal mode to process the hlist. The rightbrace eventually causes save stack to be restored to its former state, at which time the information aboutthe box size (100pt, exactly) is available once again; a box is packaged and we leave restricted horizontalmode, appending the new box to the current list of the enclosing mode (in this case to the current list ofvertical mode), followed by any vertical adjustments that were removed from the box by hpack .The next few sections of the program are therefore concerned with the treatment of left and right curlybraces.1063. If a left brace occurs in the middle of a page or paragraph, it simply introduces a new level ofgrouping, and the matching right brace will not have such a drastic e�ect. Such grouping a�ects neither themode nor the current list.hCases of main control that build boxes and lists 1056 i +�non math (left brace): new save level (simple group);any mode (begin group): new save level (semi simple group);any mode (end group): if cur group = semi simple group then unsaveelse o� save ;1064. We have to deal with errors in which braces and such things are not properly nested. Sometimesthe user makes an error of commission by inserting an extra symbol, but sometimes the user makes an errorof omission. TEX can't always tell one from the other, so it makes a guess and tries to avoid getting into aloop.The o� save routine is called when the current group code is wrong. It tries to insert something into theuser's input that will help clean o� the top level.hDeclare action procedures for use by main control 1043 i +�procedure o� save ;var p: pointer ; f inserted token gbegin if cur group = bottom level then hDrop current token and complain that it was unmatched 1066 ielse begin back input ; p get avail ; link (temp head) p; print err ("Missing ");hPrepare to insert a token that matches cur group , and print what it is 1065 i;print (" inserted"); ins list (link (temp head));help5 ("I�ve inserted something that you may have forgotten.")("(See the <inserted text> above.)")("With luck, this will get me unwedged. But if you")("really didn�t forget anything, try typing �2� now; then")("my insertion and my current dilemma will both disappear."); error ;end;end;

x1065 TEXGPC PART 47: BUILDING BOXES AND LISTS 4031065. At this point, link (temp head) = p, a pointer to an empty one-word node.hPrepare to insert a token that matches cur group , and print what it is 1065 i �case cur group ofsemi simple group : begin info (p) cs token ag + frozen end group ; print esc("endgroup");end;math shift group : begin info (p) math shift token + "$"; print char ("$");end;math left group : begin info (p) cs token ag + frozen right ; link (p) get avail ; p link (p);info (p) other token + "."; print esc("right.");end;othercases begin info (p) right brace token + "}"; print char ("}");endendcasesThis code is used in section 1064.1066. hDrop current token and complain that it was unmatched 1066 i �begin print err ("Extra "); print cmd chr (cur cmd ; cur chr);help1 ("Things are pretty mixed up, but I think the worst is over.");error ;endThis code is used in section 1064.1067. The routine for a right brace character branches into many subcases, since a variety of things mayhappen, depending on cur group . Some types of groups are not supposed to be ended by a right brace; errormessages are given in hopes of pinpointing the problem. Most branches of this routine will be �lled in later,when we are ready to understand them; meanwhile, we must prepare ourselves to deal with such errors.hCases of main control that build boxes and lists 1056 i +�any mode (right brace): handle right brace ;1068. hDeclare the procedure called handle right brace 1068 i �procedure handle right brace ;var p; q: pointer ; f for short-term use gd: scaled ; f holds split max depth in insert group gf : integer ; f holds oating penalty in insert group gbegin case cur group ofsimple group : unsave ;bottom level : begin print err ("Too many }�s");help2 ("You�ve closed more groups than you opened.")("Such booboos are generally harmless, so keep going."); error ;end;semi simple group ;math shift group ;math left group : extra right brace ;hCases of handle right brace where a right brace triggers a delayed action 1085 iothercases confusion ("rightbrace")endcases;end;This code is used in section 1030.

404 PART 47: BUILDING BOXES AND LISTS TEXGPC x10691069. hDeclare action procedures for use by main control 1043 i +�procedure extra right brace ;begin print err ("Extra }, or forgotten ");case cur group ofsemi simple group : print esc ("endgroup");math shift group : print char ("$");math left group : print esc("right");end;help5 ("I�ve deleted a group-closing symbol because it seems to be")("spurious, as in �$x}$�. But perhaps the } is legitimate and")("you forgot something else, as in �\hbox{$x}�. In such cases")("the way to recover is to insert both the forgotten and the")("deleted material, e.g., by typing �I$}�."); error ; incr (align state);end;1070. Here is where we clear the parameters that are supposed to revert to their default values after everyparagraph and when internal vertical mode is entered.hDeclare action procedures for use by main control 1043 i +�procedure normal paragraph ;begin if looseness 6= 0 then eq word de�ne (int base + looseness code ; 0);if hang indent 6= 0 then eq word de�ne (dimen base + hang indent code ; 0);if hang after 6= 1 then eq word de�ne (int base + hang after code ; 1);if par shape ptr 6= null then eq de�ne (par shape loc ; shape ref ;null);end;

x1071 TEXGPC PART 47: BUILDING BOXES AND LISTS 4051071. Now let's turn to the question of how \hbox is treated. We actually need to consider alsoa slightly larger context, since constructions like `\setbox3=\hbox...' and `\leaders\hbox...' and`\lower3.8pt\hbox...' are supposed to invoke quite di�erent actions after the box has been packaged.Conversely, constructions like `\setbox3=' can be followed by a variety of di�erent kinds of boxes, and wewould like to encode such things in an e�cient way.In other words, there are two problems: to represent the context of a box, and to represent its type.The �rst problem is solved by putting a \context code" on the save stack , just below the two entriesthat give the dimensions produced by scan spec . The context code is either a (signed) shift amount, orit is a large integer � box ag , where box ag = 230. Codes box ag through box ag + 255 represent`\setbox0' through `\setbox255'; codes box ag +256 through box ag +511 represent `\global\setbox0'through `\global\setbox255'; code box ag +512 represents `\shipout'; and codes box ag +513 throughbox ag + 515 represent `\leaders', `\cleaders', and `\xleaders'.The second problem is solved by giving the command code make box to all control sequences that producea box, and by using the following chr code values to distinguish between them: box code , copy code ,last box code , vsplit code , vtop code , vtop code + vmode , and vtop code + hmode , where the latter two areused denote \vbox and \hbox, respectively.de�ne box ag � �10000000000 f context code for `\setbox0' gde�ne ship out ag � box ag + 512 f context code for `\shipout' gde�ne leader ag � box ag + 513 f context code for `\leaders' gde�ne box code = 0 f chr code for `\box' gde�ne copy code = 1 f chr code for `\copy' gde�ne last box code = 2 f chr code for `\lastbox' gde�ne vsplit code = 3 f chr code for `\vsplit' gde�ne vtop code = 4 f chr code for `\vtop' ghPut each of TEX's primitives into the hash table 226 i +�primitive ("moveleft"; hmove ; 1); primitive ("moveright"; hmove ; 0);primitive ("raise"; vmove ; 1); primitive ("lower"; vmove ; 0);primitive ("box";make box ; box code); primitive ("copy";make box ; copy code);primitive ("lastbox";make box ; last box code); primitive ("vsplit";make box ; vsplit code);primitive ("vtop";make box ; vtop code);primitive ("vbox";make box ; vtop code + vmode); primitive ("hbox";make box ; vtop code + hmode);primitive ("shipout"; leader ship ; a leaders � 1); f ship out ag = leader ag � 1 gprimitive ("leaders"; leader ship ; a leaders); primitive ("cleaders"; leader ship ; c leaders);primitive ("xleaders"; leader ship ; x leaders);1072. hCases of print cmd chr for symbolic printing of primitives 227 i +�hmove : if chr code = 1 then print esc("moveleft") else print esc("moveright");vmove : if chr code = 1 then print esc ("raise") else print esc("lower");make box : case chr code ofbox code : print esc("box");copy code : print esc("copy");last box code : print esc ("lastbox");vsplit code : print esc ("vsplit");vtop code : print esc ("vtop");vtop code + vmode : print esc("vbox");othercases print esc ("hbox")endcases;leader ship : if chr code = a leaders then print esc ("leaders")else if chr code = c leaders then print esc("cleaders")else if chr code = x leaders then print esc ("xleaders")else print esc ("shipout");

406 PART 47: BUILDING BOXES AND LISTS TEXGPC x10731073. Constructions that require a box are started by calling scan box with a speci�ed context code. Thescan box routine veri�es that a make box command comes next and then it calls begin box .hCases of main control that build boxes and lists 1056 i +�vmode + hmove ; hmode + vmove ;mmode + vmove : begin t cur chr ; scan normal dimen ;if t = 0 then scan box (cur val) else scan box (�cur val);end;any mode (leader ship): scan box (leader ag � a leaders + cur chr);any mode (make box): begin box (0);1074. The global variable cur box will point to a newly made box. If the box is void, we will havecur box = null . Otherwise we will have type (cur box) = hlist node or vlist node or rule node ; the rule nodecase can occur only with leaders.hGlobal variables 13 i +�cur box : pointer ; f box to be placed into its context g1075. The box end procedure does the right thing with cur box , if box context represents the context asexplained above.hDeclare action procedures for use by main control 1043 i +�procedure box end (box context : integer);var p: pointer ; f ord noad for new box in math mode gbegin if box context < box ag thenhAppend box cur box to the current list, shifted by box context 1076 ielse if box context < ship out ag then h Store cur box in a box register 1077 ielse if cur box 6= null thenif box context > ship out ag then hAppend a new leader node that uses cur box 1078 ielse ship out (cur box);end;

x1076 TEXGPC PART 47: BUILDING BOXES AND LISTS 4071076. The global variable adjust tail will be non-null if and only if the current box might include adjust-ments that should be appended to the current vertical list.hAppend box cur box to the current list, shifted by box context 1076 i �begin if cur box 6= null thenbegin shift amount (cur box) box context ;if abs (mode) = vmode thenbegin append to vlist (cur box);if adjust tail 6= null thenbegin if adjust head 6= adjust tail thenbegin link (tail) link (adjust head); tail adjust tail ;end;adjust tail null ;end;if mode > 0 then build page ;endelse begin if abs (mode) = hmode then space factor 1000else begin p new noad ; math type (nucleus (p)) sub box ; info (nucleus (p)) cur box ;cur box p;end;link (tail) cur box ; tail cur box ;end;end;endThis code is used in section 1075.1077. h Store cur box in a box register 1077 i �if box context < box ag + 256 then eq de�ne (box base � box ag + box context ; box ref ; cur box)else geq de�ne (box base � box ag � 256 + box context ; box ref ; cur box)This code is used in section 1075.1078. hAppend a new leader node that uses cur box 1078 i �begin hGet the next non-blank non-relax non-call token 404 i;if ((cur cmd = hskip) ^ (abs (mode) 6= vmode)) _ ((cur cmd = vskip) ^ (abs (mode) = vmode)) thenbegin append glue ; subtype (tail) box context � (leader ag � a leaders);leader ptr (tail) cur box ;endelse begin print err ("Leaders not followed by proper glue");help3 ("You should say �\leaders <box or rule><hskip or vskip>�.")("I found the <box or rule>, but there�s no suitable")("<hskip or vskip>, so I�m ignoring these leaders."); back error ; ush node list (cur box);end;endThis code is used in section 1075.

408 PART 47: BUILDING BOXES AND LISTS TEXGPC x10791079. Now that we can see what eventually happens to boxes, we can consider the �rst steps in theircreation. The begin box routine is called when box context is a context speci�cation, cur chr speci�es thetype of box desired, and cur cmd = make box .hDeclare action procedures for use by main control 1043 i +�procedure begin box (box context : integer);label exit ; done ;var p; q: pointer ; f run through the current list gm: quarterword ; f the length of a replacement list gk: halfword ; f 0 or vmode or hmode gn: eight bits ; f a box number gbegin case cur chr ofbox code : begin scan eight bit int ; cur box box (cur val); box (cur val) null ;f the box becomes void, at the same level gend;copy code : begin scan eight bit int ; cur box copy node list (box (cur val));end;last box code : h If the current list ends with a box node, delete it from the list and make cur box point toit; otherwise set cur box null 1080 i;vsplit code : h Split o� part of a vertical box, make cur box point to it 1082 i;othercases h Initiate the construction of an hbox or vbox, then return 1083 iendcases;box end (box context); f in simple cases, we use the box immediately gexit : end;1080. Note that the condition :is char node (tail) implies that head 6= tail , since head is a one-word node.h If the current list ends with a box node, delete it from the list and make cur box point to it; otherwise setcur box null 1080 i �begin cur box null ;if abs (mode) = mmode thenbegin you cant ; help1 ("Sorry; this \lastbox will be void."); error ;endelse if (mode = vmode) ^ (head = tail) thenbegin you cant ; help2 ("Sorry...I usually can�t take things from the current page.")("This \lastbox will therefore be void."); error ;endelse begin if :is char node (tail) thenif (type (tail) = hlist node) _ (type (tail) = vlist node) thenhRemove the last box, unless it's part of a discretionary 1081 i;end;endThis code is used in section 1079.

x1081 TEXGPC PART 47: BUILDING BOXES AND LISTS 4091081. hRemove the last box, unless it's part of a discretionary 1081 i �begin q head ;repeat p q;if :is char node (q) thenif type (q) = disc node thenbegin for m 1 to replace count (q) do p link (p);if p = tail then goto done ;end;q link (p);until q = tail ;cur box tail ; shift amount (cur box) 0; tail p; link (p) null ;done : endThis code is used in section 1080.1082. Here we deal with things like `\vsplit 13 to 100pt'.h Split o� part of a vertical box, make cur box point to it 1082 i �begin scan eight bit int ; n cur val ;if :scan keyword ("to") thenbegin print err ("Missing �to� inserted");help2 ("I�m working on �\vsplit<box number> to <dimen>�;")("will look for the <dimen> next."); error ;end;scan normal dimen ; cur box vsplit (n; cur val);endThis code is used in section 1079.1083. Here is where we enter restricted horizontal mode or internal vertical mode, in order to make a box.h Initiate the construction of an hbox or vbox, then return 1083 i �begin k cur chr � vtop code ; saved (0) box context ;if k = hmode thenif (box context < box ag) ^ (abs (mode) = vmode) then scan spec(adjusted hbox group ; true)else scan spec(hbox group ; true)else begin if k = vmode then scan spec(vbox group ; true)else begin scan spec(vtop group ; true); k vmode ;end;normal paragraph ;end;push nest ; mode �k;if k = vmode thenbegin prev depth ignore depth ;if every vbox 6= null then begin token list (every vbox ; every vbox text);endelse begin space factor 1000;if every hbox 6= null then begin token list (every hbox ; every hbox text);end;return;endThis code is used in section 1079.

410 PART 47: BUILDING BOXES AND LISTS TEXGPC x10841084. hDeclare action procedures for use by main control 1043 i +�procedure scan box (box context : integer); f the next input should specify a box or perhaps a rule gbegin hGet the next non-blank non-relax non-call token 404 i;if cur cmd = make box then begin box (box context)else if (box context � leader ag) ^ ((cur cmd = hrule) _ (cur cmd = vrule)) thenbegin cur box scan rule spec ; box end (box context);endelse beginprint err ("A <box> was supposed to be here");help3 ("I was expecting to see \hbox or \vbox or \copy or \box or")("something like that. So you might find something missing in")("your output. But keep trying; you can fix this later."); back error ;end;end;1085. When the right brace occurs at the end of an \hbox or \vbox or \vtop construction, the packageroutine comes into action. We might also have to �nish a paragraph that hasn't ended.hCases of handle right brace where a right brace triggers a delayed action 1085 i �hbox group : package (0);adjusted hbox group : begin adjust tail adjust head ; package (0);end;vbox group : begin end graf ; package (0);end;vtop group : begin end graf ; package (vtop code);end;See also sections 1100, 1118, 1132, 1133, 1168, 1173, and 1186.This code is used in section 1068.1086. hDeclare action procedures for use by main control 1043 i +�procedure package (c : small number);var h: scaled ; f height of box gp: pointer ; f �rst node in a box gd: scaled ; fmax depth gbegin d box max depth ; unsave ; save ptr save ptr � 3;if mode = �hmode then cur box hpack (link (head); saved (2); saved (1))else begin cur box vpackage (link (head); saved (2); saved (1); d);if c = vtop code then hReadjust the height and depth of cur box , for \vtop 1087 i;end;pop nest ; box end (saved (0));end;1087. The height of a `\vtop' box is inherited from the �rst item on its list, if that item is an hlist node ,vlist node , or rule node ; otherwise the \vtop height is zero.hReadjust the height and depth of cur box , for \vtop 1087 i �begin h 0; p list ptr (cur box);if p 6= null thenif type (p) � rule node then h height (p);depth (cur box) depth (cur box)� h+ height (cur box); height (cur box) h;endThis code is used in section 1086.

x1088 TEXGPC PART 47: BUILDING BOXES AND LISTS 4111088. A paragraph begins when horizontal-mode material occurs in vertical mode, or when the paragraphis explicitly started by `\indent' or `\noindent'.hPut each of TEX's primitives into the hash table 226 i +�primitive ("indent"; start par ; 1); primitive ("noindent"; start par ; 0);1089. hCases of print cmd chr for symbolic printing of primitives 227 i +�start par : if chr code = 0 then print esc("noindent") else print esc ("indent");1090. hCases of main control that build boxes and lists 1056 i +�vmode + start par : new graf (cur chr > 0);vmode + letter ; vmode + other char ; vmode + char num ; vmode + char given ; vmode +math shift ;vmode + un hbox ; vmode + vrule ; vmode + accent ; vmode + discretionary ; vmode + hskip ;vmode + valign ; vmode + ex space ; vmode + no boundary :begin back input ; new graf (true);end;1091. hDeclare action procedures for use by main control 1043 i +�function norm min (h : integer): small number ;begin if h � 0 then norm min 1 else if h � 63 then norm min 63 else norm min h;end;procedure new graf (indented : boolean);begin prev graf 0;if (mode = vmode) _ (head 6= tail) then tail append (new param glue (par skip code));push nest ; mode hmode ; space factor 1000; set cur lang ; clang cur lang ;prev graf (norm min (left hyphen min) � �100 + norm min (right hyphen min)) � �200000 + cur lang ;if indented thenbegin tail new null box ; link (head) tail ; width (tail) par indent ; end;if every par 6= null then begin token list (every par ; every par text);if nest ptr = 1 then build page ; f put par skip glue on current page gend;1092. hCases of main control that build boxes and lists 1056 i +�hmode + start par ;mmode + start par : indent in hmode ;1093. hDeclare action procedures for use by main control 1043 i +�procedure indent in hmode ;var p; q: pointer ;begin if cur chr > 0 then f \indentgbegin p new null box ; width (p) par indent ;if abs (mode) = hmode then space factor 1000else begin q new noad ; math type (nucleus (q)) sub box ; info (nucleus (q)) p; p q;end;tail append (p);end;end;

412 PART 47: BUILDING BOXES AND LISTS TEXGPC x10941094. A paragraph ends when a par end command is sensed, or when we are in horizontal mode whenreaching the right brace of vertical-mode routines like \vbox, \insert, or \output.hCases of main control that build boxes and lists 1056 i +�vmode + par end : begin normal paragraph ;if mode > 0 then build page ;end;hmode + par end : begin if align state < 0 then o� save ;f this tries to recover from an alignment that didn't end properly gend graf ; f this takes us to the enclosing mode, if mode > 0 gif mode = vmode then build page ;end;hmode + stop ; hmode + vskip ; hmode + hrule ; hmode + un vbox ; hmode + halign : head for vmode ;1095. hDeclare action procedures for use by main control 1043 i +�procedure head for vmode ;begin if mode < 0 thenif cur cmd 6= hrule then o� saveelse begin print err ("You can�t use �"); print esc("hrule");print ("� here except with leaders");help2 ("To put a horizontal rule in an hbox or an alignment,")("you should use \leaders or \hrulefill (see The TeXbook)."); error ;endelse begin back input ; cur tok par token ; back input ; token type inserted ;end;end;1096. hDeclare action procedures for use by main control 1043 i +�procedure end graf ;begin if mode = hmode thenbegin if head = tail then pop nest f null paragraphs are ignored gelse line break (widow penalty);normal paragraph ; error count 0;end;end;1097. Insertion and adjustment and mark nodes are constructed by the following pieces of the program.hCases of main control that build boxes and lists 1056 i +�any mode (insert); hmode + vadjust ;mmode + vadjust : begin insert or adjust ;any mode (mark): make mark ;1098. hForbidden cases detected in main control 1048 i +�vmode + vadjust ;

x1099 TEXGPC PART 47: BUILDING BOXES AND LISTS 4131099. hDeclare action procedures for use by main control 1043 i +�procedure begin insert or adjust ;begin if cur cmd = vadjust then cur val 255else begin scan eight bit int ;if cur val = 255 thenbegin print err ("You can�t "); print esc("insert"); print int (255);help1 ("I�m changing to \insert0; box 255 is special."); error ; cur val 0;end;end;saved (0) cur val ; incr (save ptr); new save level (insert group); scan left brace ; normal paragraph ;push nest ; mode �vmode ; prev depth ignore depth ;end;1100. hCases of handle right brace where a right brace triggers a delayed action 1085 i +�insert group : begin end graf ; q split top skip ; add glue ref (q); d split max depth ;f oating penalty ; unsave ; decr (save ptr);f now saved (0) is the insertion number, or 255 for vadjust gp vpack (link (head);natural); pop nest ;if saved (0) < 255 thenbegin tail append (get node (ins node size)); type (tail) ins node ; subtype (tail) qi (saved (0));height (tail) height (p) + depth (p); ins ptr (tail) list ptr (p); split top ptr (tail) q;depth (tail) d; oat cost (tail) f ;endelse begin tail append (get node (small node size)); type (tail) adjust node ;subtype (tail) 0; f the subtype is not used gadjust ptr (tail) list ptr (p); delete glue ref (q);end;free node (p; box node size);if nest ptr = 0 then build page ;end;output group : hResume the page builder after an output routine has come to an end 1026 i;1101. hDeclare action procedures for use by main control 1043 i +�procedure make mark ;var p: pointer ; f new node gbegin p scan toks (false ; true); p get node (small node size); type (p) mark node ;subtype (p) 0; f the subtype is not used gmark ptr (p) def ref ; link (tail) p; tail p;end;1102. Penalty nodes get into a list via the break penalty command.hCases of main control that build boxes and lists 1056 i +�any mode (break penalty): append penalty ;1103. hDeclare action procedures for use by main control 1043 i +�procedure append penalty ;begin scan int ; tail append (new penalty (cur val));if mode = vmode then build page ;end;

414 PART 47: BUILDING BOXES AND LISTS TEXGPC x11041104. The remove item command removes a penalty, kern, or glue node if it appears at the tail of thecurrent list, using a brute-force linear scan. Like \lastbox, this command is not allowed in vertical mode(except internal vertical mode), since the current list in vertical mode is sent to the page builder. But if wehappen to be able to implement it in vertical mode, we do.hCases of main control that build boxes and lists 1056 i +�any mode (remove item): delete last ;1105. When delete last is called, cur chr is the type of node that will be deleted, if present.hDeclare action procedures for use by main control 1043 i +�procedure delete last ;label exit ;var p; q: pointer ; f run through the current list gm: quarterword ; f the length of a replacement list gbegin if (mode = vmode) ^ (tail = head) thenhApologize for inability to do the operation now, unless \unskip follows non-glue 1106 ielse begin if :is char node (tail) thenif type (tail) = cur chr thenbegin q head ;repeat p q;if :is char node (q) thenif type (q) = disc node thenbegin for m 1 to replace count (q) do p link (p);if p = tail then return;end;q link (p);until q = tail ;link (p) null ; ush node list (tail); tail p;end;end;exit : end;1106. hApologize for inability to do the operation now, unless \unskip follows non-glue 1106 i �begin if (cur chr 6= glue node) _ (last glue 6= max halfword) thenbegin you cant ; help2 ("Sorry...I usually can�t take things from the current page.")("Try �I\vskip-\lastskip� instead.");if cur chr = kern node then help line [0] ("Try �I\kern-\lastkern� instead.")else if cur chr 6= glue node thenhelp line [0] ("Perhaps you can make the output routine do it.");error ;end;endThis code is used in section 1105.1107. hPut each of TEX's primitives into the hash table 226 i +�primitive ("unpenalty"; remove item ; penalty node);primitive ("unkern"; remove item ; kern node);primitive ("unskip"; remove item ; glue node);primitive ("unhbox"; un hbox ; box code);primitive ("unhcopy"; un hbox ; copy code);primitive ("unvbox"; un vbox ; box code);primitive ("unvcopy"; un vbox ; copy code);

x1108 TEXGPC PART 47: BUILDING BOXES AND LISTS 4151108. hCases of print cmd chr for symbolic printing of primitives 227 i +�remove item : if chr code = glue node then print esc("unskip")else if chr code = kern node then print esc("unkern")else print esc ("unpenalty");un hbox : if chr code = copy code then print esc("unhcopy")else print esc ("unhbox");un vbox : if chr code = copy code then print esc("unvcopy")else print esc ("unvbox");1109. The un hbox and un vbox commands unwrap one of the 256 current boxes.hCases of main control that build boxes and lists 1056 i +�vmode + un vbox ; hmode + un hbox ;mmode + un hbox : unpackage ;1110. hDeclare action procedures for use by main control 1043 i +�procedure unpackage ;label exit ;var p: pointer ; f the box gc: box code : : copy code ; f should we copy? gbegin c cur chr ; scan eight bit int ; p box (cur val);if p = null then return;if (abs (mode) = mmode) _ ((abs (mode) = vmode) ^ (type (p) 6= vlist node)) _((abs (mode) = hmode) ^ (type (p) 6= hlist node)) thenbegin print err ("Incompatible list can�t be unboxed");help3 ("Sorry, Pandora. (You sneaky devil.)")("I refuse to unbox an \hbox in vertical mode or vice versa.")("And I can�t open any boxes in math mode.");error ; return;end;if c = copy code then link (tail) copy node list (list ptr (p))else begin link (tail) list ptr (p); box (cur val) null ; free node (p; box node size);end;while link (tail) 6= null do tail link (tail);exit : end;1111. hForbidden cases detected in main control 1048 i +�vmode + ital corr ;1112. Italic corrections are converted to kern nodes when the ital corr command follows a character. Inmath mode the same e�ect is achieved by appending a kern of zero here, since italic corrections are suppliedlater.hCases of main control that build boxes and lists 1056 i +�hmode + ital corr : append italic correction ;mmode + ital corr : tail append (new kern (0));

416 PART 47: BUILDING BOXES AND LISTS TEXGPC x11131113. hDeclare action procedures for use by main control 1043 i +�procedure append italic correction ;label exit ;var p: pointer ; f char node at the tail of the current list gf : internal font number ; f the font in the char node gbegin if tail 6= head thenbegin if is char node (tail) then p tailelse if type (tail) = ligature node then p lig char (tail)else return;f font (p); tail append (new kern (char italic (f)(char info (f)(character (p)))));subtype (tail) explicit ;end;exit : end;1114. Discretionary nodes are easy in the common case `\-', but in the general case we must process threebraces full of items.hPut each of TEX's primitives into the hash table 226 i +�primitive ("-"; discretionary ; 1); primitive ("discretionary"; discretionary ; 0);1115. hCases of print cmd chr for symbolic printing of primitives 227 i +�discretionary : if chr code = 1 then print esc ("-") else print esc("discretionary");1116. hCases of main control that build boxes and lists 1056 i +�hmode + discretionary ;mmode + discretionary : append discretionary ;1117. The space factor does not change when we append a discretionary node, but it starts out as 1000in the subsidiary lists.hDeclare action procedures for use by main control 1043 i +�procedure append discretionary ;var c: integer ; f hyphen character gbegin tail append (new disc);if cur chr = 1 thenbegin c hyphen char [cur font];if c � 0 thenif c < 256 then pre break (tail) new character (cur font ; c);endelse begin incr (save ptr); saved (�1) 0; new save level (disc group); scan left brace ; push nest ;mode �hmode ; space factor 1000;end;end;1118. The three discretionary lists are constructed somewhat as if they were hboxes. A subroutine calledbuild discretionary handles the transitions. (This is sort of fun.)hCases of handle right brace where a right brace triggers a delayed action 1085 i +�disc group : build discretionary ;

x1119 TEXGPC PART 47: BUILDING BOXES AND LISTS 4171119. hDeclare action procedures for use by main control 1043 i +�procedure build discretionary ;label done ; exit ;var p; q: pointer ; f for link manipulation gn: integer ; f length of discretionary list gbegin unsave ;hPrune the current list, if necessary, until it contains only char node , kern node , hlist node , vlist node ,rule node , and ligature node items; set n to the length of the list, and set q to the list's tail 1121 i;p link (head); pop nest ;case saved (�1) of0: pre break (tail) p;1: post break (tail) p;2: hAttach list p to the current list, and record its length; then �nish up and return 1120 i;end; f there are no other cases gincr (saved (�1)); new save level (disc group); scan left brace ; push nest ; mode �hmode ;space factor 1000;exit : end;1120. hAttach list p to the current list, and record its length; then �nish up and return 1120 i �begin if (n > 0) ^ (abs (mode) = mmode) thenbegin print err ("Illegal math "); print esc ("discretionary");help2 ("Sorry: The third part of a discretionary break must be")("empty, in math formulas. I had to delete your third part."); ush node list (p); n 0;error ;endelse link (tail) p;if n � max quarterword then replace count (tail) nelse begin print err ("Discretionary list is too long");help2 ("Wow---I never thought anybody would tweak me here.")("You can�t seriously need such a huge discretionary list?"); error ;end;if n > 0 then tail q;decr (save ptr); return;endThis code is used in section 1119.

418 PART 47: BUILDING BOXES AND LISTS TEXGPC x11211121. During this loop, p = link (q) and there are n items preceding p.hPrune the current list, if necessary, until it contains only char node , kern node , hlist node , vlist node ,rule node , and ligature node items; set n to the length of the list, and set q to the list's tail 1121 i �q head ; p link (q); n 0;while p 6= null dobegin if :is char node (p) thenif type (p) > rule node thenif type (p) 6= kern node thenif type (p) 6= ligature node thenbegin print err ("Improper discretionary list");help1 ("Discretionary lists must contain only boxes and kerns.");error ; begin diagnostic ;print nl ("The following discretionary sublist has been deleted:"); show box (p);end diagnostic (true); ush node list (p); link (q) null ; goto done ;end;q p; p link (q); incr (n);end;done :This code is used in section 1119.1122. We need only one more thing to complete the horizontal mode routines, namely the \accentprimitive.hCases of main control that build boxes and lists 1056 i +�hmode + accent : make accent ;1123. The positioning of accents is straightforward but tedious. Given an accent of width a, designed forcharacters of height x and slant s; and given a character of width w, height h, and slant t: We will shift theaccent down by x � h, and we will insert kern nodes that have the e�ect of centering the accent over thecharacter and shifting the accent to the right by � = 12 (w � a) + h � t � x � s. If either character is absentfrom the font, we will simply use the other, without shifting.hDeclare action procedures for use by main control 1043 i +�procedure make accent ;var s; t: real ; f amount of slant gp; q; r: pointer ; f character, box, and kern nodes gf : internal font number ; f relevant font ga; h; x; w; delta : scaled ; f heights and widths, as explained above gi: four quarters ; f character information gbegin scan char num ; f cur font ; p new character (f; cur val);if p 6= null thenbegin x x height (f); s slant (f)=oat constant (65536);a char width (f)(char info (f)(character (p)));do assignments ;hCreate a character node q for the next character, but set q null if problems arise 1124 i;if q 6= null then hAppend the accent with appropriate kerns, then set p q 1125 i;link (tail) p; tail p; space factor 1000;end;end;

x1124 TEXGPC PART 47: BUILDING BOXES AND LISTS 4191124. hCreate a character node q for the next character, but set q null if problems arise 1124 i �q null ; f cur font ;if (cur cmd = letter) _ (cur cmd = other char) _ (cur cmd = char given) thenq new character (f; cur chr)else if cur cmd = char num thenbegin scan char num ; q new character (f; cur val);endelse back inputThis code is used in section 1123.1125. The kern nodes appended here must be distinguished from other kerns, lest they be wiped away bythe hyphenation algorithm or by a previous line break.The two kerns are computed with (machine-dependent) real arithmetic, but their sum is machine-independent; the net e�ect is machine-independent, because the user cannot remove these nodes nor accessthem via \lastkern.hAppend the accent with appropriate kerns, then set p q 1125 i �begin t slant (f)=oat constant (65536); i char info (f)(character (q)); w char width (f)(i);h char height (f)(height depth (i));if h 6= x then f the accent must be shifted up or down gbegin p hpack (p;natural); shift amount (p) x� h;end;delta round ((w � a)=oat constant (2) + h � t� x � s); r new kern (delta); subtype (r) acc kern ;link (tail) r; link (r) p; tail new kern (�a� delta); subtype (tail) acc kern ; link (p) tail ;p q;endThis code is used in section 1123.1126. When `\cr' or `\span' or a tab mark comes through the scanner into main control , it might be thatthe user has foolishly inserted one of them into something that has nothing to do with alignment. But itis far more likely that a left brace or right brace has been omitted, since get next takes actions appropriateto alignment only when `\cr' or `\span' or tab marks occur with align state = 0. The following programattempts to make an appropriate recovery.hCases of main control that build boxes and lists 1056 i +�any mode (car ret); any mode (tab mark): align error ;any mode (no align): no align error ;any mode (omit): omit error ;

420 PART 47: BUILDING BOXES AND LISTS TEXGPC x11271127. hDeclare action procedures for use by main control 1043 i +�procedure align error ;begin if abs (align state) > 2 thenhExpress consternation over the fact that no alignment is in progress 1128 ielse begin back input ;if align state < 0 thenbegin print err ("Missing { inserted"); incr (align state); cur tok left brace token + "{";endelse begin print err ("Missing } inserted"); decr (align state); cur tok right brace token + "}";end;help3 ("I�ve put in what seems to be necessary to fix")("the current column of the current alignment.")("Try to go on, since this might almost work."); ins error ;end;end;1128. hExpress consternation over the fact that no alignment is in progress 1128 i �begin print err ("Misplaced "); print cmd chr (cur cmd ; cur chr);if cur tok = tab token + "&" thenbegin help6 ("I can�t figure out why you would want to use a tab mark")("here. If you just want an ampersand, the remedy is")("simple: Just type �I\&� now. But if some right brace")("up above has ended a previous alignment prematurely,")("you�re probably due for more error messages, and you")("might try typing �S� now just to see what is salvageable.");endelse begin help5 ("I can�t figure out why you would want to use a tab mark")("or \cr or \span just now. If something like a right brace")("up above has ended a previous alignment prematurely,")("you�re probably due for more error messages, and you")("might try typing �S� now just to see what is salvageable.");end;error ;endThis code is used in section 1127.1129. The help messages here contain a little white lie, since \noalign and \omit are allowed also after`\noalign{...}'.hDeclare action procedures for use by main control 1043 i +�procedure no align error ;begin print err ("Misplaced "); print esc("noalign");help2 ("I expect to see \noalign only after the \cr of")("an alignment. Proceed, and I�ll ignore this case."); error ;end;procedure omit error ;begin print err ("Misplaced "); print esc("omit");help2 ("I expect to see \omit only after tab marks or the \cr of")("an alignment. Proceed, and I�ll ignore this case."); error ;end;

x1130 TEXGPC PART 47: BUILDING BOXES AND LISTS 4211130. We've now covered most of the abuses of \halign and \valign. Let's take a look at what happenswhen they are used correctly.hCases of main control that build boxes and lists 1056 i +�vmode + halign ; hmode + valign : init align ;mmode + halign : if privileged thenif cur group = math shift group then init alignelse o� save ;vmode + endv ; hmode + endv : do endv ;1131. An align group code is supposed to remain on the save stack during an entire alignment, until�n align removes it.A devious user might force an endv command to occur just about anywhere; we must defeat such hacks.hDeclare action procedures for use by main control 1043 i +�procedure do endv ;begin base ptr input ptr ; input stack [base ptr] cur input ;while (input stack [base ptr]:index �eld 6= v template) ^ (input stack [base ptr]:loc �eld =null) ^ (input stack [base ptr]:state �eld = token list) do decr (base ptr);if (input stack [base ptr]:index �eld 6= v template) _ (input stack [base ptr]:loc �eld 6=null) _ (input stack [base ptr]:state �eld 6= token list) thenfatal error ("(interwoven alignment preambles are not allowed)");if cur group = align group thenbegin end graf ;if �n col then �n row ;endelse o� save ;end;1132. hCases of handle right brace where a right brace triggers a delayed action 1085 i +�align group : begin back input ; cur tok cs token ag + frozen cr ; print err ("Missing ");print esc("cr"); print (" inserted");help1 ("I�m guessing that you meant to end an alignment here."); ins error ;end;1133. hCases of handle right brace where a right brace triggers a delayed action 1085 i +�no align group : begin end graf ; unsave ; align peek ;end;1134. Finally, \endcsname is not supposed to get through to main control .hCases of main control that build boxes and lists 1056 i +�any mode (end cs name): cs error ;1135. hDeclare action procedures for use by main control 1043 i +�procedure cs error ;begin print err ("Extra "); print esc("endcsname");help1 ("I�m ignoring this, since I wasn�t doing a \csname."); error ;end;

422 PART 48: BUILDING MATH LISTS TEXGPC x11361136. Building math lists. The routines that TEX uses to create mlists are similar to those we havejust seen for the generation of hlists and vlists. But it is necessary to make \noads" as well as nodes, so thereader should review the discussion of math mode data structures before trying to make sense out of thefollowing program.Here is a little routine that needs to be done whenever a subformula is about to be processed. Theparameter is a code like math group .hDeclare action procedures for use by main control 1043 i +�procedure push math (c : group code);begin push nest ; mode �mmode ; incompleat noad null ; new save level (c);end;1137. We get into math mode from horizontal mode when a `$' (i.e., a math shift character) is scanned.We must check to see whether this `$' is immediately followed by another, in case display math mode iscalled for.hCases of main control that build boxes and lists 1056 i +�hmode +math shift : init math ;1138. hDeclare action procedures for use by main control 1043 i +�procedure init math ;label reswitch ; found ;not found ; done ;var w: scaled ; f new or partial pre display size gl: scaled ; f new display width gs: scaled ; f new display indent gp: pointer ; f current node when calculating pre display size gq: pointer ; f glue speci�cation when calculating pre display size gf : internal font number ; f font in current char node gn: integer ; f scope of paragraph shape speci�cation gv: scaled ; fw plus possible glue amount gd: scaled ; f increment to v gbegin get token ; f get x token would fail on \ifmmode ! gif (cur cmd = math shift) ^ (mode > 0) then hGo into display math mode 1145 ielse begin back input ; hGo into ordinary math mode 1139 i;end;end;1139. hGo into ordinary math mode 1139 i �begin push math (math shift group); eq word de�ne (int base + cur fam code ;�1);if every math 6= null then begin token list (every math ; every math text);endThis code is used in sections 1138 and 1142.1140. We get into ordinary math mode from display math mode when `\eqno' or `\leqno' appears. Insuch cases cur chr will be 0 or 1, respectively; the value of cur chr is placed onto save stack for safe keeping.hCases of main control that build boxes and lists 1056 i +�mmode + eq no : if privileged thenif cur group = math shift group then start eq noelse o� save ;1141. hPut each of TEX's primitives into the hash table 226 i +�primitive ("eqno"; eq no ; 0); primitive ("leqno"; eq no ; 1);

x1142 TEXGPC PART 48: BUILDING MATH LISTS 4231142. When TEX is in display math mode, cur group = math shift group , so it is not necessary for thestart eq no procedure to test for this condition.hDeclare action procedures for use by main control 1043 i +�procedure start eq no ;begin saved (0) cur chr ; incr (save ptr); hGo into ordinary math mode 1139 i;end;1143. hCases of print cmd chr for symbolic printing of primitives 227 i +�eq no : if chr code = 1 then print esc ("leqno") else print esc("eqno");1144. hForbidden cases detected in main control 1048 i +�non math (eq no);1145. When we enter display math mode, we need to call line break to process the partial paragraphthat has just been interrupted by the display. Then we can set the proper values of display width anddisplay indent and pre display size .hGo into display math mode 1145 i �begin if head = tail then f `\noindent$$' or `$$ $$' gbegin pop nest ; w �max dimen ;endelse begin line break (display widow penalty);hCalculate the natural width, w, by which the characters of the �nal line extend to the right of thereference point, plus two ems; or set w max dimen if the non-blank information on that line isa�ected by stretching or shrinking 1146 i;end; f now we are in vertical mode, working on the list that will contain the display ghCalculate the length, l, and the shift amount, s, of the display lines 1149 i;push math (math shift group); mode mmode ; eq word de�ne (int base + cur fam code ;�1);eq word de�ne (dimen base + pre display size code ; w);eq word de�ne (dimen base + display width code ; l); eq word de�ne (dimen base + display indent code ; s);if every display 6= null then begin token list (every display ; every display text);if nest ptr = 1 then build page ;endThis code is used in section 1138.1146. hCalculate the natural width, w, by which the characters of the �nal line extend to the right of thereference point, plus two ems; or set w max dimen if the non-blank information on that line isa�ected by stretching or shrinking 1146 i �v shift amount (just box) + 2 � quad (cur font); w �max dimen ; p list ptr (just box);while p 6= null dobegin hLet d be the natural width of node p; if the node is \visible," goto found ; if the node is gluethat stretches or shrinks, set v max dimen 1147 i;if v < max dimen then v v + d;goto not found ;found : if v < max dimen thenbegin v v + d; w v;endelse begin w max dimen ; goto done ;end;not found : p link (p);end;done :This code is used in section 1145.

424 PART 48: BUILDING MATH LISTS TEXGPC x11471147. hLet d be the natural width of node p; if the node is \visible," goto found ; if the node is glue thatstretches or shrinks, set v max dimen 1147 i �reswitch : if is char node (p) thenbegin f font (p); d char width (f)(char info (f)(character (p))); goto found ;end;case type (p) ofhlist node ; vlist node ; rule node : begin d width (p); goto found ;end;ligature node : hMake node p look like a char node and goto reswitch 652 i;kern node ;math node : d width (p);glue node : hLet d be the natural width of this glue; if stretching or shrinking, set v max dimen ; gotofound in the case of leaders 1148 i;whatsit node : hLet d be the width of the whatsit p 1361 i;othercases d 0endcasesThis code is used in section 1146.1148. We need to be careful that w, v, and d do not depend on any glue set values, since such values aresubject to system-dependent rounding. System-dependent numbers are not allowed to in�ltrate parameterslike pre display size , since TEX82 is supposed to make the same decisions on all machines.hLet d be the natural width of this glue; if stretching or shrinking, set v max dimen ; goto found in thecase of leaders 1148 i �begin q glue ptr (p); d width (q);if glue sign (just box) = stretching thenbegin if (glue order (just box) = stretch order (q)) ^ (stretch (q) 6= 0) then v max dimen ;endelse if glue sign (just box) = shrinking thenbegin if (glue order (just box) = shrink order (q)) ^ (shrink (q) 6= 0) then v max dimen ;end;if subtype (p) � a leaders then goto found ;endThis code is used in section 1147.1149. A displayed equation is considered to be three lines long, so we calculate the length and o�set ofline number prev graf + 2.hCalculate the length, l, and the shift amount, s, of the display lines 1149 i �if par shape ptr = null thenif (hang indent 6= 0) ^ (((hang after � 0) ^ (prev graf + 2 > hang after)) _(prev graf + 1 < �hang after)) thenbegin l hsize � abs (hang indent);if hang indent > 0 then s hang indent else s 0;endelse begin l hsize ; s 0;endelse begin n info (par shape ptr);if prev graf + 2 � n then p par shape ptr + 2 � nelse p par shape ptr + 2 � (prev graf + 2);s mem [p� 1]:sc ; l mem [p]:sc ;endThis code is used in section 1145.

x1150 TEXGPC PART 48: BUILDING MATH LISTS 4251150. Subformulas of math formulas cause a new level of math mode to be entered, on the semantic nestas well as the save stack. These subformulas arise in several ways: (1) A left brace by itself indicates thebeginning of a subformula that will be put into a box, thereby freezing its glue and preventing line breaks.(2) A subscript or superscript is treated as a subformula if it is not a single character; the same applies to thenucleus of things like \underline. (3) The \left primitive initiates a subformula that will be terminated bya matching \right. The group codes placed on save stack in these three cases are math group , math group ,and math left group , respectively.Here is the code that handles case (1); the other cases are not quite as trivial, so we shall consider themlater.hCases of main control that build boxes and lists 1056 i +�mmode + left brace : begin tail append (new noad); back input ; scan math (nucleus (tail));end;1151. Recall that the nucleus , subscr , and supscr �elds in a noad are broken down into sub�elds calledmath type and either info or (fam ; character). The job of scan math is to �gure out what to place in oneof these principal �elds; it looks at the subformula that comes next in the input, and places an encoding ofthat subformula into a given word of mem .de�ne fam in range � ((cur fam � 0) ^ (cur fam < 16))hDeclare action procedures for use by main control 1043 i +�procedure scan math (p : pointer);label restart ; reswitch ; exit ;var c: integer ; fmath character code gbegin restart : hGet the next non-blank non-relax non-call token 404 i;reswitch : case cur cmd ofletter ; other char ; char given : begin c ho (math code (cur chr));if c = �100000 thenbegin hTreat cur chr as an active character 1152 i;goto restart ;end;end;char num : begin scan char num ; cur chr cur val ; cur cmd char given ; goto reswitch ;end;math char num : begin scan �fteen bit int ; c cur val ;end;math given : c cur chr ;delim num : begin scan twenty seven bit int ; c cur val div �10000 ;end;othercases h Scan a subformula enclosed in braces and return 1153 iendcases;math type (p) math char ; character (p) qi (cmod 256);if (c � var code) ^ fam in range then fam (p) cur famelse fam (p) (c div 256)mod 16;exit : end;1152. An active character that is an outer call is allowed here.hTreat cur chr as an active character 1152 i �begin cur cs cur chr + active base ; cur cmd eq type (cur cs); cur chr equiv (cur cs); x token ;back input ;endThis code is used in sections 1151 and 1155.

426 PART 48: BUILDING MATH LISTS TEXGPC x11531153. The pointer p is placed on save stack while a complex subformula is being scanned.h Scan a subformula enclosed in braces and return 1153 i �begin back input ; scan left brace ;saved (0) p; incr (save ptr); push math (math group); return;endThis code is used in section 1151.1154. The simplest math formula is, of course, `$ $', when no noads are generated. The next simplestcases involve a single character, e.g., `x'. Even though such cases may not seem to be very interesting,the reader can perhaps understand how happy the author was when `x' was �rst properly typeset by TEX.The code in this section was used.hCases of main control that build boxes and lists 1056 i +�mmode + letter ;mmode + other char ;mmode + char given : set math char (ho (math code (cur chr)));mmode + char num : begin scan char num ; cur chr cur val ; set math char (ho (math code (cur chr)));end;mmode +math char num : begin scan �fteen bit int ; set math char (cur val);end;mmode +math given : set math char (cur chr);mmode + delim num : begin scan twenty seven bit int ; set math char (cur val div �10000);end;1155. The set math char procedure creates a new noad appropriate to a given math code, and appendsit to the current mlist. However, if the math code is su�ciently large, the cur chr is treated as an activecharacter and nothing is appended.hDeclare action procedures for use by main control 1043 i +�procedure set math char (c : integer);var p: pointer ; f the new noad gbegin if c � �100000 then hTreat cur chr as an active character 1152 ielse begin p new noad ; math type (nucleus (p)) math char ;character (nucleus (p)) qi (cmod 256); fam (nucleus (p)) (c div 256)mod 16;if c � var code thenbegin if fam in range then fam (nucleus (p)) cur fam ;type (p) ord noad ;endelse type (p) ord noad + (c div �10000);link (tail) p; tail p;end;end;1156. Primitive math operators like \mathop and \underline are given the command code math comp ,supplemented by the noad type that they generate.hPut each of TEX's primitives into the hash table 226 i +�primitive ("mathord";math comp ; ord noad); primitive ("mathop";math comp ; op noad);primitive ("mathbin";math comp ; bin noad); primitive ("mathrel";math comp ; rel noad);primitive ("mathopen";math comp ; open noad); primitive ("mathclose";math comp ; close noad);primitive ("mathpunct";math comp ; punct noad); primitive ("mathinner";math comp ; inner noad);primitive ("underline";math comp ; under noad); primitive ("overline";math comp ; over noad);primitive ("displaylimits"; limit switch ;normal); primitive ("limits"; limit switch ; limits);primitive ("nolimits"; limit switch ;no limits);

x1157 TEXGPC PART 48: BUILDING MATH LISTS 4271157. hCases of print cmd chr for symbolic printing of primitives 227 i +�math comp : case chr code oford noad : print esc("mathord");op noad : print esc("mathop");bin noad : print esc ("mathbin");rel noad : print esc("mathrel");open noad : print esc ("mathopen");close noad : print esc("mathclose");punct noad : print esc ("mathpunct");inner noad : print esc("mathinner");under noad : print esc("underline");othercases print esc ("overline")endcases;limit switch : if chr code = limits then print esc("limits")else if chr code = no limits then print esc("nolimits")else print esc ("displaylimits");1158. hCases of main control that build boxes and lists 1056 i +�mmode +math comp : begin tail append (new noad); type (tail) cur chr ; scan math (nucleus (tail));end;mmode + limit switch : math limit switch ;1159. hDeclare action procedures for use by main control 1043 i +�procedure math limit switch ;label exit ;begin if head 6= tail thenif type (tail) = op noad thenbegin subtype (tail) cur chr ; return;end;print err ("Limit controls must follow a math operator");help1 ("I�m ignoring this misplaced \limits or \nolimits command."); error ;exit : end;1160. Delimiter �elds of noads are �lled in by the scan delimiter routine. The �rst parameter of thisprocedure is the mem address where the delimiter is to be placed; the second tells if this delimiter follows\radical or not.hDeclare action procedures for use by main control 1043 i +�procedure scan delimiter (p : pointer ; r : boolean);begin if r then scan twenty seven bit intelse begin hGet the next non-blank non-relax non-call token 404 i;case cur cmd ofletter ; other char : cur val del code (cur chr);delim num : scan twenty seven bit int ;othercases cur val �1endcases;end;if cur val < 0 thenhReport that an invalid delimiter code is being changed to null; set cur val 0 1161 i;small fam (p) (cur val div �4000000)mod 16; small char (p) qi ((cur val div �10000)mod 256);large fam (p) (cur val div 256)mod 16; large char (p) qi (cur val mod 256);end;

428 PART 48: BUILDING MATH LISTS TEXGPC x11611161. hReport that an invalid delimiter code is being changed to null; set cur val 0 1161 i �begin print err ("Missing delimiter (. inserted)");help6 ("I was expecting to see something like �(� or �\{� or")("�\}� here. If you typed, e.g., �{� instead of �\{�, you")("should probably delete the �{� by typing �1� now, so that")("braces don�t get unbalanced. Otherwise just proceed.")("Acceptable delimiters are characters whose \delcode is")("nonnegative, or you can use �\delimiter <delimiter code>�."); back error ; cur val 0;endThis code is used in section 1160.1162. hCases of main control that build boxes and lists 1056 i +�mmode + radical : math radical ;1163. hDeclare action procedures for use by main control 1043 i +�procedure math radical ;begin tail append (get node (radical noad size)); type (tail) radical noad ; subtype (tail) normal ;mem [nucleus (tail)]:hh empty �eld ; mem [subscr (tail)]:hh empty �eld ;mem [supscr (tail)]:hh empty �eld ; scan delimiter (left delimiter (tail); true); scan math (nucleus (tail));end;1164. hCases of main control that build boxes and lists 1056 i +�mmode + accent ;mmode +math accent : math ac ;1165. hDeclare action procedures for use by main control 1043 i +�procedure math ac ;begin if cur cmd = accent then hComplain that the user should have said \mathaccent 1166 i;tail append (get node (accent noad size)); type (tail) accent noad ; subtype (tail) normal ;mem [nucleus (tail)]:hh empty �eld ; mem [subscr (tail)]:hh empty �eld ;mem [supscr (tail)]:hh empty �eld ; math type (accent chr (tail)) math char ; scan �fteen bit int ;character (accent chr (tail)) qi (cur val mod 256);if (cur val � var code) ^ fam in range then fam (accent chr (tail)) cur famelse fam (accent chr (tail)) (cur val div 256)mod 16;scan math (nucleus (tail));end;1166. hComplain that the user should have said \mathaccent 1166 i �begin print err ("Please use "); print esc("mathaccent"); print (" for accents in math mode");help2 ("I�m changing \accent to \mathaccent here; wish me luck.")("(Accents are not the same in formulas as they are in text.)"); error ;endThis code is used in section 1165.1167. hCases of main control that build boxes and lists 1056 i +�mmode + vcenter : begin scan spec(vcenter group ; false); normal paragraph ; push nest ; mode �vmode ;prev depth ignore depth ;if every vbox 6= null then begin token list (every vbox ; every vbox text);end;

x1168 TEXGPC PART 48: BUILDING MATH LISTS 4291168. hCases of handle right brace where a right brace triggers a delayed action 1085 i +�vcenter group : begin end graf ; unsave ; save ptr save ptr � 2;p vpack (link (head); saved (1); saved (0)); pop nest ; tail append (new noad); type (tail) vcenter noad ;math type (nucleus (tail)) sub box ; info (nucleus (tail)) p;end;1169. The routine that inserts a style node holds no surprises.hPut each of TEX's primitives into the hash table 226 i +�primitive ("displaystyle";math style ; display style); primitive ("textstyle";math style ; text style);primitive ("scriptstyle";math style ; script style);primitive ("scriptscriptstyle";math style ; script script style);1170. hCases of print cmd chr for symbolic printing of primitives 227 i +�math style : print style (chr code);1171. hCases of main control that build boxes and lists 1056 i +�mmode +math style : tail append (new style (cur chr));mmode + non script : begin tail append (new glue (zero glue)); subtype (tail) cond math glue ;end;mmode +math choice : append choices ;1172. The routine that scans the four mlists of a \mathchoice is very much like the routine that buildsdiscretionary nodes.hDeclare action procedures for use by main control 1043 i +�procedure append choices ;begin tail append (new choice); incr (save ptr); saved (�1) 0; push math (math choice group);scan left brace ;end;1173. hCases of handle right brace where a right brace triggers a delayed action 1085 i +�math choice group : build choices ;1174. hDeclare action procedures for use by main control 1043 i +�hDeclare the function called �n mlist 1184 iprocedure build choices ;label exit ;var p: pointer ; f the current mlist gbegin unsave ; p �n mlist (null);case saved (�1) of0: display mlist (tail) p;1: text mlist (tail) p;2: script mlist (tail) p;3: begin script script mlist (tail) p; decr (save ptr); return;end;end; f there are no other cases gincr (saved (�1)); push math (math choice group); scan left brace ;exit : end;

430 PART 48: BUILDING MATH LISTS TEXGPC x11751175. Subscripts and superscripts are attached to the previous nucleus by the action procedure calledsub sup . We use the facts that sub mark = sup mark + 1 and subscr (p) = supscr (p) + 1.hCases of main control that build boxes and lists 1056 i +�mmode + sub mark ;mmode + sup mark : sub sup ;1176. hDeclare action procedures for use by main control 1043 i +�procedure sub sup ;var t: small number ; f type of previous sub/superscript gp: pointer ; f �eld to be �lled by scan math gbegin t empty ; p null ;if tail 6= head thenif scripts allowed (tail) thenbegin p supscr (tail) + cur cmd � sup mark ; f supscr or subscr gt math type (p);end;if (p = null) _ (t 6= empty) then h Insert a dummy noad to be sub/superscripted 1177 i;scan math (p);end;1177. h Insert a dummy noad to be sub/superscripted 1177 i �begin tail append (new noad); p supscr (tail) + cur cmd � sup mark ; f supscr or subscr gif t 6= empty thenbegin if cur cmd = sup mark thenbegin print err ("Double superscript");help1 ("I treat �x^1^2� essentially like �x^1{}^2�.");endelse begin print err ("Double subscript");help1 ("I treat �x_1_2� essentially like �x_1{}_2�.");end;error ;end;endThis code is used in section 1176.1178. An operation like `\over' causes the current mlist to go into a state of suspended animation:incompleat noad points to a fraction noad that contains the mlist-so-far as its numerator, while the de-nominator is yet to come. Finally when the mlist is �nished, the denominator will go into the incompleatfraction noad, and that noad will become the whole formula, unless it is surrounded by `\left' and `\right'delimiters.de�ne above code = 0 f `\above' gde�ne over code = 1 f `\over' gde�ne atop code = 2 f `\atop' gde�ne delimited code = 3 f `\abovewithdelims', etc. ghPut each of TEX's primitives into the hash table 226 i +�primitive ("above"; above ; above code);primitive ("over"; above ; over code);primitive ("atop"; above ; atop code);primitive ("abovewithdelims"; above ; delimited code + above code);primitive ("overwithdelims"; above ; delimited code + over code);primitive ("atopwithdelims"; above ; delimited code + atop code);

x1179 TEXGPC PART 48: BUILDING MATH LISTS 4311179. hCases of print cmd chr for symbolic printing of primitives 227 i +�above : case chr code ofover code : print esc ("over");atop code : print esc("atop");delimited code + above code : print esc("abovewithdelims");delimited code + over code : print esc ("overwithdelims");delimited code + atop code : print esc ("atopwithdelims");othercases print esc ("above")endcases;1180. hCases of main control that build boxes and lists 1056 i +�mmode + above : math fraction ;1181. hDeclare action procedures for use by main control 1043 i +�procedure math fraction ;var c: small number ; f the type of generalized fraction we are scanning gbegin c cur chr ;if incompleat noad 6= null thenh Ignore the fraction operation and complain about this ambiguous case 1183 ielse begin incompleat noad get node (fraction noad size); type (incompleat noad) fraction noad ;subtype (incompleat noad) normal ; math type (numerator (incompleat noad)) sub mlist ;info (numerator (incompleat noad)) link (head);mem [denominator (incompleat noad)]:hh empty �eld ;mem [left delimiter (incompleat noad)]:qqqq null delimiter ;mem [right delimiter (incompleat noad)]:qqqq null delimiter ;link (head) null ; tail head ; hUse code c to distinguish between generalized fractions 1182 i;end;end;1182. hUse code c to distinguish between generalized fractions 1182 i �if c � delimited code thenbegin scan delimiter (left delimiter (incompleat noad); false);scan delimiter (right delimiter (incompleat noad); false);end;case cmod delimited code ofabove code : begin scan normal dimen ; thickness (incompleat noad) cur val ;end;over code : thickness (incompleat noad) default code ;atop code : thickness (incompleat noad) 0;end f there are no other cases gThis code is used in section 1181.

432 PART 48: BUILDING MATH LISTS TEXGPC x11831183. h Ignore the fraction operation and complain about this ambiguous case 1183 i �begin if c � delimited code thenbegin scan delimiter (garbage ; false); scan delimiter (garbage ; false);end;if cmod delimited code = above code then scan normal dimen ;print err ("Ambiguous; you need another { and }");help3 ("I�m ignoring this fraction specification, since I don�t")("know whether a construction like �x \over y \over z�")("means �{x \over y} \over z� or �x \over {y \over z}�."); error ;endThis code is used in section 1181.1184. At the end of a math formula or subformula, the �n mlist routine is called upon to return a pointerto the newly completed mlist, and to pop the nest back to the enclosing semantic level. The parameter to�n mlist , if not null, points to a right noad that ends the current mlist; this right noad has not yet beenappended.hDeclare the function called �n mlist 1184 i �function �n mlist (p : pointer): pointer ;var q: pointer ; f the mlist to return gbegin if incompleat noad 6= null then hCompleat the incompleat noad 1185 ielse begin link (tail) p; q link (head);end;pop nest ; �n mlist q;end;This code is used in section 1174.1185. hCompleat the incompleat noad 1185 i �begin math type (denominator (incompleat noad)) sub mlist ;info (denominator (incompleat noad)) link (head);if p = null then q incompleat noadelse begin q info (numerator (incompleat noad));if type (q) 6= left noad then confusion ("right");info (numerator (incompleat noad)) link (q); link (q) incompleat noad ; link (incompleat noad) p;end;endThis code is used in section 1184.

x1186 TEXGPC PART 48: BUILDING MATH LISTS 4331186. Now at last we're ready to see what happens when a right brace occurs in a math formula. Twospecial cases are simpli�ed here: Braces are e�ectively removed when they surround a single Ord withoutsub/superscripts, or when they surround an accent that is the nucleus of an Ord atom.hCases of handle right brace where a right brace triggers a delayed action 1085 i +�math group : begin unsave ; decr (save ptr);math type (saved (0)) sub mlist ; p �n mlist (null); info (saved (0)) p;if p 6= null thenif link (p) = null thenif type (p) = ord noad thenbegin if math type (subscr (p)) = empty thenif math type (supscr (p)) = empty thenbegin mem [saved (0)]:hh mem [nucleus (p)]:hh ; free node (p;noad size);end;endelse if type (p) = accent noad thenif saved (0) = nucleus (tail) thenif type (tail) = ord noad then hReplace the tail of the list by p 1187 i;end;1187. hReplace the tail of the list by p 1187 i �begin q head ;while link (q) 6= tail do q link (q);link (q) p; free node (tail ;noad size); tail p;endThis code is used in section 1186.1188. We have dealt with all constructions of math mode except `\left' and `\right', so the picture iscompleted by the following sections of the program.hPut each of TEX's primitives into the hash table 226 i +�primitive ("left"; left right ; left noad); primitive ("right"; left right ; right noad);text (frozen right) "right"; eqtb [frozen right] eqtb [cur val];1189. hCases of print cmd chr for symbolic printing of primitives 227 i +�left right : if chr code = left noad then print esc("left")else print esc ("right");1190. hCases of main control that build boxes and lists 1056 i +�mmode + left right : math left right ;

434 PART 48: BUILDING MATH LISTS TEXGPC x11911191. hDeclare action procedures for use by main control 1043 i +�procedure math left right ;var t: small number ; f left noad or right noad gp: pointer ; f new noad gbegin t cur chr ;if (t = right noad)^ (cur group 6= math left group) then hTry to recover from mismatched \right 1192 ielse begin p new noad ; type (p) t; scan delimiter (delimiter (p); false);if t = left noad thenbegin push math (math left group); link (head) p; tail p;endelse begin p �n mlist (p); unsave ; f end of math left group gtail append (new noad); type (tail) inner noad ; math type (nucleus (tail)) sub mlist ;info (nucleus (tail)) p;end;end;end;1192. hTry to recover from mismatched \right 1192 i �begin if cur group = math shift group thenbegin scan delimiter (garbage ; false); print err ("Extra "); print esc("right");help1 ("I�m ignoring a \right that had no matching \left."); error ;endelse o� save ;endThis code is used in section 1191.1193. Here is the only way out of math mode.hCases of main control that build boxes and lists 1056 i +�mmode +math shift : if cur group = math shift group then after mathelse o� save ;

x1194 TEXGPC PART 48: BUILDING MATH LISTS 4351194. hDeclare action procedures for use by main control 1043 i +�procedure after math ;var l: boolean ; f `\leqno' instead of `\eqno' gdanger : boolean ; f not enough symbol fonts are present gm: integer ; fmmode or �mmode gp: pointer ; f the formula ga: pointer ; f box containing equation number ghLocal variables for �nishing a displayed formula 1198 ibegin danger false ; hCheck that the necessary fonts for math symbols are present; if not, ush thecurrent math lists and set danger true 1195 i;m mode ; l false ; p �n mlist (null); f this pops the nest gif mode = �m then f end of equation number gbegin hCheck that another $ follows 1197 i;cur mlist p; cur style text style ; mlist penalties false ; mlist to hlist ;a hpack (link (temp head);natural); unsave ; decr (save ptr); f now cur group = math shift group gif saved (0) = 1 then l true ;danger false ; hCheck that the necessary fonts for math symbols are present; if not, ush the currentmath lists and set danger true 1195 i;m mode ; p �n mlist (null);endelse a null ;if m < 0 then hFinish math in text 1196 ielse begin if a = null then hCheck that another $ follows 1197 i;hFinish displayed math 1199 i;end;end;1195. hCheck that the necessary fonts for math symbols are present; if not, ush the current math listsand set danger true 1195 i �if (font params [fam fnt (2 + text size)] < total mathsy params) _(font params [fam fnt (2 + script size)] < total mathsy params) _(font params [fam fnt (2 + script script size)] < total mathsy params) thenbegin print err ("Math formula deleted: Insufficient symbol fonts");help3 ("Sorry, but I can�t typeset math unless \textfont 2")("and \scriptfont 2 and \scriptscriptfont 2 have all")("the \fontdimen values needed in math symbol fonts."); error ; ush math ; danger true ;endelse if (font params [fam fnt (3 + text size)] < total mathex params) _(font params [fam fnt (3 + script size)] < total mathex params) _(font params [fam fnt (3 + script script size)] < total mathex params) thenbegin print err ("Math formula deleted: Insufficient extension fonts");help3 ("Sorry, but I can�t typeset math unless \textfont 3")("and \scriptfont 3 and \scriptscriptfont 3 have all")("the \fontdimen values needed in math extension fonts."); error ; ush math ;danger true ;endThis code is used in sections 1194 and 1194.

436 PART 48: BUILDING MATH LISTS TEXGPC x11961196. The unsave is done after everything else here; hence an appearance of `\mathsurround' inside of`$...$' a�ects the spacing at these particular $'s. This is consistent with the conventions of `$$...$$', since`\abovedisplayskip' inside a display a�ects the space above that display.hFinish math in text 1196 i �begin tail append (new math (math surround ; before)); cur mlist p; cur style text style ;mlist penalties (mode > 0); mlist to hlist ; link (tail) link (temp head);while link (tail) 6= null do tail link (tail);tail append (new math (math surround ; after)); space factor 1000; unsave ;endThis code is used in section 1194.1197. TEX gets to the following part of the program when the �rst `$' ending a display has been scanned.hCheck that another $ follows 1197 i �begin get x token ;if cur cmd 6= math shift thenbegin print err ("Display math should end with $$");help2 ("The �$� that I just saw supposedly matches a previous �$$�.")("So I shall assume that you typed �$$� both times."); back error ;end;endThis code is used in sections 1194, 1194, and 1206.1198. We have saved the worst for last: The fussiest part of math mode processing occurs when a displayedformula is being centered and placed with an optional equation number.hLocal variables for �nishing a displayed formula 1198 i �b: pointer ; f box containing the equation gw: scaled ; fwidth of the equation gz: scaled ; fwidth of the line ge: scaled ; fwidth of equation number gq: scaled ; fwidth of equation number plus space to separate from equation gd: scaled ; f displacement of equation in the line gs: scaled ; fmove the line right this much gg1 ; g2 : small number ; f glue parameter codes for before and after gr: pointer ; f kern node used to position the display gt: pointer ; f tail of adjustment list gThis code is used in section 1194.

x1199 TEXGPC PART 48: BUILDING MATH LISTS 4371199. At this time p points to the mlist for the formula; a is either null or it points to a box containingthe equation number; and we are in vertical mode (or internal vertical mode).hFinish displayed math 1199 i �cur mlist p; cur style display style ; mlist penalties false ; mlist to hlist ; p link (temp head);adjust tail adjust head ; b hpack (p;natural); p list ptr (b); t adjust tail ; adjust tail null ;w width (b); z display width ; s display indent ;if (a = null) _ danger thenbegin e 0; q 0;endelse begin e width (a); q e+math quad (text size);end;if w+ q > z then h Squeeze the equation as much as possible; if there is an equation number that shouldgo on a separate line by itself, set e 0 1201 i;hDetermine the displacement, d, of the left edge of the equation, with respect to the line size z, assumingthat l = false 1202 i;hAppend the glue or equation number preceding the display 1203 i;hAppend the display and perhaps also the equation number 1204 i;hAppend the glue or equation number following the display 1205 i;resume after displayThis code is used in section 1194.1200. hDeclare action procedures for use by main control 1043 i +�procedure resume after display ;begin if cur group 6= math shift group then confusion ("display");unsave ; prev graf prev graf + 3; push nest ; mode hmode ; space factor 1000; set cur lang ;clang cur lang ;prev graf (norm min (left hyphen min) � �100 + norm min (right hyphen min)) � �200000 + cur lang ;h Scan an optional space 443 i;if nest ptr = 1 then build page ;end;1201. The user can force the equation number to go on a separate line by causing its width to be zero.h Squeeze the equation as much as possible; if there is an equation number that should go on a separate lineby itself, set e 0 1201 i �begin if (e 6= 0) ^ ((w � total shrink [normal] + q � z) _(total shrink [�l] 6= 0) _ (total shrink [�ll] 6= 0) _ (total shrink [�lll] 6= 0)) thenbegin free node (b; box node size); b hpack (p; z � q; exactly);endelse begin e 0;if w > z thenbegin free node (b; box node size); b hpack (p; z; exactly);end;end;w width (b);endThis code is used in section 1199.

438 PART 48: BUILDING MATH LISTS TEXGPC x12021202. We try �rst to center the display without regard to the existence of the equation number. If thatwould make it too close (where \too close" means that the space between display and equation number isless than the width of the equation number), we either center it in the remaining space or move it as farfrom the equation number as possible. The latter alternative is taken only if the display begins with glue,since we assume that the user put glue there to control the spacing precisely.hDetermine the displacement, d, of the left edge of the equation, with respect to the line size z, assumingthat l = false 1202 i �d half (z � w);if (e > 0) ^ (d < 2 � e) then f too close gbegin d half (z � w � e);if p 6= null thenif :is char node (p) thenif type (p) = glue node then d 0;endThis code is used in section 1199.1203. If the equation number is set on a line by itself, either before or after the formula, we append anin�nite penalty so that no page break will separate the display from its number; and we use the same sizeand displacement for all three potential lines of the display, even though `\parshape' may specify themdi�erently.hAppend the glue or equation number preceding the display 1203 i �tail append (new penalty (pre display penalty));if (d+ s � pre display size) _ l then f not enough clearance gbegin g1 above display skip code ; g2 below display skip code ;endelse begin g1 above display short skip code ; g2 below display short skip code ;end;if l ^ (e = 0) then f it follows that type (a) = hlist node gbegin shift amount (a) s; append to vlist (a); tail append (new penalty (inf penalty));endelse tail append (new param glue (g1))This code is used in section 1199.1204. hAppend the display and perhaps also the equation number 1204 i �if e 6= 0 thenbegin r new kern (z � w � e� d);if l thenbegin link (a) r; link (r) b; b a; d 0;endelse begin link (b) r; link (r) a;end;b hpack (b;natural);end;shift amount (b) s+ d; append to vlist (b)This code is used in section 1199.

x1205 TEXGPC PART 48: BUILDING MATH LISTS 4391205. hAppend the glue or equation number following the display 1205 i �if (a 6= null) ^ (e = 0) ^ :l thenbegin tail append (new penalty (inf penalty)); shift amount (a) s+ z � width (a); append to vlist (a);g2 0;end;if t 6= adjust head then fmigrating material comes after equation number gbegin link (tail) link (adjust head); tail t;end;tail append (new penalty (post display penalty));if g2 > 0 then tail append (new param glue (g2))This code is used in section 1199.1206. When \halign appears in a display, the alignment routines operate essentially as they do in verticalmode. Then the following program is activated, with p and q pointing to the beginning and end of theresulting list, and with aux save holding the prev depth value.hFinish an alignment in a display 1206 i �begin do assignments ;if cur cmd 6= math shift then hPonti�cate about improper alignment in display 1207 ielse hCheck that another $ follows 1197 i;pop nest ; tail append (new penalty (pre display penalty));tail append (new param glue (above display skip code)); link (tail) p;if p 6= null then tail q;tail append (new penalty (post display penalty)); tail append (new param glue (below display skip code));prev depth aux save :sc ; resume after display ;endThis code is used in section 812.1207. hPonti�cate about improper alignment in display 1207 i �begin print err ("Missing $$ inserted");help2 ("Displays can use special alignments (like \eqalignno)")("only if nothing but the alignment itself is between $$�s."); back error ;endThis code is used in section 1206.

440 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12081208. Mode-independent processing. The long main control procedure has now been fully speci�ed,except for certain activities that are independent of the current mode. These activities do not change thecurrent vlist or hlist or mlist; if they change anything, it is the value of a parameter or the meaning of acontrol sequence.Assignments to values in eqtb can be global or local. Furthermore, a control sequence can be de�ned to be`\long' or `\outer', and it might or might not be expanded. The pre�xes `\global', `\long', and `\outer'can occur in any order. Therefore we assign binary numeric codes, making it possible to accumulate theunion of all speci�ed pre�xes by adding the corresponding codes. (Pascal's set operations could also havebeen used.)hPut each of TEX's primitives into the hash table 226 i +�primitive ("long"; pre�x ; 1); primitive ("outer"; pre�x ; 2); primitive ("global"; pre�x ; 4);primitive ("def"; def ; 0); primitive ("gdef"; def ; 1); primitive ("edef"; def ; 2); primitive ("xdef"; def ; 3);1209. hCases of print cmd chr for symbolic printing of primitives 227 i +�pre�x : if chr code = 1 then print esc("long")else if chr code = 2 then print esc ("outer")else print esc ("global");def : if chr code = 0 then print esc("def")else if chr code = 1 then print esc ("gdef")else if chr code = 2 then print esc ("edef")else print esc ("xdef");1210. Every pre�x, and every command code that might or might not be pre�xed, calls the actionprocedure pre�xed command . This routine accumulates a sequence of pre�xes until coming to a non-pre�x,then it carries out the command.hCases of main control that don't depend on mode 1210 i �any mode (toks register); any mode (assign toks); any mode (assign int); any mode (assign dimen);any mode (assign glue); any mode (assign mu glue); any mode (assign font dimen);any mode (assign font int); any mode (set aux); any mode (set prev graf); any mode (set page dimen);any mode (set page int); any mode (set box dimen); any mode (set shape); any mode (def code);any mode (def family); any mode (set font); any mode (def font); any mode (register);any mode (advance); any mode (multiply); any mode (divide); any mode (pre�x); any mode (let);any mode (shorthand def); any mode (read to cs); any mode (def); any mode (set box);any mode (hyph data); any mode (set interaction): pre�xed command ;See also sections 1268, 1271, 1274, 1276, 1285, and 1290.This code is used in section 1045.

x1211 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4411211. If the user says, e.g., `\global\global', the redundancy is silently accepted.hDeclare action procedures for use by main control 1043 i +�hDeclare subprocedures for pre�xed command 1215 iprocedure pre�xed command ;label done ; exit ;var a: small number ; f accumulated pre�x codes so far gf : internal font number ; f identi�es a font gj: halfword ; f index into a \parshape speci�cation gk: font index ; f index into font info gp; q: pointer ; f for temporary short-term use gn: integer ; f ditto ge: boolean ; f should a de�nition be expanded? or was \let not done? gbegin a 0;while cur cmd = pre�x dobegin if :odd (a div cur chr) then a a+ cur chr ;hGet the next non-blank non-relax non-call token 404 i;if cur cmd � max non pre�xed command then hDiscard erroneous pre�xes and return 1212 i;end;hDiscard the pre�xes \long and \outer if they are irrelevant 1213 i;hAdjust for the setting of \globaldefs 1214 i;case cur cmd ofhAssignments 1217 iothercases confusion ("prefix")endcases;done : h Insert a token saved by \afterassignment, if any 1269 i;exit : end;1212. hDiscard erroneous pre�xes and return 1212 i �begin print err ("You can�t use a prefix with �"); print cmd chr (cur cmd ; cur chr);print char ("�"); help1 ("I�ll pretend you didn�t say \long or \outer or \global.");back error ; return;endThis code is used in section 1211.1213. hDiscard the pre�xes \long and \outer if they are irrelevant 1213 i �if (cur cmd 6= def) ^ (amod 4 6= 0) thenbegin print err ("You can�t use �"); print esc("long"); print ("� or �"); print esc ("outer");print ("� with �"); print cmd chr (cur cmd ; cur chr); print char ("�");help1 ("I�ll pretend you didn�t say \long or \outer here."); error ;endThis code is used in section 1211.

442 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12141214. The previous routine does not have to adjust a so that amod 4 = 0, since the following routinestest for the \global pre�x as follows.de�ne global � (a � 4)de�ne de�ne (#) �if global then geq de�ne (#) else eq de�ne (#)de�ne word de�ne (#) �if global then geq word de�ne (#) else eq word de�ne (#)hAdjust for the setting of \globaldefs 1214 i �if global defs 6= 0 thenif global defs < 0 thenbegin if global then a a� 4;endelse begin if :global then a a+ 4;endThis code is used in section 1211.1215. When a control sequence is to be de�ned, by \def or \let or something similar, the get r tokenroutine will substitute a special control sequence for a token that is not rede�nable.hDeclare subprocedures for pre�xed command 1215 i �procedure get r token ;label restart ;begin restart : repeat get token ;until cur tok 6= space token ;if (cur cs = 0) _ (cur cs > frozen control sequence) thenbegin print err ("Missing control sequence inserted");help5 ("Please don�t say �\def cs{...}�, say �\def\cs{...}�.")("I�ve inserted an inaccessible control sequence so that your")("definition will be completed without mixing me up too badly.")("You can recover graciously from this error, if you�re")("careful; see exercise 27.2 in The TeXbook.");if cur cs = 0 then back input ;cur tok cs token ag + frozen protection ; ins error ; goto restart ;end;end;See also sections 1229, 1236, 1243, 1244, 1245, 1246, 1247, 1257, and 1265.This code is used in section 1211.1216. h Initialize table entries (done by INITEX only) 164 i +�text (frozen protection) "inaccessible";1217. Here's an example of the way many of the following routines operate. (Unfortunately, they aren'tall as simple as this.)hAssignments 1217 i �set font : de�ne (cur font loc ; data ; cur chr);See also sections 1218, 1221, 1224, 1225, 1226, 1228, 1232, 1234, 1235, 1241, 1242, 1248, 1252, 1253, 1256, and 1264.This code is used in section 1211.

x1218 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4431218. When a def command has been scanned, cur chr is odd if the de�nition is supposed to be global,and cur chr � 2 if the de�nition is supposed to be expanded.hAssignments 1217 i +�def : begin if odd (cur chr) ^ :global ^ (global defs � 0) then a a+ 4;e (cur chr � 2); get r token ; p cur cs ; q scan toks (true ; e); de�ne (p; call + (amod 4); def ref);end;1219. Both \let and \futurelet share the command code let .hPut each of TEX's primitives into the hash table 226 i +�primitive ("let"; let ;normal);primitive ("futurelet"; let ;normal + 1);1220. hCases of print cmd chr for symbolic printing of primitives 227 i +�let : if chr code 6= normal then print esc("futurelet") else print esc("let");1221. hAssignments 1217 i +�let : begin n cur chr ; get r token ; p cur cs ;if n = normal thenbegin repeat get token ;until cur cmd 6= spacer ;if cur tok = other token + "=" thenbegin get token ;if cur cmd = spacer then get token ;end;endelse begin get token ; q cur tok ; get token ; back input ; cur tok q; back input ;f look ahead, then back up gend; f note that back input doesn't a�ect cur cmd , cur chr gif cur cmd � call then add token ref (cur chr);de�ne (p; cur cmd ; cur chr);end;1222. A \chardef creates a control sequence whose cmd is char given ; a \mathchardef creates a controlsequence whose cmd is math given ; and the corresponding chr is the character code or math code. A\countdef or \dimendef or \skipdef or \muskipdef creates a control sequence whose cmd is assign int or: : : or assign mu glue , and the corresponding chr is the eqtb location of the internal register in question.de�ne char def code = 0 f shorthand def for \chardefgde�ne math char def code = 1 f shorthand def for \mathchardefgde�ne count def code = 2 f shorthand def for \countdefgde�ne dimen def code = 3 f shorthand def for \dimendefgde�ne skip def code = 4 f shorthand def for \skipdefgde�ne mu skip def code = 5 f shorthand def for \muskipdefgde�ne toks def code = 6 f shorthand def for \toksdefghPut each of TEX's primitives into the hash table 226 i +�primitive ("chardef"; shorthand def ; char def code);primitive ("mathchardef"; shorthand def ;math char def code);primitive ("countdef"; shorthand def ; count def code);primitive ("dimendef"; shorthand def ; dimen def code);primitive ("skipdef"; shorthand def ; skip def code);primitive ("muskipdef"; shorthand def ;mu skip def code);primitive ("toksdef"; shorthand def ; toks def code);

444 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12231223. hCases of print cmd chr for symbolic printing of primitives 227 i +�shorthand def : case chr code ofchar def code : print esc ("chardef");math char def code : print esc("mathchardef");count def code : print esc ("countdef");dimen def code : print esc("dimendef");skip def code : print esc ("skipdef");mu skip def code : print esc ("muskipdef");othercases print esc ("toksdef")endcases;char given : begin print esc("char"); print hex (chr code);end;math given : begin print esc ("mathchar"); print hex (chr code);end;1224. We temporarily de�ne p to be relax , so that an occurrence of p while scanning the de�nition willsimply stop the scanning instead of producing an \unde�ned control sequence" error or expanding theprevious meaning. This allows, for instance, `\chardef\foo=123\foo'.hAssignments 1217 i +�shorthand def : begin n cur chr ; get r token ; p cur cs ; de�ne (p; relax ; 256); scan optional equals ;case n ofchar def code : begin scan char num ; de�ne (p; char given ; cur val);end;math char def code : begin scan �fteen bit int ; de�ne (p;math given ; cur val);end;othercases begin scan eight bit int ;case n ofcount def code : de�ne (p; assign int ; count base + cur val);dimen def code : de�ne (p; assign dimen ; scaled base + cur val);skip def code : de�ne (p; assign glue ; skip base + cur val);mu skip def code : de�ne (p; assign mu glue ;mu skip base + cur val);toks def code : de�ne (p; assign toks ; toks base + cur val);end; f there are no other cases gendendcases;end;1225. hAssignments 1217 i +�read to cs : begin scan int ; n cur val ;if :scan keyword ("to") thenbegin print err ("Missing �to� inserted");help2 ("You should have said �\read<number> to \cs�.")("I�m going to look for the \cs now."); error ;end;get r token ; p cur cs ; read toks (n; p); de�ne (p; call ; cur val);end;

x1226 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4451226. The token-list parameters, \output and \everypar, etc., receive their values in the following way.(For safety's sake, we place an enclosing pair of braces around an \output list.)hAssignments 1217 i +�toks register ; assign toks : begin q cur cs ;if cur cmd = toks register thenbegin scan eight bit int ; p toks base + cur val ;endelse p cur chr ; f p = every par loc or output routine loc or : : : gscan optional equals ; hGet the next non-blank non-relax non-call token 404 i;if cur cmd 6= left brace then h If the right-hand side is a token parameter or token register, �nish theassignment and goto done 1227 i;back input ; cur cs q; q scan toks (false ; false);if link (def ref) = null then f empty list: revert to the default gbegin de�ne (p; unde�ned cs ;null); free avail (def ref);endelse begin if p = output routine loc then f enclose in curlies gbegin link (q) get avail ; q link (q); info (q) right brace token + "}"; q get avail ;info (q) left brace token + "{"; link (q) link (def ref); link (def ref) q;end;de�ne (p; call ; def ref);end;end;1227. h If the right-hand side is a token parameter or token register, �nish the assignment and gotodone 1227 i �begin if cur cmd = toks register thenbegin scan eight bit int ; cur cmd assign toks ; cur chr toks base + cur val ;end;if cur cmd = assign toks thenbegin q equiv (cur chr);if q = null then de�ne (p; unde�ned cs ;null)else begin add token ref (q); de�ne (p; call ; q);end;goto done ;end;endThis code is used in section 1226.1228. Similar routines are used to assign values to the numeric parameters.hAssignments 1217 i +�assign int : begin p cur chr ; scan optional equals ; scan int ; word de�ne (p; cur val);end;assign dimen : begin p cur chr ; scan optional equals ; scan normal dimen ; word de�ne (p; cur val);end;assign glue ; assign mu glue : begin p cur chr ; n cur cmd ; scan optional equals ;if n = assign mu glue then scan glue (mu val) else scan glue (glue val);trap zero glue ; de�ne (p; glue ref ; cur val);end;

446 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12291229. When a glue register or parameter becomes zero, it will always point to zero glue because of thefollowing procedure. (Exception: The tabskip glue isn't trapped while preambles are being scanned.)hDeclare subprocedures for pre�xed command 1215 i +�procedure trap zero glue ;begin if (width (cur val) = 0) ^ (stretch (cur val) = 0) ^ (shrink (cur val) = 0) thenbegin add glue ref (zero glue); delete glue ref (cur val); cur val zero glue ;end;end;1230. The various character code tables are changed by the def code commands, and the font families aredeclared by def family .hPut each of TEX's primitives into the hash table 226 i +�primitive ("catcode"; def code ; cat code base); primitive ("mathcode"; def code ;math code base);primitive ("lccode"; def code ; lc code base); primitive ("uccode"; def code ; uc code base);primitive ("sfcode"; def code ; sf code base); primitive ("delcode"; def code ; del code base);primitive ("textfont"; def family ;math font base);primitive ("scriptfont"; def family ;math font base + script size);primitive ("scriptscriptfont"; def family ;math font base + script script size);1231. hCases of print cmd chr for symbolic printing of primitives 227 i +�def code : if chr code = cat code base then print esc("catcode")else if chr code = math code base then print esc("mathcode")else if chr code = lc code base then print esc("lccode")else if chr code = uc code base then print esc("uccode")else if chr code = sf code base then print esc ("sfcode")else print esc ("delcode");def family : print size (chr code �math font base);1232. The di�erent types of code values have di�erent legal ranges; the following program is careful tocheck each case properly.hAssignments 1217 i +�def code : begin hLet n be the largest legal code value, based on cur chr 1233 i;p cur chr ; scan char num ; p p+ cur val ; scan optional equals ; scan int ;if ((cur val < 0) ^ (p < del code base)) _ (cur val > n) thenbegin print err ("Invalid code ("); print int (cur val);if p < del code base then print ("), should be in the range 0..")else print ("), should be at most ");print int (n); help1 ("I�m going to use 0 instead of that illegal code value.");error ; cur val 0;end;if p < math code base then de�ne (p; data ; cur val)else if p < del code base then de�ne (p; data ; hi (cur val))else word de�ne (p; cur val);end;

x1233 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4471233. hLet n be the largest legal code value, based on cur chr 1233 i �if cur chr = cat code base then n max char codeelse if cur chr = math code base then n �100000else if cur chr = sf code base then n �77777else if cur chr = del code base then n �77777777else n 255This code is used in section 1232.1234. hAssignments 1217 i +�def family : begin p cur chr ; scan four bit int ; p p+ cur val ; scan optional equals ; scan font ident ;de�ne (p; data ; cur val);end;1235. Next we consider changes to TEX's numeric registers.hAssignments 1217 i +�register ; advance ;multiply ; divide : do register command (a);1236. We use the fact that register < advance < multiply < divide .hDeclare subprocedures for pre�xed command 1215 i +�procedure do register command (a : small number);label found ; exit ;var l; q; r; s: pointer ; f for list manipulation gp: int val : : mu val ; f type of register involved gbegin q cur cmd ; hCompute the register location l and its type p; but return if invalid 1237 i;if q = register then scan optional equalselse if scan keyword ("by") then do nothing ; f optional `by' garith error false ;if q < multiply then hCompute result of register or advance , put it in cur val 1238 ielse hCompute result of multiply or divide , put it in cur val 1240 i;if arith error thenbegin print err ("Arithmetic overflow");help2 ("I can�t carry out that multiplication or division,")("since the result is out of range.");if p � glue val then delete glue ref (cur val);error ; return;end;if p < glue val then word de�ne (l; cur val)else begin trap zero glue ; de�ne (l; glue ref ; cur val);end;exit : end;

448 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12371237. Here we use the fact that the consecutive codes int val : : mu val and assign int : : assign mu gluecorrespond to each other nicely.hCompute the register location l and its type p; but return if invalid 1237 i �begin if q 6= register thenbegin get x token ;if (cur cmd � assign int) ^ (cur cmd � assign mu glue) thenbegin l cur chr ; p cur cmd � assign int ; goto found ;end;if cur cmd 6= register thenbegin print err ("You can�t use �"); print cmd chr (cur cmd ; cur chr); print ("� after ");print cmd chr (q; 0); help1 ("I�m forgetting what you said and not changing anything.");error ; return;end;end;p cur chr ; scan eight bit int ;case p ofint val : l cur val + count base ;dimen val : l cur val + scaled base ;glue val : l cur val + skip base ;mu val : l cur val +mu skip base ;end; f there are no other cases gend;found :This code is used in section 1236.1238. hCompute result of register or advance , put it in cur val 1238 i �if p < glue val thenbegin if p = int val then scan int else scan normal dimen ;if q = advance then cur val cur val + eqtb [l]:int ;endelse begin scan glue (p);if q = advance then hCompute the sum of two glue specs 1239 i;endThis code is used in section 1236.1239. hCompute the sum of two glue specs 1239 i �begin q new spec (cur val); r equiv (l); delete glue ref (cur val); width (q) width (q) + width (r);if stretch (q) = 0 then stretch order (q) normal ;if stretch order (q) = stretch order (r) then stretch (q) stretch (q) + stretch (r)else if (stretch order (q) < stretch order (r)) ^ (stretch (r) 6= 0) thenbegin stretch (q) stretch (r); stretch order (q) stretch order (r);end;if shrink (q) = 0 then shrink order (q) normal ;if shrink order (q) = shrink order (r) then shrink (q) shrink (q) + shrink (r)else if (shrink order (q) < shrink order (r)) ^ (shrink (r) 6= 0) thenbegin shrink (q) shrink (r); shrink order (q) shrink order (r);end;cur val q;endThis code is used in section 1238.

x1240 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4491240. hCompute result of multiply or divide , put it in cur val 1240 i �begin scan int ;if p < glue val thenif q = multiply thenif p = int val then cur val mult integers (eqtb [l]:int ; cur val)else cur val nx plus y (eqtb [l]:int ; cur val ; 0)else cur val x over n (eqtb [l]:int ; cur val)else begin s equiv (l); r new spec(s);if q = multiply thenbegin width (r) nx plus y (width (s); cur val ; 0); stretch (r) nx plus y (stretch (s); cur val ; 0);shrink (r) nx plus y (shrink (s); cur val ; 0);endelse begin width (r) x over n (width (s); cur val); stretch (r) x over n (stretch (s); cur val);shrink (r) x over n (shrink (s); cur val);end;cur val r;end;endThis code is used in section 1236.1241. The processing of boxes is somewhat di�erent, because we may need to scan and create an entirebox before we actually change the value of the old one.hAssignments 1217 i +�set box : begin scan eight bit int ;if global then n 256 + cur val else n cur val ;scan optional equals ;if set box allowed then scan box (box ag + n)else begin print err ("Improper "); print esc ("setbox");help2 ("Sorry, \setbox is not allowed after \halign in a display,")("or between \accent and an accented character."); error ;end;end;1242. The space factor or prev depth settings are changed when a set aux command is sensed. Similarly,prev graf is changed in the presence of set prev graf , and dead cycles or insert penalties in the presence ofset page int . These de�nitions are always global.When some dimension of a box register is changed, the change isn't exactly global; but TEX does not lookat the \global switch.hAssignments 1217 i +�set aux : alter aux ;set prev graf : alter prev graf ;set page dimen : alter page so far ;set page int : alter integer ;set box dimen : alter box dimen ;

450 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12431243. hDeclare subprocedures for pre�xed command 1215 i +�procedure alter aux ;var c: halfword ; f hmode or vmode gbegin if cur chr 6= abs (mode) then report illegal caseelse begin c cur chr ; scan optional equals ;if c = vmode thenbegin scan normal dimen ; prev depth cur val ;endelse begin scan int ;if (cur val � 0) _ (cur val > 32767) thenbegin print err ("Bad space factor");help1 ("I allow only values in the range 1..32767 here."); int error (cur val);endelse space factor cur val ;end;end;end;1244. hDeclare subprocedures for pre�xed command 1215 i +�procedure alter prev graf ;var p: 0 : : nest size ; f index into nest gbegin nest [nest ptr] cur list ; p nest ptr ;while abs (nest [p]:mode �eld) 6= vmode do decr (p);scan optional equals ; scan int ;if cur val < 0 thenbegin print err ("Bad "); print esc("prevgraf");help1 ("I allow only nonnegative values here."); int error (cur val);endelse begin nest [p]:pg �eld cur val ; cur list nest [nest ptr];end;end;1245. hDeclare subprocedures for pre�xed command 1215 i +�procedure alter page so far ;var c: 0 : : 7; f index into page so far gbegin c cur chr ; scan optional equals ; scan normal dimen ; page so far [c] cur val ;end;1246. hDeclare subprocedures for pre�xed command 1215 i +�procedure alter integer ;var c: 0 : : 1; f 0 for \deadcycles, 1 for \insertpenaltiesgbegin c cur chr ; scan optional equals ; scan int ;if c = 0 then dead cycles cur valelse insert penalties cur val ;end;

x1247 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4511247. hDeclare subprocedures for pre�xed command 1215 i +�procedure alter box dimen ;var c: small number ; fwidth o�set or height o�set or depth o�set gb: eight bits ; f box number gbegin c cur chr ; scan eight bit int ; b cur val ; scan optional equals ; scan normal dimen ;if box (b) 6= null then mem [box (b) + c]:sc cur val ;end;1248. Paragraph shapes are set up in the obvious way.hAssignments 1217 i +�set shape : begin scan optional equals ; scan int ; n cur val ;if n � 0 then p nullelse begin p get node (2 � n+ 1); info (p) n;for j 1 to n dobegin scan normal dimen ; mem [p+ 2 � j � 1]:sc cur val ; f indentation gscan normal dimen ; mem [p+ 2 � j]:sc cur val ; fwidth gend;end;de�ne (par shape loc ; shape ref ; p);end;1249. Here's something that isn't quite so obvious. It guarantees that info (par shape ptr) can hold anypositive n for which get node (2 � n+ 1) doesn't overow the memory capacity.hCheck the \constant" values for consistency 14 i +�if 2 �max halfword < mem top �mem min then bad 41;1250. New hyphenation data is loaded by the hyph data command.hPut each of TEX's primitives into the hash table 226 i +�primitive ("hyphenation"; hyph data ; 0); primitive ("patterns"; hyph data ; 1);1251. hCases of print cmd chr for symbolic printing of primitives 227 i +�hyph data : if chr code = 1 then print esc("patterns")else print esc ("hyphenation");1252. hAssignments 1217 i +�hyph data : if cur chr = 1 thenbegin init new patterns ; goto done ; tiniprint err ("Patterns can be loaded only by INITEX"); help0 ; error ;repeat get token ;until cur cmd = right brace ; f ush the patterns greturn;endelse begin new hyph exceptions ; goto done ;end;

452 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12531253. All of TEX's parameters are kept in eqtb except the font information, the interaction mode, and thehyphenation tables; these are strictly global.hAssignments 1217 i +�assign font dimen : begin �nd font dimen (true); k cur val ; scan optional equals ; scan normal dimen ;font info [k]:sc cur val ;end;assign font int : begin n cur chr ; scan font ident ; f cur val ; scan optional equals ; scan int ;if n = 0 then hyphen char [f] cur val else skew char [f] cur val ;end;1254. hPut each of TEX's primitives into the hash table 226 i +�primitive ("hyphenchar"; assign font int ; 0); primitive ("skewchar"; assign font int ; 1);1255. hCases of print cmd chr for symbolic printing of primitives 227 i +�assign font int : if chr code = 0 then print esc("hyphenchar")else print esc ("skewchar");1256. Here is where the information for a new font gets loaded.hAssignments 1217 i +�def font : new font (a);1257. hDeclare subprocedures for pre�xed command 1215 i +�procedure new font (a : small number);label common ending ;var u: pointer ; f user's font identi�er gs: scaled ; f stated \at" size, or negative of scaled magni�cation gf : internal font number ; f runs through existing fonts gt: str number ; f name for the frozen font identi�er gold setting : 0 : : max selector ; f holds selector setting gushable string : str number ; f string not yet referenced gbegin if job name = 0 then open log �le ; f avoid confusing texput with the font name gget r token ; u cur cs ;if u � hash base then t text (u)else if u � single base thenif u = null cs then t "FONT" else t u� single baseelse begin old setting selector ; selector new string ; print ("FONT"); print (u� active base);selector old setting ; str room (1); t make string ;end;de�ne (u; set font ;null font); scan optional equals ; scan �le name ;h Scan the font size speci�cation 1258 i;h If this font has already been loaded, set f to the internal font number and goto common ending 1260 i;f read font info (u; cur name ; cur area ; s);common ending : equiv (u) f ; eqtb [font id base + f] eqtb [u]; font id text (f) t;end;

x1258 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4531258. h Scan the font size speci�cation 1258 i �name in progress true ; f this keeps cur name from being changed gif scan keyword ("at") then hPut the (positive) `at' size into s 1259 ielse if scan keyword ("scaled") thenbegin scan int ; s �cur val ;if (cur val � 0) _ (cur val > 32768) thenbegin print err ("Illegal magnification has been changed to 1000");help1 ("The magnification ratio must be between 1 and 32768."); int error (cur val);s �1000;end;endelse s �1000;name in progress falseThis code is used in section 1257.1259. hPut the (positive) `at' size into s 1259 i �begin scan normal dimen ; s cur val ;if (s � 0) _ (s � �1000000000) thenbegin print err ("Improper �at� size ("); print scaled (s); print ("pt), replaced by 10pt");help2 ("I can only handle fonts at positive sizes that are")("less than 2048pt, so I�ve changed what you said to 10pt."); error ; s 10 � unity ;end;endThis code is used in section 1258.1260. When the user gives a new identi�er to a font that was previously loaded, the new name becomesthe font identi�er of record. Font names `xyz' and `XYZ' are considered to be di�erent.h If this font has already been loaded, set f to the internal font number and goto common ending 1260 i �ushable string str ptr � 1;for f font base + 1 to font ptr doif str eq str (font name [f]; cur name) ^ str eq str (font area [f]; cur area) thenbegin if cur name = ushable string thenbegin ush string ; cur name font name [f];end;if s > 0 thenbegin if s = font size [f] then goto common ending ;endelse if font size [f] = xn over d (font dsize [f];�s; 1000) then goto common ending ;endThis code is used in section 1257.1261. hCases of print cmd chr for symbolic printing of primitives 227 i +�set font : begin print ("select font "); slow print (font name [chr code]);if font size [chr code] 6= font dsize [chr code] thenbegin print (" at "); print scaled (font size [chr code]); print ("pt");end;end;

454 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12621262. hPut each of TEX's primitives into the hash table 226 i +�primitive ("batchmode"; set interaction ; batch mode);primitive ("nonstopmode"; set interaction ;nonstop mode);primitive ("scrollmode"; set interaction ; scroll mode);primitive ("errorstopmode"; set interaction ; error stop mode);1263. hCases of print cmd chr for symbolic printing of primitives 227 i +�set interaction : case chr code ofbatch mode : print esc("batchmode");nonstop mode : print esc("nonstopmode");scroll mode : print esc("scrollmode");othercases print esc ("errorstopmode")endcases;1264. hAssignments 1217 i +�set interaction : new interaction ;1265. hDeclare subprocedures for pre�xed command 1215 i +�procedure new interaction ;begin print ln ; interaction cur chr ; h Initialize the print selector based on interaction 75 i;if log opened then selector selector + 2;end;1266. The \afterassignment command puts a token into the global variable after token . This globalvariable is examined just after every assignment has been performed.hGlobal variables 13 i +�after token : halfword ; f zero, or a saved token g1267. h Set initial values of key variables 21 i +�after token 0;1268. hCases of main control that don't depend on mode 1210 i +�any mode (after assignment): begin get token ; after token cur tok ;end;1269. h Insert a token saved by \afterassignment, if any 1269 i �if after token 6= 0 thenbegin cur tok after token ; back input ; after token 0;endThis code is used in section 1211.1270. Here is a procedure that might be called `Get the next non-blank non-relax non-call non-assignmenttoken'.hDeclare action procedures for use by main control 1043 i +�procedure do assignments ;label exit ;begin loopbegin hGet the next non-blank non-relax non-call token 404 i;if cur cmd � max non pre�xed command then return;set box allowed false ; pre�xed command ; set box allowed true ;end;exit : end;

x1271 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4551271. hCases of main control that don't depend on mode 1210 i +�any mode (after group): begin get token ; save for after (cur tok);end;1272. Files for \read are opened and closed by the in stream command.hPut each of TEX's primitives into the hash table 226 i +�primitive ("openin"; in stream ; 1); primitive ("closein"; in stream ; 0);1273. hCases of print cmd chr for symbolic printing of primitives 227 i +�in stream : if chr code = 0 then print esc("closein")else print esc ("openin");1274. hCases of main control that don't depend on mode 1210 i +�any mode (in stream): open or close in ;1275. hDeclare action procedures for use by main control 1043 i +�procedure open or close in ;var c: 0 : : 1; f 1 for \openin, 0 for \closeingn: 0 : : 15; f stream number gbegin c cur chr ; scan four bit int ; n cur val ;if read open [n] 6= closed thenbegin a close (read �le [n]); read open [n] closed ;end;if c 6= 0 thenbegin scan optional equals ; scan �le name ;if cur ext = "" then cur ext ".tex";pack cur name ;if a open in (read �le [n]) then read open [n] just open ;end;end;1276. The user can issue messages to the terminal, regardless of the current mode.hCases of main control that don't depend on mode 1210 i +�any mode (message): issue message ;1277. hPut each of TEX's primitives into the hash table 226 i +�primitive ("message";message ; 0); primitive ("errmessage";message ; 1);1278. hCases of print cmd chr for symbolic printing of primitives 227 i +�message : if chr code = 0 then print esc ("message")else print esc ("errmessage");

456 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12791279. hDeclare action procedures for use by main control 1043 i +�procedure issue message ;var old setting : 0 : : max selector ; f holds selector setting gc: 0 : : 1; f identi�es \message and \errmessagegs: str number ; f the message gbegin c cur chr ; link (garbage) scan toks (false ; true); old setting selector ;selector new string ; token show (def ref); selector old setting ; ush list (def ref); str room (1);s make string ;if c = 0 then hPrint string s on the terminal 1280 ielse hPrint string s as an error message 1283 i;ush string ;end;1280. hPrint string s on the terminal 1280 i �begin if term o�set + length (s) > max print line � 2 then print lnelse if (term o�set > 0) _ (�le o�set > 0) then print char (" ");slow print (s); update terminal ;endThis code is used in section 1279.1281. If \errmessage occurs often in scroll mode , without user-de�ned \errhelp, we don't want to givea long help message each time. So we give a verbose explanation only once.hGlobal variables 13 i +�long help seen : boolean ; f has the long \errmessage help been used? g1282. h Set initial values of key variables 21 i +�long help seen false ;1283. hPrint string s as an error message 1283 i �begin print err (""); slow print (s);if err help 6= null then use err help trueelse if long help seen then help1 ("(That was another \errmessage.)")else begin if interaction < error stop mode then long help seen true ;help4 ("This error message was generated by an \errmessage")("command, so I can�t give any explicit help.")("Pretend that you�re Hercule Poirot: Examine all clues,")("and deduce the truth by order and method.");end;error ; use err help false ;endThis code is used in section 1279.1284. The error routine calls on give err help if help is requested from the err help parameter.procedure give err help ;begin token show (err help);end;1285. The \uppercase and \lowercase commands are implemented by building a token list and thenchanging the cases of the letters in it.hCases of main control that don't depend on mode 1210 i +�any mode (case shift): shift case ;

x1286 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4571286. hPut each of TEX's primitives into the hash table 226 i +�primitive ("lowercase"; case shift ; lc code base); primitive ("uppercase"; case shift ; uc code base);1287. hCases of print cmd chr for symbolic printing of primitives 227 i +�case shift : if chr code = lc code base then print esc("lowercase")else print esc ("uppercase");1288. hDeclare action procedures for use by main control 1043 i +�procedure shift case ;var b: pointer ; f lc code base or uc code base gp: pointer ; f runs through the token list gt: halfword ; f token gc: eight bits ; f character code gbegin b cur chr ; p scan toks (false ; false); p link (def ref);while p 6= null dobegin hChange the case of the token in p, if a change is appropriate 1289 i;p link (p);end;back list (link (def ref)); free avail (def ref); f omit reference count gend;1289. When the case of a chr code changes, we don't change the cmd . We also change active characters,using the fact that cs token ag + active base is a multiple of 256.hChange the case of the token in p, if a change is appropriate 1289 i �t info (p);if t < cs token ag + single base thenbegin c tmod 256;if equiv (b+ c) 6= 0 then info (p) t� c+ equiv (b+ c);endThis code is used in section 1288.1290. We come �nally to the last pieces missing from main control , namely the `\show' commands thatare useful when debugging.hCases of main control that don't depend on mode 1210 i +�any mode (xray): show whatever ;1291. de�ne show code = 0 f \show gde�ne show box code = 1 f \showbox gde�ne show the code = 2 f \showthe gde�ne show lists = 3 f \showlists ghPut each of TEX's primitives into the hash table 226 i +�primitive ("show"; xray ; show code); primitive ("showbox"; xray ; show box code);primitive ("showthe"; xray ; show the code); primitive ("showlists"; xray ; show lists);1292. hCases of print cmd chr for symbolic printing of primitives 227 i +�xray : case chr code ofshow box code : print esc("showbox");show the code : print esc ("showthe");show lists : print esc("showlists");othercases print esc ("show")endcases;

458 PART 49: MODE-INDEPENDENT PROCESSING TEXGPC x12931293. hDeclare action procedures for use by main control 1043 i +�procedure show whatever ;label common ending ;var p: pointer ; f tail of a token list to show gbegin case cur chr ofshow lists : begin begin diagnostic ; show activities ;end;show box code : h Show the current contents of a box 1296 i;show code : h Show the current meaning of a token, then goto common ending 1294 i;othercases h Show the current value of some parameter or register, then goto common ending 1297 iendcases;hComplete a potentially long \show command 1298 i;common ending : if interaction < error stop mode thenbegin help0 ; decr (error count);endelse if tracing online > 0 thenbeginhelp3 ("This isn�t an error message; I�m just \showing something.")("Type �I\show...� to show more (e.g., \show\cs,")("\showthe\count10, \showbox255, \showlists).");endelse beginhelp5 ("This isn�t an error message; I�m just \showing something.")("Type �I\show...� to show more (e.g., \show\cs,")("\showthe\count10, \showbox255, \showlists).")("And type �I\tracingonline=1\show...� to show boxes and")("lists on your terminal as well as in the transcript file.");end;error ;end;1294. h Show the current meaning of a token, then goto common ending 1294 i �begin get token ;if interaction = error stop mode then wake up terminal ;print nl ("> ");if cur cs 6= 0 thenbegin sprint cs (cur cs); print char ("=");end;print meaning ; goto common ending ;endThis code is used in section 1293.1295. hCases of print cmd chr for symbolic printing of primitives 227 i +�unde�ned cs : print ("undefined");call : print ("macro");long call : print esc("long macro");outer call : print esc("outer macro");long outer call : begin print esc ("long"); print esc("outer macro");end;end template : print esc("outer endtemplate");

x1296 TEXGPC PART 49: MODE-INDEPENDENT PROCESSING 4591296. h Show the current contents of a box 1296 i �begin scan eight bit int ; begin diagnostic ; print nl ("> \box"); print int (cur val); print char ("=");if box (cur val) = null then print ("void")else show box (box (cur val));endThis code is used in section 1293.1297. h Show the current value of some parameter or register, then goto common ending 1297 i �begin p the toks ;if interaction = error stop mode then wake up terminal ;print nl ("> "); token show (temp head); ush list (link (temp head)); goto common ending ;endThis code is used in section 1293.1298. hComplete a potentially long \show command 1298 i �end diagnostic (true); print err ("OK");if selector = term and log thenif tracing online � 0 thenbegin selector term only ; print (" (see the transcript file)"); selector term and log ;endThis code is used in section 1293.

460 PART 50: DUMPING AND UNDUMPING THE TABLES TEXGPC x12991299. Dumping and undumping the tables. After INITEX has seen a collection of fonts and macros,it can write all the necessary information on an auxiliary �le so that production versions of TEX are ableto initialize their memory at high speed. The present section of the program takes care of such output andinput. We shall consider simultaneously the processes of storing and restoring, so that the inverse relationbetween them is clear.The global variable format ident is a string that is printed right after the banner line when TEX is readyto start. For INITEX this string says simply `(INITEX)'; for other versions of TEX it says, for example,`(preloaded format=plain 1982.11.19)', showing the year, month, and day that the format �le wascreated. We have format ident = 0 before TEX's tables are loaded.hGlobal variables 13 i +�format ident : str number ;1300. h Set initial values of key variables 21 i +�format ident 0;1301. h Initialize table entries (done by INITEX only) 164 i +�format ident " (INITEX)";1302. hDeclare action procedures for use by main control 1043 i +�init procedure store fmt �le ;label found1 ; found2 ; done1 ; done2 ;var j; k; l: integer ; f all-purpose indices gp; q: pointer ; f all-purpose pointers gx: integer ; f something to dump gw: four quarters ; f four ASCII codes gbegin h If dumping is not allowed, abort 1304 i;hCreate the format ident , open the format �le, and inform the user that dumping has begun 1328 i;hDump constants for consistency check 1307 i;hDump the string pool 1309 i;hDump the dynamic memory 1311 i;hDump the table of equivalents 1313 i;hDump the font information 1320 i;hDump the hyphenation tables 1324 i;hDump a couple more things and the closing check word 1326 i;hClose the format �le 1329 i;end;tini

x1303 TEXGPC PART 50: DUMPING AND UNDUMPING THE TABLES 4611303. Corresponding to the procedure that dumps a format �le, we have a function that reads one in.The function returns false if the dumped format is incompatible with the present TEX table sizes, etc.de�ne bad fmt = 6666 f go here if the format �le is unacceptable gde�ne too small (#) �begin wake up terminal ; wterm ln (�---! Must increase the �; #); goto bad fmt ;endhDeclare the function called open fmt �le 524 ifunction load fmt �le : boolean ;label bad fmt ; exit ;var j; k: integer ; f all-purpose indices gp; q: pointer ; f all-purpose pointers gx: integer ; f something undumped gw: four quarters ; f four ASCII codes gbegin hUndump constants for consistency check 1308 i;hUndump the string pool 1310 i;hUndump the dynamic memory 1312 i;hUndump the table of equivalents 1314 i;hUndump the font information 1321 i;hUndump the hyphenation tables 1325 i;hUndump a couple more things and the closing check word 1327 i;load fmt �le true ; return; f it worked! gbad fmt : wake up terminal ; wterm ln (�(Fatal format file error; I��m stymied)�);load fmt �le false ;exit : end;1304. The user is not allowed to dump a format �le unless save ptr = 0. This condition implies thatcur level = level one , hence the xeq level array is constant and it need not be dumped.h If dumping is not allowed, abort 1304 i �if save ptr 6= 0 thenbegin print err ("You can�t dump inside a group"); help1 ("�{...\dump}� is a no-no.");succumb ;endThis code is used in section 1302.1305. Format �les consist of memory word items, and we use the following macros to dump words ofdi�erent types:de�ne dump wd (#) �begin fmt �le" #; put (fmt �le); endde�ne dump int (#) �begin fmt �le":int #; put (fmt �le); endde�ne dump hh (#) �begin fmt �le":hh #; put (fmt �le); endde�ne dump qqqq (#) �begin fmt �le":qqqq #; put (fmt �le); endhGlobal variables 13 i +�fmt �le : word �le ; f for input or output of format information g

462 PART 50: DUMPING AND UNDUMPING THE TABLES TEXGPC x13061306. The inverse macros are slightly more complicated, since we need to check the range of the valueswe are reading in. We say `undump(a)(b)(x)' to read an integer value x that is supposed to be in the rangea � x � b.de�ne undump wd (#) �begin get (fmt �le); # fmt �le"; endde�ne undump int (#) �begin get (fmt �le); # fmt �le":int ; endde�ne undump hh (#) �begin get (fmt �le); # fmt �le":hh ; endde�ne undump qqqq (#) �begin get (fmt �le); # fmt �le":qqqq ; endde�ne undump end end (#) � # x; endde�ne undump end (#) � (x > #) then goto bad fmt else undump end endde�ne undump(#) �begin undump int (x);if (x < #) _ undump endde�ne undump size end end (#) � too small (#) else undump end endde�ne undump size end (#) �if x > # then undump size end endde�ne undump size (#) �begin undump int (x);if x < # then goto bad fmt ;undump size end1307. The next few sections of the program should make it clear how we use the dump/undump macros.hDump constants for consistency check 1307 i �dump int (@$);dump int (mem bot);dump int (mem top);dump int (eqtb size);dump int (hash prime);dump int (hyph size)This code is used in section 1302.1308. Sections of a WEB program that are \commented out" still contribute strings to the string pool;therefore INITEX and TEX will have the same strings. (And it is, of course, a good thing that they do.)hUndump constants for consistency check 1308 i �x fmt �le":int ;if x 6= @$ then goto bad fmt ; f check that strings are the same gundump int (x);if x 6= mem bot then goto bad fmt ;undump int (x);if x 6= mem top then goto bad fmt ;undump int (x);if x 6= eqtb size then goto bad fmt ;undump int (x);if x 6= hash prime then goto bad fmt ;undump int (x);if x 6= hyph size then goto bad fmtThis code is used in section 1303.

x1309 TEXGPC PART 50: DUMPING AND UNDUMPING THE TABLES 4631309. de�ne dump four ASCII � w:b0 qi (so (str pool [k])); w:b1 qi (so (str pool [k + 1]));w:b2 qi (so (str pool [k + 2])); w:b3 qi (so (str pool [k + 3])); dump qqqq (w)hDump the string pool 1309 i �dump int (pool ptr); dump int (str ptr);for k 0 to str ptr do dump int (str start [k]);k 0;while k + 4 < pool ptr dobegin dump four ASCII ; k k + 4;end;k pool ptr � 4; dump four ASCII ; print ln ; print int (str ptr);print (" strings of total length "); print int (pool ptr)This code is used in section 1302.1310. de�ne undump four ASCII � undump qqqq (w); str pool [k] si (qo (w:b0));str pool [k + 1] si (qo (w:b1)); str pool [k + 2] si (qo (w:b2)); str pool [k + 3] si (qo (w:b3))hUndump the string pool 1310 i �undump size (0)(pool size)(�string pool size�)(pool ptr);undump size (0)(max strings)(�max strings�)(str ptr);for k 0 to str ptr do undump(0)(pool ptr)(str start [k]);k 0;while k + 4 < pool ptr dobegin undump four ASCII ; k k + 4;end;k pool ptr � 4; undump four ASCII ; init str ptr str ptr ; init pool ptr pool ptrThis code is used in section 1303.1311. By sorting the list of available spaces in the variable-size portion of mem , we are usually able to getby without having to dump very much of the dynamic memory.We recompute var used and dyn used , so that INITEX dumps valid information even when it has not beengathering statistics.hDump the dynamic memory 1311 i �sort avail ; var used 0; dump int (lo mem max); dump int (rover); p mem bot ; q rover ; x 0;repeat for k p to q + 1 do dump wd (mem [k]);x x+ q + 2� p; var used var used + q � p; p q + node size (q); q rlink (q);until q = rover ;var used var used + lo mem max � p; dyn used mem end + 1� hi mem min ;for k p to lo mem max do dump wd (mem [k]);x x+ lo mem max + 1� p; dump int (hi mem min); dump int (avail);for k hi mem min to mem end do dump wd (mem [k]);x x+mem end + 1� hi mem min ; p avail ;while p 6= null dobegin decr (dyn used); p link (p);end;dump int (var used); dump int (dyn used); print ln ; print int (x);print (" memory locations dumped; current usage is "); print int (var used); print char ("&");print int (dyn used)This code is used in section 1302.

464 PART 50: DUMPING AND UNDUMPING THE TABLES TEXGPC x13121312. hUndump the dynamic memory 1312 i �undump(lo mem stat max + 1000)(hi mem stat min � 1)(lo mem max);undump(lo mem stat max + 1)(lo mem max)(rover); p mem bot ; q rover ;repeat for k p to q + 1 do undump wd (mem [k]);p q + node size (q);if (p > lo mem max) _ ((q � rlink (q)) ^ (rlink (q) 6= rover)) then goto bad fmt ;q rlink (q);until q = rover ;for k p to lo mem max do undump wd (mem [k]);if mem min < mem bot � 2 then fmake more low memory available gbegin p llink (rover); q mem min + 1; link (mem min) null ; info (mem min) null ;fwe don't use the bottom word grlink (p) q; llink (rover) q;rlink (q) rover ; llink (q) p; link (q) empty ag ; node size (q) mem bot � q;end;undump(lo mem max + 1)(hi mem stat min)(hi mem min); undump(null)(mem top)(avail);mem end mem top ;for k hi mem min to mem end do undump wd (mem [k]);undump int (var used); undump int (dyn used)This code is used in section 1303.1313. hDump the table of equivalents 1313 i �hDump regions 1 to 4 of eqtb 1315 i;hDump regions 5 and 6 of eqtb 1316 i;dump int (par loc); dump int (write loc);hDump the hash table 1318 iThis code is used in section 1302.1314. hUndump the table of equivalents 1314 i �hUndump regions 1 to 6 of eqtb 1317 i;undump(hash base)(frozen control sequence)(par loc); par token cs token ag + par loc ;undump(hash base)(frozen control sequence)(write loc);hUndump the hash table 1319 iThis code is used in section 1303.

x1315 TEXGPC PART 50: DUMPING AND UNDUMPING THE TABLES 4651315. The table of equivalents usually contains repeated information, so we dump it in compressed form:The sequence of n+2 values (n; x1; : : : ; xn;m) in the format �le represents n+m consecutive entries of eqtb ,with m extra copies of xn, namely (x1; : : : ; xn; xn; : : : ; xn).hDump regions 1 to 4 of eqtb 1315 i �k active base ;repeat j k;while j < int base � 1 dobegin if (equiv (j) = equiv (j + 1)) ^ (eq type (j) = eq type (j + 1)) ^ (eq level (j) = eq level (j + 1))then goto found1 ;incr (j);end;l int base ; goto done1 ; f j = int base � 1 gfound1 : incr (j); l j;while j < int base � 1 dobegin if (equiv (j) 6= equiv (j + 1)) _ (eq type (j) 6= eq type (j + 1)) _ (eq level (j) 6= eq level (j + 1))then goto done1 ;incr (j);end;done1 : dump int (l � k);while k < l dobegin dump wd (eqtb [k]); incr (k);end;k j + 1; dump int (k � l);until k = int baseThis code is used in section 1313.1316. hDump regions 5 and 6 of eqtb 1316 i �repeat j k;while j < eqtb size dobegin if eqtb [j]:int = eqtb [j + 1]:int then goto found2 ;incr (j);end;l eqtb size + 1; goto done2 ; f j = eqtb size gfound2 : incr (j); l j;while j < eqtb size dobegin if eqtb [j]:int 6= eqtb [j + 1]:int then goto done2 ;incr (j);end;done2 : dump int (l � k);while k < l dobegin dump wd (eqtb [k]); incr (k);end;k j + 1; dump int (k � l);until k > eqtb sizeThis code is used in section 1313.

466 PART 50: DUMPING AND UNDUMPING THE TABLES TEXGPC x13171317. hUndump regions 1 to 6 of eqtb 1317 i �k active base ;repeat undump int (x);if (x < 1) _ (k + x > eqtb size + 1) then goto bad fmt ;for j k to k + x� 1 do undump wd (eqtb [j]);k k + x; undump int (x);if (x < 0) _ (k + x > eqtb size + 1) then goto bad fmt ;for j k to k + x� 1 do eqtb [j] eqtb [k � 1];k k + x;until k > eqtb sizeThis code is used in section 1314.1318. A di�erent scheme is used to compress the hash table, since its lower region is usually sparse. Whentext (p) 6= 0 for p � hash used , we output two words, p and hash [p]. The hash table is, of course, denselypacked for p � hash used , so the remaining entries are output in a block.hDump the hash table 1318 i �dump int (hash used); cs count frozen control sequence � 1� hash used ;for p hash base to hash used doif text (p) 6= 0 thenbegin dump int (p); dump hh (hash [p]); incr (cs count);end;for p hash used + 1 to unde�ned control sequence � 1 do dump hh (hash [p]);dump int (cs count);print ln ; print int (cs count); print (" multiletter control sequences")This code is used in section 1313.1319. hUndump the hash table 1319 i �undump(hash base)(frozen control sequence)(hash used); p hash base � 1;repeat undump(p+ 1)(hash used)(p); undump hh (hash [p]);until p = hash used ;for p hash used + 1 to unde�ned control sequence � 1 do undump hh (hash [p]);undump int (cs count)This code is used in section 1314.1320. hDump the font information 1320 i �dump int (fmem ptr);for k 0 to fmem ptr � 1 do dump wd (font info [k]);dump int (font ptr);for k null font to font ptr do hDump the array info for internal font number k 1322 i;print ln ; print int (fmem ptr � 7); print (" words of font info for ");print int (font ptr � font base); print (" preloaded font");if font ptr 6= font base + 1 then print char ("s")This code is used in section 1302.1321. hUndump the font information 1321 i �undump size (7)(font mem size)(�font mem size�)(fmem ptr);for k 0 to fmem ptr � 1 do undump wd (font info [k]);undump size (font base)(font max)(�font max�)(font ptr);for k null font to font ptr do hUndump the array info for internal font number k 1323 iThis code is used in section 1303.

x1322 TEXGPC PART 50: DUMPING AND UNDUMPING THE TABLES 4671322. hDump the array info for internal font number k 1322 i �begin dump qqqq (font check [k]); dump int (font size [k]); dump int (font dsize [k]);dump int (font params [k]);dump int (hyphen char [k]); dump int (skew char [k]);dump int (font name [k]); dump int (font area [k]);dump int (font bc [k]); dump int (font ec [k]);dump int (char base [k]); dump int (width base [k]); dump int (height base [k]);dump int (depth base [k]); dump int (italic base [k]); dump int (lig kern base [k]);dump int (kern base [k]); dump int (exten base [k]); dump int (param base [k]);dump int (font glue [k]);dump int (bchar label [k]); dump int (font bchar [k]); dump int (font false bchar [k]);print nl ("\font"); print esc(font id text (k)); print char ("=");print �le name (font name [k]; font area [k]; "");if font size [k] 6= font dsize [k] thenbegin print (" at "); print scaled (font size [k]); print ("pt");end;endThis code is used in section 1320.1323. hUndump the array info for internal font number k 1323 i �begin undump qqqq (font check [k]);undump int (font size [k]); undump int (font dsize [k]);undump(min halfword)(max halfword)(font params [k]);undump int (hyphen char [k]); undump int (skew char [k]);undump(0)(str ptr)(font name [k]); undump(0)(str ptr)(font area [k]);undump(0)(255)(font bc [k]); undump(0)(255)(font ec [k]);undump int (char base [k]); undump int (width base [k]); undump int (height base [k]);undump int (depth base [k]); undump int (italic base [k]); undump int (lig kern base [k]);undump int (kern base [k]); undump int (exten base [k]); undump int (param base [k]);undump(min halfword)(lo mem max)(font glue [k]);undump(0)(fmem ptr � 1)(bchar label [k]); undump(min quarterword)(non char)(font bchar [k]);undump(min quarterword)(non char)(font false bchar [k]);endThis code is used in section 1321.

468 PART 50: DUMPING AND UNDUMPING THE TABLES TEXGPC x13241324. hDump the hyphenation tables 1324 i �dump int (hyph count);for k 0 to hyph size doif hyph word [k] 6= 0 thenbegin dump int (k); dump int (hyph word [k]); dump int (hyph list [k]);end;print ln ; print int (hyph count); print (" hyphenation exception");if hyph count 6= 1 then print char ("s");if trie not ready then init trie ;dump int (trie max);for k 0 to trie max do dump hh (trie [k]);dump int (trie op ptr);for k 1 to trie op ptr dobegin dump int (hyf distance [k]); dump int (hyf num [k]); dump int (hyf next [k]);end;print nl ("Hyphenation trie of length "); print int (trie max); print (" has ");print int (trie op ptr); print (" op");if trie op ptr 6= 1 then print char ("s");print (" out of "); print int (trie op size);for k 255 downto 0 doif trie used [k] > min quarterword thenbegin print nl (" "); print int (qo (trie used [k])); print (" for language "); print int (k);dump int (k); dump int (qo (trie used [k]));endThis code is used in section 1302.1325. Only \nonempty" parts of op start need to be restored.hUndump the hyphenation tables 1325 i �undump(0)(hyph size)(hyph count);for k 1 to hyph count dobegin undump(0)(hyph size)(j); undump(0)(str ptr)(hyph word [j]);undump(min halfword)(max halfword)(hyph list [j]);end;undump size (0)(trie size)(�trie size�)(j); init trie max j; tinifor k 0 to j do undump hh (trie [k]);undump size (0)(trie op size)(�trie op size�)(j); init trie op ptr j; tinifor k 1 to j dobegin undump(0)(63)(hyf distance [k]); f a small number gundump(0)(63)(hyf num [k]); undump (min quarterword)(max quarterword)(hyf next [k]);end;init for k 0 to 255 do trie used [k] min quarterword ;tinik 256;while j > 0 dobegin undump(0)(k � 1)(k); undump(1)(j)(x); init trie used [k] qi (x); tinij j � x; op start [k] qo (j);end;init trie not ready false tiniThis code is used in section 1303.

x1326 TEXGPC PART 50: DUMPING AND UNDUMPING THE TABLES 4691326. We have already printed a lot of statistics, so we set tracing stats 0 to prevent them fromappearing again.hDump a couple more things and the closing check word 1326 i �dump int (interaction); dump int (format ident); dump int (69069); tracing stats 0This code is used in section 1302.1327. hUndump a couple more things and the closing check word 1327 i �undump(batch mode)(error stop mode)(interaction); undump(0)(str ptr)(format ident); undump int (x);if (x 6= 69069)_ eof (fmt �le) then goto bad fmtThis code is used in section 1303.1328. hCreate the format ident , open the format �le, and inform the user that dumping hasbegun 1328 i �selector new string ; print (" (preloaded format="); print (job name); print char (" ");print int (year); print char ("."); print int (month); print char ("."); print int (day); print char (")");if interaction = batch mode then selector log onlyelse selector term and log ;str room (1); format ident make string ; pack job name (format extension);while :w open out (fmt �le) do prompt �le name ("format file name"; format extension);print nl ("Beginning to dump on file "); slow print (w make name string (fmt �le)); ush string ;print nl (""); slow print (format ident)This code is used in section 1302.1329. hClose the format �le 1329 i �w close (fmt �le)This code is used in section 1302.

470 PART 51: THE MAIN PROGRAM TEXGPC x13301330. The main program. This is it: the part of TEX that executes all those procedures we havewritten.Well|almost. Let's leave space for a few more routines that we may have forgotten.hLast-minute procedures 1333* i1331. We have noted that there are two versions of TEX82. One, called INITEX, has to be run �rst; itinitializes everything from scratch, without reading a format �le, and it has the capability of dumping aformat �le. The other one is called `VIRTEX'; it is a \virgin" program that needs to input a format �le inorder to get started. VIRTEX typically has more memory capacity than INITEX, because it does not need thespace consumed by the auxiliary hyphenation tables and the numerous calls on primitive , etc.The VIRTEX program cannot read a format �le instantaneously, of course; the best implementationstherefore allow for production versions of TEX that not only avoid the loading routine for Pascal objectcode, they also have a format �le pre-loaded. This is impossible to do if we stick to standard Pascal; butthere is a simple way to fool many systems into avoiding the initialization, as follows: (1) We declare a globalinteger variable called ready already . The probability is negligible that this variable holds any particularvalue like 314159 when VIRTEX is �rst loaded. (2) After we have read in a format �le and initializedeverything, we set ready already 314159. (3) Soon VIRTEX will print `*', waiting for more input; and atthis point we interrupt the program and save its core image in some form that the operating system canreload speedily. (4) When that core image is activated, the program starts again at the beginning; but nowready already = 314159 and all the other global variables have their initial values too. The former chastityhas vanished!In other words, if we allow ourselves to test the condition ready already = 314159, before ready alreadyhas been assigned a value, we can avoid the lengthy initialization. Dirty tricks rarely pay o� so handsomely.On systems that allow such preloading, the standard program called TeX should be the one that has plainformat preloaded, since that agrees with The TEXbook. Other versions, e.g., AmSTeX, should also be providedfor commonly used formats.hGlobal variables 13 i +�ready already : integer ; f a sacri�ce of purity for economy g

x1332 TEXGPC PART 51: THE MAIN PROGRAM 4711332*. Now this is really it: TEX starts and ends here.The initial test involving ready already should be deleted if the Pascal runtime system is smart enough todetect such a \mistake."TEXGPC tries to load the format �le even before it initializes the output routines. That way, it will printh the name of the format �le on the terminal.gpc execute starts the system editor (vi) and gpc halt passes the history as an exit code to the shell.G de�ne gpc halt � h@&a@&l@&tbegin f start here ghistory fatal error stop ; f in case we quit during initialization gt open out ; f open the terminal for output gif ready already = 314159 then goto start of TEX ;hCheck the \constant" values for consistency 14 iif bad > 0 thenbegin wterm ln (�Ouch---my internal constants have been clobbered!�; �---case �; bad : 1);goto �nal end ;end;initialize ; f set global variables to their starting values ginit if :get strings started then goto �nal end ;init prim ; f call primitive for each primitive ginit str ptr str ptr ; init pool ptr pool ptr ; �x date and time ;tiniready already 314159;start of TEX : hPreload the default format �le 1379* i;h Initialize the output routines 55 i;hGet the �rst line of input and prepare to start 1337 i;history spotless ; f ready to go! gmain control ; f come to life g�nal cleanup ; f prepare for death gend of TEX : close �les and terminate ;�nal end : if edit �le name > 0 then start editor ; f user typed `E' gF gpc halt (history); f pass history as the exit value to the system gu end.

472 PART 51: THE MAIN PROGRAM TEXGPC x13331333*. Here we do whatever is needed to complete TEX's job gracefully on the local operating system. Thecode here might come into play after a fatal error; it must therefore consist entirely of \safe" operations thatcannot produce error messages. For example, it would be a mistake to call str room or make string at thistime, because a call on overow might lead to an in�nite loop.Actually there's one way to get error messages, via prepare mag ; but that can't cause in�nite recursion.This program doesn't bother to close the input �les that may still be open.Special care is taken to terminate the last line on the terminal.h hLast-minute procedures 1333* i �procedure close �les and terminate ;var k: integer ; f all-purpose index gbegin hFinish the extensions 1378 i;stat if tracing stats > 0 then hOutput statistics about this job 1334 i; tatswake up terminal ; hFinish the DVI �le 642* i;if log opened thenbegin wlog cr ; a close (log �le); selector selector � 2;if selector = term only thenbegin print nl ("Transcript written on "); slow print (log name); print char (".");end;end;if term o�set > 0 then wterm cr ;end;See also sections 1335, 1336, and 1338*.This code is used in section 1330.1334. The present section goes directly to the log �le instead of using print commands, because there'sno need for these strings to take up str pool memory when a non-stat version of TEX is being used.hOutput statistics about this job 1334 i �if log opened thenbegin wlog ln (� �); wlog ln (�Here is how much of TeX��s memory�; � you used:�);wlog (� �; str ptr � init str ptr : 1; � string�);if str ptr 6= init str ptr + 1 then wlog (�s�);wlog ln (� out of �;max strings � init str ptr : 1);wlog ln (� �; pool ptr � init pool ptr : 1; � string characters out of �; pool size � init pool ptr : 1);wlog ln (� �; lo mem max �mem min +mem end � hi mem min + 2 : 1;� words of memory out of �;mem end + 1�mem min : 1);wlog ln (� �; cs count : 1; � multiletter control sequences out of �; hash size : 1);wlog (� �; fmem ptr : 1; � words of font info for �; font ptr � font base : 1; � font�);if font ptr 6= font base + 1 then wlog (�s�);wlog ln (�, out of �; font mem size : 1; � for �; font max � font base : 1);wlog (� �; hyph count : 1; � hyphenation exception�);if hyph count 6= 1 then wlog (�s�);wlog ln (� out of �; hyph size : 1);wlog ln (� �;max in stack : 1; �i,�;max nest stack : 1; �n,�;max param stack : 1; �p,�;max buf stack + 1 : 1; �b,�;max save stack + 6 : 1; �s stack positions out of �;stack size : 1; �i,�;nest size : 1; �n,�; param size : 1; �p,�; buf size : 1; �b,�; save size : 1; �s�);endThis code is used in section 1333*.

x1335 TEXGPC PART 51: THE MAIN PROGRAM 4731335. We get to the �nal cleanup routine when \end or \dump has been scanned and its all over.hLast-minute procedures 1333* i +�procedure �nal cleanup ;label exit ;var c: small number ; f 0 for \end, 1 for \dumpgbegin c cur chr ;if job name = 0 then open log �le ;while input ptr > 0 doif state = token list then end token list else end �le reading ;while open parens > 0 dobegin print (")"); decr (open parens);end;if cur level > level one thenbegin print nl ("("); print esc("end occurred "); print ("inside a group at level ");print int (cur level � level one); print char (")");end;while cond ptr 6= null dobegin print nl ("("); print esc("end occurred "); print ("when "); print cmd chr (if test ; cur if);if if line 6= 0 thenbegin print (" on line "); print int (if line);end;print (" was incomplete)"); if line if line �eld (cond ptr); cur if subtype (cond ptr);temp ptr cond ptr ; cond ptr link (cond ptr); free node (temp ptr ; if node size);end;if history 6= spotless thenif ((history = warning issued) _ (interaction < error stop mode)) thenif selector = term and log thenbegin selector term only ;print nl ("(see the transcript file for additional information)");selector term and log ;end;if c = 1 thenbegin init for c top mark code to split bot mark code doif cur mark [c] 6= null then delete token ref (cur mark [c]);if last glue 6= max halfword then delete glue ref (last glue);store fmt �le ; return; tiniprint nl ("(\dump is performed only by INITEX)"); return;end;exit : end;1336. hLast-minute procedures 1333* i +�init procedure init prim ; f initialize all the primitives gbegin no new control sequence false ; hPut each of TEX's primitives into the hash table 226 i;no new control sequence true ;end;tini

474 PART 51: THE MAIN PROGRAM TEXGPC x13371337. When we begin the following code, TEX's tables may still contain garbage; the strings might noteven be present. Thus we must proceed cautiously to get bootstrapped in.But when we �nish this part of the program, TEX is ready to call on the main control routine to do itswork.hGet the �rst line of input and prepare to start 1337 i �begin h Initialize the input routines 331 i;if (format ident = 0) _ (bu�er [loc] = "&") thenbegin if format ident 6= 0 then initialize ; f erase preloaded format gif :open fmt �le then goto �nal end ;if :load fmt �le thenbegin w close (fmt �le); goto �nal end ;end;w close (fmt �le);while (loc < limit) ^ (bu�er [loc] = " ") do incr (loc);end;if end line char inactive then decr (limit)else bu�er [limit] end line char ;�x date and time ;hCompute the magic o�set 765 i;h Initialize the print selector based on interaction 75 i;if (loc < limit) ^ (cat code (bu�er [loc]) 6= escape) then start input ; f \input assumed gendThis code is used in section 1332*.

x1338 TEXGPC PART 52: DEBUGGING 4751338*. Debugging. Once TEX is working, you should be able to diagnose most errors with the \showcommands and other diagnostic features. But for the initial stages of debugging, and for the revelation ofreally deep mysteries, you can compile TEX with a few more aids, including the Pascal runtime checks andits debugger. An additional routine called debug help will also come into play when you type `D' after anerror message; debug help also occurs just before a fatal error causes TEX to succumb.The interface to debug help is primitive, but it is good enough when used with a Pascal debugger thatallows you to set breakpoints and to read variables and change their values. After getting the prompt`debug #', you type either a negative number (this exits debug help), or zero (this goes to a location whereyou can set a breakpoint, thereby entering into dialog with the Pascal debugger), or a positive number mfollowed by an argument n. The meaning of m and n will be clear from the program below. (If m = 13,there is an additional argument, l.)A Pascal program must not read from the standard text �le if the end of �le is reached. Even in thisP respect, Unix and Pascal treat terminals and disk �les alike.de�ne breakpoint = 888 f place where a breakpoint is desirable ghLast-minute procedures 1333* i +�debug procedure debug help ; f routine to display various things glabel breakpoint ; exit ;var k; l;m; n: integer ;begin loopbegin ; wake up terminal ; print nl ("debug # (-1 to exit):"); update terminal ;if eof (term in) then return;read (term in ;m);if m < 0 then returnelse if m = 0 thenbegin goto breakpoint ; @\ f go to every label at least once gbreakpoint : m 0; @{�BREAKPOINT�@}@\endelse begin if eof (term in) then return;read (term in ; n);case m ofhNumbered cases for debug help 1339* iothercases print ("?")endcases;end;end;exit : end;gubed

476 PART 52: DEBUGGING TEXGPC x13391339*. hNumbered cases for debug help 1339* i �1: print word (mem [n]); f display mem [n] in all forms g2: print int (info (n));3: print int (link (n));4: print word (eqtb [n]);5: print word (font info [n]);6: print word (save stack [n]);7: show box (n); f show a box, abbreviated by show box depth and show box breadth g8: begin breadth max 10000; depth threshold pool size � pool ptr � 10; show node list (n);f show a box in its entirety gend;9: show token list (n;null ; 1000);10: slow print (n);11: check mem (n > 0); f check wellformedness; print new busy locations if n > 0 g12: search mem (n); f look for pointers to n g13: begin if eof (term in) then return;read (term in ; l); print cmd chr (n; l);end;14: for k 0 to n do print (bu�er [k]);15: begin font in short display null font ; short display (n);end;16: panicking :panicking ;This code is used in section 1338*.

x1340 TEXGPC PART 53: EXTENSIONS 4771340. Extensions. The program above includes a bunch of \hooks" that allow further capabilities tobe added without upsetting TEX's basic structure. Most of these hooks are concerned with \whatsit" nodes,which are intended to be used for special purposes; whenever a new extension to TEX involves a new kindof whatsit node, a corresponding change needs to be made to the routines below that deal with such nodes,but it will usually be unnecessary to make many changes to the other parts of this program.In order to demonstrate how extensions can be made, we shall treat `\write', `\openout', `\closeout',`\immediate', `\special', and `\setlanguage' as if they were extensions. These commands are actuallyprimitives of TEX, and they should appear in all implementations of the system; but let's try to imaginethat they aren't. Then the program below illustrates how a person could add them.Sometimes, of course, an extension will require changes to TEX itself; no system of hooks could be completeenough for all conceivable extensions. The features associated with `\write' are almost all con�ned to thefollowing paragraphs, but there are small parts of the print ln and print char procedures that were introducedspeci�cally to \write characters. Furthermore one of the token lists recognized by the scanner is a write text ;and there are a few other miscellaneous places where we have already provided for some aspect of \write.The goal of a TEX extender should be to minimize alterations to the standard parts of the program, and toavoid them completely if possible. He or she should also be quite sure that there's no easy way to accomplishthe desired goals with the standard features that TEX already has. \Think thrice before extending," becausethat may save a lot of work, and it will also keep incompatible extensions of TEX from proliferating.1341. First let's consider the format of whatsit nodes that are used to represent the data associated with\write and its relatives. Recall that a whatsit has type = whatsit node , and the subtype is supposedto distinguish di�erent kinds of whatsits. Each node occupies two or more words; the exact number isimmaterial, as long as it is readily determined from the subtype or other data.We shall introduce �ve subtype values here, corresponding to the control sequences \openout, \write,\closeout, \special, and \setlanguage. The second word of I/O whatsits has a write stream �eld thatidenti�es the write-stream number (0 to 15, or 16 for out-of-range and positive, or 17 for out-of-range andnegative). In the case of \write and \special, there is also a �eld that points to the reference count of atoken list that should be sent. In the case of \openout, we need three words and three auxiliary sub�elds tohold the string numbers for name, area, and extension.de�ne write node size = 2 f number of words in a write/whatsit node gde�ne open node size = 3 f number of words in an open/whatsit node gde�ne open node = 0 f subtype in whatsits that represent �les to \openoutgde�ne write node = 1 f subtype in whatsits that represent things to \writegde�ne close node = 2 f subtype in whatsits that represent streams to \closeoutgde�ne special node = 3 f subtype in whatsits that represent \special things gde�ne language node = 4 f subtype in whatsits that change the current language gde�ne what lang (#) � link (#+ 1) f language number, in the range 0 : : 255 gde�ne what lhm (#) � type (#+ 1) fminimum left fragment, in the range 1 : : 63 gde�ne what rhm (#) � subtype (#+ 1) fminimum right fragment, in the range 1 : : 63 gde�ne write tokens (#) � link (#+ 1) f reference count of token list to write gde�ne write stream (#) � info (#+ 1) f stream number (0 to 17) gde�ne open name (#) � link (#+ 1) f string number of �le name to open gde�ne open area (#) � info (#+ 2) f string number of �le area for open name gde�ne open ext (#) � link (#+ 2) f string number of �le extension for open name g

478 PART 53: EXTENSIONS TEXGPC x13421342. The sixteen possible \write streams are represented by the write �le array. The jth �le is open ifand only if write open [j] = true . The last two streams are special; write open [16] represents a stream numbergreater than 15, while write open [17] represents a negative stream number, and both of these variables arealways false .hGlobal variables 13 i +�write �le : array [0 : : 15] of alpha �le ;write open : array [0 : : 17] of boolean ;1343. h Set initial values of key variables 21 i +�for k 0 to 17 do write open [k] false ;1344. Extensions might introduce new command codes; but it's best to use extension with a modi�er,whenever possible, so that main control stays the same.de�ne immediate code = 4 f command modi�er for \immediategde�ne set language code = 5 f command modi�er for \setlanguageghPut each of TEX's primitives into the hash table 226 i +�primitive ("openout"; extension ; open node);primitive ("write"; extension ;write node); write loc cur val ;primitive ("closeout"; extension ; close node);primitive ("special"; extension ; special node);primitive ("immediate"; extension ; immediate code);primitive ("setlanguage"; extension ; set language code);1345. The variable write loc just introduced is used to provide an appropriate error message in case of\runaway" write texts.hGlobal variables 13 i +�write loc : pointer ; f eqtb address of \writeg1346. hCases of print cmd chr for symbolic printing of primitives 227 i +�extension : case chr code ofopen node : print esc("openout");write node : print esc("write");close node : print esc ("closeout");special node : print esc("special");immediate code : print esc("immediate");set language code : print esc("setlanguage");othercases print ("[unknown extension!]")endcases;1347. When an extension command occurs in main control , in any mode, the do extension routine iscalled.hCases of main control that are for extensions to TEX 1347 i �any mode (extension): do extension ;This code is used in section 1045.

x1348 TEXGPC PART 53: EXTENSIONS 4791348. hDeclare action procedures for use by main control 1043 i +�hDeclare procedures needed in do extension 1349 iprocedure do extension ;var i; j; k: integer ; f all-purpose integers gp; q; r: pointer ; f all-purpose pointers gbegin case cur chr ofopen node : h Implement \openout 1351 i;write node : h Implement \write 1352 i;close node : h Implement \closeout 1353 i;special node : h Implement \special 1354 i;immediate code : h Implement \immediate 1375 i;set language code : h Implement \setlanguage 1377 i;othercases confusion ("ext1")endcases;end;1349. Here is a subroutine that creates a whatsit node having a given subtype and a given number ofwords. It initializes only the �rst word of the whatsit, and appends it to the current list.hDeclare procedures needed in do extension 1349 i �procedure new whatsit (s : small number ; w : small number);var p: pointer ; f the new node gbegin p get node (w); type (p) whatsit node ; subtype (p) s; link (tail) p; tail p;end;See also section 1350.This code is used in section 1348.1350. The next subroutine uses cur chr to decide what sort of whatsit is involved, and also inserts awrite stream number.hDeclare procedures needed in do extension 1349 i +�procedure new write whatsit (w : small number);begin new whatsit (cur chr ; w);if w 6= write node size then scan four bit intelse begin scan int ;if cur val < 0 then cur val 17else if cur val > 15 then cur val 16;end;write stream (tail) cur val ;end;1351. h Implement \openout 1351 i �begin new write whatsit (open node size); scan optional equals ; scan �le name ;open name (tail) cur name ; open area (tail) cur area ; open ext (tail) cur ext ;endThis code is used in section 1348.

480 PART 53: EXTENSIONS TEXGPC x13521352. When `\write 12{...}' appears, we scan the token list `{...}' without expanding its macros; themacros will be expanded later when this token list is rescanned.h Implement \write 1352 i �begin k cur cs ; new write whatsit (write node size);cur cs k; p scan toks (false ; false); write tokens (tail) def ref ;endThis code is used in section 1348.1353. h Implement \closeout 1353 i �begin new write whatsit (write node size); write tokens (tail) null ;endThis code is used in section 1348.1354. When `\special{...}' appears, we expand the macros in the token list as in \xdef and \mark.h Implement \special 1354 i �begin new whatsit (special node ;write node size); write stream (tail) null ; p scan toks (false ; true);write tokens (tail) def ref ;endThis code is used in section 1348.1355. Each new type of node that appears in our data structure must be capable of being displayed,copied, destroyed, and so on. The routines that we need for write-oriented whatsits are somewhat like thosefor mark nodes; other extensions might, of course, involve more subtlety here.hBasic printing procedures 57 i +�procedure print write whatsit (s : str number ; p : pointer);begin print esc (s);if write stream (p) < 16 then print int (write stream (p))else if write stream (p) = 16 then print char ("*")else print char ("-");end;1356. hDisplay the whatsit node p 1356 i �case subtype (p) ofopen node : begin print write whatsit ("openout"; p); print char ("=");print �le name (open name (p); open area (p); open ext (p));end;write node : begin print write whatsit ("write"; p); print mark (write tokens (p));end;close node : print write whatsit ("closeout"; p);special node : begin print esc("special"); print mark (write tokens (p));end;language node : begin print esc("setlanguage"); print int (what lang (p)); print (" (hyphenmin ");print int (what lhm (p)); print char (","); print int (what rhm (p)); print char (")");end;othercases print ("whatsit?")endcasesThis code is used in section 183.

x1357 TEXGPC PART 53: EXTENSIONS 4811357. hMake a partial copy of the whatsit node p and make r point to it; set words to the number ofinitial words not yet copied 1357 i �case subtype (p) ofopen node : begin r get node (open node size); words open node size ;end;write node ; special node : begin r get node (write node size); add token ref (write tokens (p));words write node size ;end;close node ; language node : begin r get node (small node size); words small node size ;end;othercases confusion ("ext2")endcasesThis code is used in section 206.1358. hWipe out the whatsit node p and goto done 1358 i �begin case subtype (p) ofopen node : free node (p; open node size);write node ; special node : begin delete token ref (write tokens (p)); free node (p;write node size);goto done ;end;close node ; language node : free node (p; small node size);othercases confusion ("ext3")endcases;goto done ;endThis code is used in section 202.1359. h Incorporate a whatsit node into a vbox 1359 i �do nothingThis code is used in section 669.1360. h Incorporate a whatsit node into an hbox 1360 i �do nothingThis code is used in section 651.1361. hLet d be the width of the whatsit p 1361 i �d 0This code is used in section 1147.1362. de�ne adv past (#) � if subtype (#) = language node thenbegin cur lang what lang (#); l hyf what lhm (#); r hyf what rhm (#); endhAdvance past a whatsit node in the line break loop 1362 i � adv past (cur p)This code is used in section 866.1363. hAdvance past a whatsit node in the pre-hyphenation loop 1363 i � adv past (s)This code is used in section 896.1364. hPrepare to move whatsit p to the current page, then goto contribute 1364 i �goto contributeThis code is used in section 1000.

482 PART 53: EXTENSIONS TEXGPC x13651365. hProcess whatsit p in vert break loop, goto not found 1365 i �goto not foundThis code is used in section 973.1366. hOutput the whatsit node p in a vlist 1366 i �out what (p)This code is used in section 631.1367. hOutput the whatsit node p in an hlist 1367 i �out what (p)This code is used in section 622.1368. After all this preliminary shu�ing, we come �nally to the routines that actually send out therequested data. Let's do \special �rst (it's easier).hDeclare procedures needed in hlist out , vlist out 1368 i �procedure special out (p : pointer);var old setting : 0 : : max selector ; f holds print selector gk: pool pointer ; f index into str pool gbegin synch h ; synch v ;old setting selector ; selector new string ;show token list (link (write tokens (p));null ; pool size � pool ptr); selector old setting ; str room (1);if cur length < 256 thenbegin dvi out (xxx1); dvi out (cur length);endelse begin dvi out (xxx4); dvi four (cur length);end;for k str start [str ptr] to pool ptr � 1 do dvi out (so (str pool [k]));pool ptr str start [str ptr]; f erase the string gend;See also sections 1370 and 1373.This code is used in section 619.1369. To write a token list, we must run it through TEX's scanner, expanding macros and \the and\number, etc. This might cause runaways, if a delimited macro parameter isn't matched, and runawayswould be extremely confusing since we are calling on TEX's scanner in the middle of a \shipout command.Therefore we will put a dummy control sequence as a \stopper," right after the token list. This controlsequence is arti�cially de�ned to be \outer.h Initialize table entries (done by INITEX only) 164 i +�text (end write) "endwrite"; eq level (end write) level one ; eq type (end write) outer call ;equiv (end write) null ;

x1370 TEXGPC PART 53: EXTENSIONS 4831370. hDeclare procedures needed in hlist out , vlist out 1368 i +�procedure write out (p : pointer);var old setting : 0 : : max selector ; f holds print selector gold mode : integer ; f saved mode gj: small number ; fwrite stream number gq; r: pointer ; f temporary variables for list manipulation gbegin hExpand macros in the token list and make link (def ref) point to the result 1371 i;old setting selector ; j write stream (p);if write open [j] then selector jelse begin fwrite to the terminal if �le isn't open gif (j = 17) ^ (selector = term and log) then selector log only ;print nl ("");end;token show (def ref); print ln ; ush list (def ref); selector old setting ;end;1371. The �nal line of this routine is slightly subtle; at least, the author didn't think about it until gettingburnt! There is a used-up token list on the stack, namely the one that contained end write token . (We insertthis arti�cial `\endwrite' to prevent runaways, as explained above.) If it were not removed, and if therewere numerous writes on a single page, the stack would overow.de�ne end write token � cs token ag + end writehExpand macros in the token list and make link (def ref) point to the result 1371 i �q get avail ; info (q) right brace token + "}";r get avail ; link (q) r; info (r) end write token ; ins list (q);begin token list (write tokens (p);write text);q get avail ; info (q) left brace token + "{"; ins list (q);f now we're ready to scan `{h token list i} \endwrite' gold mode mode ; mode 0; f disable \prevdepth, \spacefactor, \lastskip, \prevgrafgcur cs write loc ; q scan toks (false ; true); f expand macros, etc. gget token ; if cur tok 6= end write token then hRecover from an unbalanced write command 1372 i;mode old mode ; end token list f conserve stack space gThis code is used in section 1370.1372. hRecover from an unbalanced write command 1372 i �begin print err ("Unbalanced write command");help2 ("On this page there�s a \write with fewer real {�s than }�s.")("I can�t handle that very well; good luck."); error ;repeat get token ;until cur tok = end write token ;endThis code is used in section 1371.

484 PART 53: EXTENSIONS TEXGPC x13731373. The out what procedure takes care of outputting whatsit nodes for vlist out and hlist out .hDeclare procedures needed in hlist out , vlist out 1368 i +�procedure out what (p : pointer);var j: small number ; fwrite stream number gbegin case subtype (p) ofopen node ;write node ; close node : hDo some work that has been queued up for \write 1374 i;special node : special out (p);language node : do nothing ;othercases confusion ("ext4")endcases;end;1374. We don't implement \write inside of leaders. (The reason is that the number of times a leaderbox appears might be di�erent in di�erent implementations, due to machine-dependent rounding in the gluecalculations.)hDo some work that has been queued up for \write 1374 i �if :doing leaders thenbegin j write stream (p);if subtype (p) = write node then write out (p)else begin if write open [j] then a close (write �le [j]);if subtype (p) = close node then write open [j] falseelse if j < 16 thenbegin cur name open name (p); cur area open area (p); cur ext open ext (p);if cur ext = "" then cur ext ".tex";pack cur name ;while :a open out (write �le [j]) do prompt �le name ("output file name"; ".tex");write open [j] true ;end;end;endThis code is used in section 1373.1375. The presence of `\immediate' causes the do extension procedure to descend to one level of recursion.Nothing happens unless \immediate is followed by `\openout', `\write', or `\closeout'.h Implement \immediate 1375 i �begin get x token ;if (cur cmd = extension) ^ (cur chr � close node) thenbegin p tail ; do extension ; f append a whatsit node gout what (tail); f do the action immediately gush node list (tail); tail p; link (p) null ;endelse back input ;endThis code is used in section 1348.

x1376 TEXGPC PART 53: EXTENSIONS 4851376. The \language extension is somewhat di�erent. We need a subroutine that comes into play whena character of a non-clang language is being appended to the current paragraph.hDeclare action procedures for use by main control 1043 i +�procedure �x language ;var l: ASCII code ; f the new current language gbegin if language � 0 then l 0else if language > 255 then l 0else l language ;if l 6= clang thenbegin new whatsit (language node ; small node size); what lang (tail) l; clang l;what lhm (tail) norm min (left hyphen min); what rhm (tail) norm min (right hyphen min);end;end;1377. h Implement \setlanguage 1377 i �if abs (mode) 6= hmode then report illegal caseelse begin new whatsit (language node ; small node size); scan int ;if cur val � 0 then clang 0else if cur val > 255 then clang 0else clang cur val ;what lang (tail) clang ; what lhm (tail) norm min (left hyphen min);what rhm (tail) norm min (right hyphen min);endThis code is used in section 1348.1378. hFinish the extensions 1378 i �for k 0 to 15 doif write open [k] then a close (write �le [k])This code is used in section 1333*.

486 PART 54: SYSTEM-DEPENDENT CHANGES TEXGPC x13791379*. System-dependent changes. This section should be replaced, if necessary, by any specialmodi�cations of the program that are necessary to make TEX work at a particular installation. It is usuallybest to design your change �le so that all changes to previous sections preserve the section numbering; theneverybody's version will be consistent with the published program. More extensive changes, which introducenew sections, can be inserted here; then only the index itself will get a new section number.Try to preload the default format �le. This is called even before the �rst line is read from the terminal,h and thus turns VIRTEX into TEX, at least as experienced by the user. INITEX sets format ident to `INITEX'and won't load a format �le here.hPreload the default format �le 1379* i �if format ident = 0 thenbegin pack bu�ered name (format default length � format ext length ; 1; 0);if :w open in (fmt �le) thenbegin wterm ln (�I can��t find the format file �;name of �le); goto �nal endend;if :load fmt �le thenbegin w close (fmt �le); goto �nal endend;w close (fmt �le);endThis code is used in section 1332*.1380*. If the user typed �E� to edit a �le after confronted with an error message, TEX will clean up andF then call start editor as its last feat. The �le name and line number to be passed to the system editor aresaved in edit �le name and edit line .This procedure must not print error messages, since all �les are already closed.Beware of using any WEB strings like "vi +" since that would change the string pool �le and you'll needto rebuild all format �les with the new string pool in case you disagree which editor is the system editor.An overow of name of �le cannot happen, since name of �le kept the �le name while the �le was beingopened. The gpc write str function writes its arguments into a gpc string to build the command line. TheG function gpc execute takes a gpc string which holds the command line to be executed.de�ne gpc execute � e@&x@&e@&c@&u@&t@&ede�ne gpc write str � w@&r@&i@&t@&e@&s@&t@&rhError handling procedures 78 i +�procedure start editor ;var i: integer ; f index into name of �le gj: pool pointer ; f index into str pool gcmd line : gpc string (200); f area to build the command line gbegin i 1; j str start [edit �le name];while j < str start [edit �le name + 1] dobegin name of �le [i] xchr [str pool [j]]; incr (i); incr (j)end;while i � �le name size dobegin name of �le [i] � �; incr (i)end;gpc write str (cmd line ; �vi +�; line ; � �; gpc trim (name of �le));if 0 6= gpc execute (cmd line) thenwrite ln (gpc param str (0); �: could not start editor with: "�; cmd line ; �"�);end;

x1381 TEXGPC PART 54: SYSTEM-DEPENDENT CHANGES 4871381*. The next modules declare and install the interrupt procedure set interrupt .F The identi�ers are truncated by TANGLE to twelve characters. We use this trick to persuade TANGLE totransfer the complete name to the Pascal source.de�ne gpc install signal handler � i@&n@&s@&t@&a@&l@&l@&s@&i@&g@&n@&a@&l@&h@&a@&n@&d@&l@&e@&rde�ne gpc sig int � s@&i@&g@&i@&n@&tde�ne gpc null � n@&u@&l@&lde�ne gpc integer � cinteger f for earlier versions of GPC (3.2) replace cinteger by integer ghError handling procedures 78 i +�procedure set interrupt (signal : gpc integer);begin interrupt 1 end;1382*. To install set interrupt as our `signal handler', I use the procedure gpc install signal handler . Itworks with these arguments, but don't ask why. GNU Pascal's gpc sig int constant denotes the Unixinterrupt signal, which is sent when the user types ^C. Then set interrupt is called, which sets the globalvariable interrupt to one, thus causing TEX to invoke error to engage the user in an error dialog.The 2008 edition had a bug: It treated the function gpc install signal handler as a procedure. The old GPCversion didn't care, but the current one does. This was discovered by Luis Rivera and Martin Monperrus.h Initialize whatever TEX might access 8 i +�if gpc install signal handler (gpc sig int ; set interrupt ; true ; true ; gpc null ; gpc null) then do nothing ;

488 PART 55: INDEX TEXGPC x13831383*. Index. Here is where you can �nd all uses of each identi�er in the program, with underlinedentries pointing to where the identi�er was de�ned. If the identi�er is only one letter long, however, you getto see only the underlined entries. All references are to section numbers instead of page numbers.This index also lists error messages and other aspects of the program that you might want to look upsome day. For example, the entry for \system dependencies" lists all sections that should receive specialattention from people who are installing TEX in a new operating environment. A list of various things thatcan't happen appears under \this can't happen". Approximately 40 sections are listed under \inner loop";these account for about 60% of TEX's running time, exclusive of input and output.The following sections were changed by the change �le: 2, 4, 7, 9, 10, 11, 25, 27, 28, 31, 32, 33, 34, 36, 37, 79, 80, 84, 96, 109,112, 241, 360, 514, 516, 521, 532, 537, 597, 642, 816, 862, 876, 877, 879, 1332, 1333, 1338, 1339, 1379, 1380, 1381, 1382,1383.** : 37*, 534.* : 174, 176, 178, 313, 360*, 856, 1006, 1355.-> : 294.=> : 363.??? : 59.? : 83.@ : 856.@@ : 846.a: 47, 102, 218, 518, 519, 523, 560, 597*, 691, 722,738, 752, 1123, 1194, 1211, 1236, 1257.A <box> was supposed to... : 1084.a close : 28*, 51, 329, 485, 486, 1275, 1333*,1374, 1378.a leaders : 149, 189, 625, 627, 634, 636, 656, 671,1071, 1072, 1073, 1078, 1148.a make name string : 525, 534, 537*.a open in : 27*, 51, 537*, 1275.a open out : 27*, 534, 1374.A token : 445.abort : 560, 563, 564, 565, 568, 569, 570, 571,573, 575.above : 208, 1046, 1178, 1179, 1180.\above primitive: 1178.above code : 1178, 1179, 1182, 1183.above display short skip : 224, 814.\abovedisplayshortskip primitive: 226.above display short skip code : 224, 225, 226, 1203.above display skip : 224, 814.\abovedisplayskip primitive: 226.above display skip code : 224, 225, 226, 1203, 1206.\abovewithdelims primitive: 1178.abs : 66, 186, 211, 218, 219, 418, 422, 448, 501,610, 663, 675, 718, 737, 757, 758, 759, 831,836, 849, 859, 944, 948, 1029, 1030, 1056,1076, 1078, 1080, 1083, 1093, 1110, 1120, 1127,1149, 1243, 1244, 1377.absorbing : 305, 306, 339, 473.acc kern : 155, 191, 1125.accent : 208, 265, 266, 1090, 1122, 1164, 1165.\accent primitive: 265.accent chr : 687, 696, 738, 1165.

accent noad : 687, 690, 696, 698, 733, 761,1165, 1186.accent noad size : 687, 698, 761, 1165.act width : 866, 867, 868, 869, 871.action procedure: 1029.active : 162, 819, 829, 843, 854, 860, 861, 863,864, 865, 873, 874, 875.active base : 220, 222, 252, 253, 255, 262, 263, 353,442, 506, 1152, 1257, 1289, 1315, 1317.active char : 207, 344, 506.active height : 970, 975, 976.active node size : 819, 845, 860, 864, 865.active width : 823, 824, 829, 843, 861, 864,866, 868, 970.actual looseness : 872, 873, 875.add delims to : 347.add glue ref : 203, 206, 430, 802, 881, 996,1100, 1229.add token ref : 203, 206, 323, 979, 1012, 1016,1221, 1227, 1357.additional : 644, 645, 657, 672.adj demerits : 236, 836, 859.\adjdemerits primitive: 238.adj demerits code : 236, 237, 238.adjust : 576.adjust head : 162, 888, 889, 1076, 1085, 1199, 1205.adjust node : 142, 148, 175, 183, 202, 206, 647,651, 655, 730, 761, 866, 899, 1100.adjust ptr : 142, 197, 202, 206, 655, 1100.adjust space factor : 1034, 1038.adjust tail : 647, 648, 649, 651, 655, 796, 888,889, 1076, 1085, 1199.adjusted hbox group : 269, 1062, 1083, 1085.adv past : 1362, 1363.advance : 209, 265, 266, 1210, 1235, 1236, 1238.\advance primitive: 265.advance major tail : 914, 917.after : 147, 866, 1196.after assignment : 208, 265, 266, 1268.\afterassignment primitive: 265.after group : 208, 265, 266, 1271.

x1383 TEXGPC PART 55: INDEX 489\aftergroup primitive: 265.after math : 1193, 1194.after token : 1266, 1267, 1268, 1269.aire : 560, 561, 563, 576.align error : 1126, 1127.align group : 269, 768, 774, 791, 800, 1131, 1132.align head : 162, 770, 777.align peek : 773, 774, 785, 799, 1048, 1133.align ptr : 770, 771, 772.align stack node size : 770, 772.align state : 88, 309, 324, 325, 331, 339, 342, 347,357, 394, 395, 396, 403, 442, 475, 482, 483,486, 770, 771, 772, 774, 777, 783, 784, 785,788, 789, 791, 1069, 1094, 1126, 1127.aligning : 305, 306, 339, 777, 789.alignment of rules with characters: 589.alpha : 560, 571, 572.alpha �le : 25*, 27*, 28*, 31*, 50, 54, 304, 480,525, 1342.alpha token : 438, 440.alter aux : 1242, 1243.alter box dimen : 1242, 1247.alter integer : 1242, 1246.alter page so far : 1242, 1245.alter prev graf : 1242, 1244.Ambiguous... : 1183.Amble, Ole: 925.AmSTeX : 1331.any mode : 1045, 1048, 1057, 1063, 1067, 1073,1097, 1102, 1104, 1126, 1134, 1210, 1268, 1271,1274, 1276, 1285, 1290, 1347.any state plus : 344, 345, 347.app lc hex : 48.app space : 1030, 1043.append char : 42, 48, 52, 58, 180, 195, 260, 516*,525, 692, 695, 939.append charnode to t : 908, 911.append choices : 1171, 1172.append discretionary : 1116, 1117.append glue : 1057, 1060, 1078.append italic correction : 1112, 1113.append kern : 1057, 1061.append normal space : 1030.append penalty : 1102, 1103.append to name : 519, 523.append to vlist : 679, 799, 888, 1076, 1203, 1204,1205.area delimiter : 513, 515, 516*, 517.arg : 36*.argc : 36*.Argument of \x has... : 395.

arith error : 104, 105, 106, 107, 448, 453, 460,1236.Arithmetic overflow : 1236.arti�cial demerits : 830, 851, 854, 855, 856.ASCII code: 17, 503.ASCII code : 18, 19, 20, 29, 30, 31*, 38, 42, 54, 58,60, 82, 292, 341, 389, 516*, 519, 523, 692, 892,912, 921, 943, 950, 953, 959, 960, 1376.assign dimen : 209, 248, 249, 413, 1210, 1224,1228.assign font dimen : 209, 265, 266, 413, 1210, 1253.assign font int : 209, 413, 1210, 1253, 1254, 1255.assign glue : 209, 226, 227, 413, 782, 1210,1224, 1228.assign int : 209, 238, 239, 413, 1210, 1222, 1224,1228, 1237.assign mu glue : 209, 226, 227, 413, 1210, 1222,1224, 1228, 1237.assign toks : 209, 230, 231, 233, 323, 413, 415,1210, 1224, 1226, 1227.at : 1258.\atop primitive: 1178.atop code : 1178, 1179, 1182.\atopwithdelims primitive: 1178.attach fraction : 448, 453, 454, 456.attach sign : 448, 449, 455.auto breaking : 862*, 863, 866, 868.aux : 212, 213, 216, 800, 812.aux �eld : 212, 213, 218, 775.aux save : 800, 812, 1206.avail : 118, 120, 121, 122, 123, 164, 168, 1311, 1312.AVAIL list clobbered... : 168.awful bad : 833, 834, 835, 836, 854, 874, 970, 974,975, 987, 1005, 1006, 1007.axis height : 700, 706, 736, 746, 747, 749, 762.b: 464, 465, 470, 498, 523, 560, 597*, 679, 705, 706,709, 711, 715, 830, 970, 994, 1198, 1247, 1288.b close : 28*, 560.b make name string : 525.b open in : 27*, 563.b open out : 27*, 532*.back error : 327, 373, 396, 403, 415, 442, 446,476, 479, 503, 577, 783, 1078, 1084, 1161,1197, 1207, 1212.back input : 281, 325, 326, 327, 368, 369, 372, 375,379, 395, 405, 407, 415, 443, 444, 448, 452, 455,461, 526, 788, 1031, 1047, 1054, 1064, 1090,1095, 1124, 1127, 1132, 1138, 1150, 1152, 1153,1215, 1221, 1226, 1269, 1375.back list : 323, 325, 337, 407, 1288.backed up : 307, 311, 312, 314, 323, 324, 325, 1026.background : 823, 824, 827, 837, 863, 864.

490 PART 55: INDEX TEXGPC x1383backup backup : 366.backup head : 162, 366, 407.BAD : 293, 294.bad : 13, 14, 111, 290, 522, 1249, 1332*.Bad \patterns : 961.Bad \prevgraf : 1244.Bad character code : 434.Bad delimiter code : 437.Bad flag... : 170.Bad link... : 182.Bad mathchar : 436.Bad number : 435.Bad register code : 433.Bad space factor : 1243.bad fmt : 1303, 1306, 1308, 1312, 1317, 1327.bad pool : 51, 52, 53.bad tfm : 560.badness : 108, 660, 667, 674, 678, 828, 852, 853,975, 1007.\badness primitive: 416.badness code : 416, 424.banner : 2*, 61, 536, 1299.base line : 619, 623, 624, 628.base ptr : 84*, 85, 310, 311, 312, 313, 1131.baseline skip : 224, 247, 679.\baselineskip primitive: 226.baseline skip code : 149, 224, 225, 226, 679.batch mode : 73, 75, 86, 90, 92, 93, 535, 1262,1263, 1327, 1328.\batchmode primitive: 1262.bc : 540, 541, 543, 545, 560, 565, 566, 570, 576.bch label : 560, 573, 576.bchar : 560, 573, 576, 901, 903, 905, 906, 908, 911,913, 916, 917, 1032, 1034, 1037, 1038, 1040.bchar label : 549, 552, 576, 909, 916, 1034, 1040,1322, 1323.before : 147, 192, 1196.begin: 7*, 8.begin box : 1073, 1079, 1084.begin diagnostic : 76, 245, 284, 299, 323, 400, 401,502, 509, 581, 638, 641, 663, 675, 863, 987,992, 1006, 1011, 1121, 1293, 1296.begin �le reading : 78, 87, 328, 483, 537*.begin group : 208, 265, 266, 1063.\begingroup primitive: 265.begin insert or adjust : 1097, 1099.begin name : 512, 515, 526, 527, 531.begin pseudoprint : 316, 318, 319.begin token list : 323, 359, 386, 390, 774, 788,789, 799, 1025, 1030, 1083, 1091, 1139, 1145,1167, 1371.Beginning to dump... : 1328.

below display short skip : 224.\belowdisplayshortskip primitive: 226.below display short skip code : 224, 225, 226, 1203.below display skip : 224.\belowdisplayskip primitive: 226.below display skip code : 224, 225, 226, 1203, 1206.best bet : 872, 874, 875, 877*, 878.best height plus depth : 971, 974, 1010, 1011.best ins ptr : 981, 1005, 1009, 1018, 1020, 1021.best line : 872, 874, 875, 877*, 890.best page break : 980, 1005, 1013, 1014.best pl line : 833, 845, 855.best place : 833, 845, 855, 970, 974, 980.best size : 980, 1005, 1017.beta : 560, 571, 572.big op spacing1 : 701, 751.big op spacing2 : 701, 751.big op spacing3 : 701, 751.big op spacing4 : 701, 751.big op spacing5 : 701, 751.big switch : 209, 236, 994, 1029, 1030, 1031,1036, 1041.BigEndian order: 540.billion : 625.bin noad : 682, 690, 696, 698, 728, 729, 761,1156, 1157.bin op penalty : 236, 761.\binoppenalty primitive: 238.bin op penalty code : 236, 237, 238.blank line : 245.boolean : 27*, 31*, 37*, 45, 46, 47, 76, 79*, 96*, 104,106, 107, 165, 167, 245, 256, 311, 361, 407, 413,440, 448, 461, 473, 498, 516*, 524, 527, 549,560, 578, 592, 619, 629, 645, 706, 719, 726,791, 825, 828, 829, 830, 862*, 877*, 900, 907,950, 960, 989, 1012, 1032, 1051, 1054, 1091,1160, 1194, 1211, 1281, 1303, 1342.bop : 583, 585, 586, 588, 590, 592, 638, 640.Bosshard, Hans Rudolf: 458.bot : 546.bot mark : 382, 383, 1012, 1016.\botmark primitive: 384.bot mark code : 382, 384, 385.bottom level : 269, 272, 281, 1064, 1068.bottom line : 311.bowels: 592.box : 230, 232, 420, 505, 977, 992, 993, 1009,1015, 1017, 1018, 1021, 1023, 1028, 1079,1110, 1247, 1296.\box primitive: 1071.box base : 230, 232, 233, 255, 1077.box code : 1071, 1072, 1079, 1107, 1110.

x1383 TEXGPC PART 55: INDEX 491box context : 1075, 1076, 1077, 1078, 1079, 1083,1084.box end : 1075, 1079, 1084, 1086.box error : 992, 993, 1015, 1028.box ag : 1071, 1075, 1077, 1083, 1241.box max depth : 247, 1086.\boxmaxdepth primitive: 248.box max depth code : 247, 248.box node size : 135, 136, 202, 206, 649, 668, 715,727, 751, 756, 977, 1021, 1100, 1110, 1201.box ref : 210, 232, 275, 1077.box there : 980, 987, 1000, 1001.\box255 is not void : 1015.bp : 458.brain: 1029.breadth max : 181, 182, 198, 233, 236, 1339*.break node : 819, 845, 855, 856, 864, 877*, 878.break penalty : 208, 265, 266, 1102.break type : 829, 837, 845, 846, 859.break width : 823, 824, 837, 838, 840, 841, 842,843, 844, 879*.breakpoint : 1338*.broken ins : 981, 986, 1010, 1021.broken penalty : 236, 890.\brokenpenalty primitive: 238.broken penalty code : 236, 237, 238.broken ptr : 981, 1010, 1021.buf size : 11*, 30, 31*, 35, 36*, 71, 111, 315, 328, 331,341, 363, 366, 374, 524, 530, 534, 1334.bu�er : 30, 31*, 36*, 37*, 45, 71, 83, 87, 88, 259, 260,261, 264, 302, 303, 315, 318, 331, 341, 343, 352,354, 355, 356, 360*, 362, 363, 366, 374, 483, 484,523, 524, 530, 531, 534, 538, 597*, 1337, 1339*.Buffer size exceeded : 35.build choices : 1173, 1174.build discretionary : 1118, 1119.build page : 800, 812, 988, 994, 1026, 1054, 1060,1076, 1091, 1094, 1100, 1103, 1145, 1200.by : 1236.bypass eoln : 31*.byte : 25*.byte �le : 25*, 27*, 28*, 525, 539.b0 : 110, 113, 114, 133, 221, 268, 545, 546, 550, 554,556, 564, 602, 683, 685, 921, 958, 1309, 1310.b1 : 110, 113, 114, 133, 221, 268, 545, 546, 554,556, 564, 602, 683, 685, 921, 958, 1309, 1310.b2 : 110, 113, 114, 545, 546, 554, 556, 564, 602,683, 685, 1309, 1310.b3 : 110, 113, 114, 545, 546, 556, 564, 602, 683,685, 1309, 1310.c: 47, 63, 82, 144, 264, 274, 292, 341, 470, 516*, 519,523, 560, 581, 582, 592, 645, 692, 694, 706, 709,

711, 712, 738, 749, 893, 912, 953, 959, 960, 994,1012, 1086, 1110, 1117, 1136, 1151, 1155, 1181,1243, 1245, 1246, 1247, 1275, 1279, 1288, 1335.c leaders : 149, 190, 627, 636, 1071, 1072.\cleaders primitive: 1071.c loc : 912, 916.call : 210, 223, 275, 296, 366, 380, 387, 395, 396,507, 1218, 1221, 1225, 1226, 1227, 1295.cancel boundary : 1030, 1032, 1033, 1034.cannot \read : 484.car ret : 207, 232, 342, 347, 777, 780, 781, 783,784, 785, 788, 1126.carriage return : 22, 49, 207, 232, 240, 363.case shift : 208, 1285, 1286, 1287.cat : 341, 354, 355, 356.cat code : 230, 232, 236, 262, 341, 343, 354,355, 356, 1337.\catcode primitive: 1230.cat code base : 230, 232, 233, 235, 1230, 1231, 1233.cc : 36*, 341, 352, 355.cc : 458.change if limit : 497, 498, 509.char : 19, 26, 36*, 520, 534.\char primitive: 265.char base : 550, 552, 554, 566, 570, 576, 1322, 1323.char box : 709, 710, 711, 738.\chardef primitive: 1222.char def code : 1222, 1223, 1224.char depth : 554, 654, 708, 709, 712.char depth end : 554.char exists : 554, 573, 576, 582, 708, 722, 738,740, 749, 755, 1036.char given : 208, 413, 935, 1030, 1038, 1090, 1124,1151, 1154, 1222, 1223, 1224.char height : 554, 654, 708, 709, 712, 1125.char height end : 554.char info : 543, 550, 554, 555, 557, 570, 573, 576,582, 620, 654, 708, 709, 712, 714, 715, 722, 724,738, 740, 749, 841, 842, 866, 867, 870, 871, 909,1036, 1037, 1039, 1040, 1113, 1123, 1125, 1147.char info end : 554.char info word : 541, 543, 544.char italic : 554, 709, 714, 749, 755, 1113.char italic end : 554.char kern : 557, 741, 753, 909, 1040.char kern end : 557.char node : 134, 143, 145, 162, 176, 548, 592, 620,649, 752, 881, 907, 1029, 1113, 1138.char num : 208, 265, 266, 935, 1030, 1038, 1090,1124, 1151, 1154.char tag : 554, 570, 708, 710, 740, 741, 749,752, 909, 1039.

492 PART 55: INDEX TEXGPC x1383char warning : 581, 582, 722, 1036.char width : 554, 620, 654, 709, 714, 715, 740, 841,842, 866, 867, 870, 871, 1123, 1125, 1147.char width end : 554.character : 134, 143, 144, 174, 176, 206, 582, 620,654, 681, 682, 683, 687, 691, 709, 715, 722, 724,749, 752, 753, 841, 842, 866, 867, 870, 871,896, 897, 898, 903, 907, 908, 910, 911, 1032,1034, 1035, 1036, 1037, 1038, 1040, 1113, 1123,1125, 1147, 1151, 1155, 1165.character set dependencies: 23, 49.check sum: 53, 542, 588.check byte range : 570, 573.check dimensions : 726, 727, 733, 754.check existence : 573, 574.check full save stack : 273, 274, 276, 280.check interrupt : 96*, 324, 343, 753, 911, 1031, 1040.check mem : 165, 167, 1031, 1339*.check outer validity : 336, 351, 353, 354, 357,362, 375.check shrinkage : 825, 827, 868.Chinese characters: 134, 585.choice node : 688, 689, 690, 698, 730.choose mlist : 731.chr : 19, 20, 23, 24, 1222.chr cmd : 298, 781.chr code : 227, 231, 239, 249, 298, 377, 385, 411,412, 413, 417, 469, 488, 492, 781, 984, 1053,1059, 1071, 1072, 1089, 1108, 1115, 1143,1157, 1170, 1179, 1189, 1209, 1220, 1223,1231, 1251, 1255, 1261, 1263, 1273, 1278,1287, 1289, 1292, 1346.cinteger : 1381*.clang : 212, 213, 812, 1034, 1091, 1200, 1376, 1377.clean box : 720, 734, 735, 737, 738, 742, 744, 749,750, 757, 758, 759.clear for error prompt : 78, 83, 330, 346.clear io result : 27*.clear terminal : 34*, 330, 530.CLOBBERED : 293.clobbered : 167, 168, 169.close : 28*.close �les and terminate : 78, 81, 1332*, 1333*.\closein primitive: 1272.close noad : 682, 690, 696, 698, 728, 761, 762,1156, 1157.close node : 1341, 1344, 1346, 1348, 1356, 1357,1358, 1373, 1374, 1375.\closeout primitive: 1344.closed : 480, 481, 483, 485, 486, 501, 1275.clr : 737, 743, 745, 746, 756, 757, 758, 759.club penalty : 236, 890.

\clubpenalty primitive: 238.club penalty code : 236, 237, 238.cm : 458.cmd : 298, 1222, 1289.cmd line : 1380*.co backup : 366.combine two deltas : 860.comment : 207, 232, 347.common ending : 15, 498, 500, 509, 649, 660,666, 667, 668, 674, 677, 678, 895, 903, 1257,1260, 1293, 1294, 1297.Completed box... : 638.compress trie : 949, 952.cond math glue : 149, 189, 732, 1171.cond ptr : 489, 490, 495, 496, 497, 498, 500,509, 1335.conditional : 366, 367, 498.confusion : 95, 202, 206, 281, 497, 630, 669, 728,736, 754, 761, 766, 791, 798, 800, 841, 842,866, 870, 871, 877*, 968, 973, 1000, 1068, 1185,1200, 1211, 1348, 1357, 1358, 1373.continental point token : 438, 448.continue : 15, 82, 83, 84*, 88, 89, 389, 392, 393,394, 395, 397, 706, 708, 774, 784, 815, 829, 832,851, 896, 906, 909, 910, 911, 994, 1001.contrib head : 162, 215, 218, 988, 994, 995, 998,999, 1001, 1017, 1023, 1026.contrib tail : 995, 1017, 1023, 1026.contribute : 994, 997, 1000, 1002, 1008, 1364.conv toks : 366, 367, 470.conventions for representing stacks: 300.convert : 210, 366, 367, 468, 469, 470.convert to break width : 843.\copy primitive: 1071.copy code : 1071, 1072, 1079, 1107, 1108, 1110.copy node list : 161, 203, 204, 206, 1079, 1110.copy to cur active : 829, 861.count : 236, 427, 638, 640, 986, 1008, 1009, 1010.\count primitive: 411.count base : 236, 239, 242, 1224, 1237.\countdef primitive: 1222.count def code : 1222, 1223, 1224.\cr primitive: 780.cr code : 780, 781, 789, 791, 792.\crcr primitive: 780.cr cr code : 780, 785, 789.cramped : 688, 702.cramped style : 702, 734, 737, 738.cs count : 256, 258, 260, 1318, 1319, 1334.cs error : 1134, 1135.cs name : 210, 265, 266, 366, 367.\csname primitive: 265.

x1383 TEXGPC PART 55: INDEX 493cs token ag : 289, 290, 293, 334, 336, 337, 339,357, 358, 365, 369, 372, 375, 379, 380, 381,442, 466, 506, 780, 1065, 1132, 1215, 1289,1314, 1371.cur active width : 823, 824, 829, 832, 837, 843,844, 851, 852, 853, 860.cur align : 770, 771, 772, 777, 778, 779, 783, 786,788, 789, 791, 792, 795, 796, 798.cur area : 512, 517, 529, 530, 537*, 1257, 1260,1351, 1374.cur boundary : 270, 271, 272, 274, 282.cur box : 1074, 1075, 1076, 1077, 1078, 1079, 1080,1081, 1082, 1084, 1086, 1087.cur break : 821, 845, 879*, 880, 881.cur c : 722, 723, 724, 738, 749, 752, 753, 755.cur chr : 88, 296, 297, 299, 332, 337, 341, 343, 348,349, 351, 352, 353, 354, 355, 356, 357, 358, 359,360*, 364, 365, 378, 380, 381, 386, 387, 389, 403,407, 413, 424, 428, 442, 470, 472, 474, 476,479, 483, 494, 495, 498, 500, 506, 507, 508,509, 510, 526, 577, 782, 785, 789, 935, 937,962, 1030, 1034, 1036, 1038, 1049, 1058, 1060,1061, 1066, 1073, 1079, 1083, 1090, 1093, 1105,1106, 1110, 1117, 1124, 1128, 1140, 1142, 1151,1152, 1154, 1155, 1158, 1159, 1160, 1171, 1181,1191, 1211, 1212, 1213, 1217, 1218, 1221, 1224,1226, 1227, 1228, 1232, 1233, 1234, 1237, 1243,1245, 1246, 1247, 1252, 1253, 1265, 1275, 1279,1288, 1293, 1335, 1348, 1350, 1375.cur cmd : 88, 211, 296, 297, 299, 332, 337, 341,342, 343, 344, 348, 349, 351, 353, 354, 357, 358,360*, 364, 365, 366, 367, 368, 372, 380, 381, 386,387, 403, 404, 406, 407, 413, 415, 428, 440, 442,443, 444, 448, 452, 455, 461, 463, 474, 476, 477,478, 479, 483, 494, 506, 507, 526, 577, 777, 782,783, 784, 785, 788, 789, 935, 961, 1029, 1030,1038, 1049, 1066, 1078, 1079, 1084, 1095, 1099,1124, 1128, 1138, 1151, 1152, 1160, 1165, 1176,1177, 1197, 1206, 1211, 1212, 1213, 1221, 1226,1227, 1228, 1236, 1237, 1252, 1270, 1375.cur cs : 297, 332, 333, 336, 337, 338, 341, 351,353, 354, 356, 357, 358, 365, 372, 374, 379,380, 381, 389, 391, 407, 472, 473, 507, 774,1152, 1215, 1218, 1221, 1224, 1225, 1226,1257, 1294, 1352, 1371.cur ext : 512, 517, 529, 530, 537*, 1275, 1351, 1374.cur f : 722, 724, 738, 741, 749, 752, 753, 755.cur fam : 236, 1151, 1155, 1165.cur fam code : 236, 237, 238, 1139, 1145.cur �le : 304, 329, 362, 537*, 538.cur font : 230, 232, 558, 559, 577, 1032, 1034,1042, 1044, 1117, 1123, 1124, 1146.

cur font loc : 230, 232, 233, 234, 1217.cur g : 619, 625, 629, 634.cur glue : 619, 625, 629, 634.cur group : 270, 271, 272, 274, 281, 282, 800, 1062,1063, 1064, 1065, 1067, 1068, 1069, 1130, 1131,1140, 1142, 1191, 1192, 1193, 1194, 1200.cur h : 616, 617, 618, 619, 620, 622, 623, 626,627, 628, 629, 632, 637.cur head : 770, 771, 772, 786, 799.cur height : 970, 972, 973, 974, 975, 976.cur i : 722, 723, 724, 738, 741, 749, 752, 753, 755.cur if : 336, 489, 490, 495, 496, 1335.cur indent : 877*, 889.cur input : 35, 36*, 87, 301, 302, 311, 321, 322,534, 1131.cur l : 907, 908, 909, 910, 911, 1032, 1034, 1035,1036, 1037, 1039, 1040.cur lang : 891, 892, 923, 924, 930, 934, 939, 944,963, 1091, 1200, 1362.cur length : 41, 180, 182, 260, 516*, 525, 617,692, 1368.cur level : 270, 271, 272, 274, 277, 278, 280,281, 1304, 1335.cur line : 877*, 889, 890.cur list : 213, 216, 217, 218, 422, 1244.cur loop : 770, 771, 772, 777, 783, 792, 793, 794.cur mark : 296, 382, 386, 1335.cur mlist : 719, 720, 726, 754, 1194, 1196, 1199.cur mu : 703, 719, 730, 732, 766.cur name : 512, 517, 529, 530, 537*, 1257, 1258,1260, 1351, 1374.cur order : 366, 439, 447, 448, 454, 462.cur p : 823, 828, 829, 830, 833, 837, 839, 840, 845,851, 853, 855, 856, 857, 858, 859, 860, 862*,863, 865, 866, 867, 868, 869, 872, 877*, 878,879*, 880, 881, 894, 903, 1362.cur q : 907, 908, 910, 911, 1034, 1035, 1036,1037, 1040.cur r : 907, 908, 909, 910, 911, 1032, 1034, 1037,1038, 1039, 1040.cur rh : 906, 908, 909, 910.cur s : 593, 616, 619, 629, 640, 642*.cur size : 700, 701, 703, 719, 722, 723, 732, 736,737, 744, 746, 747, 748, 749, 757, 758, 759, 762.cur span : 770, 771, 772, 787, 796, 798.cur style : 703, 719, 720, 726, 730, 731, 734,735, 737, 738, 742, 744, 745, 746, 748, 749,750, 754, 756, 757, 758, 759, 760, 763, 766,1194, 1196, 1199.cur tail : 770, 771, 772, 786, 796, 799.cur tok : 88, 281, 297, 325, 326, 327, 336, 364,365, 366, 368, 369, 372, 375, 379, 380, 381,

494 PART 55: INDEX TEXGPC x1383392, 393, 394, 395, 397, 399, 403, 405, 407,440, 441, 442, 444, 445, 448, 452, 474, 476,477, 479, 483, 494, 503, 506, 783, 784, 1038,1047, 1095, 1127, 1128, 1132, 1215, 1221, 1268,1269, 1271, 1371, 1372.cur v : 616, 618, 619, 623, 624, 628, 629, 631, 632,633, 635, 636, 637, 640.cur val : 264, 265, 334, 366, 410, 413, 414, 415,419, 420, 421, 423, 424, 425, 426, 427, 429,430, 431, 433, 434, 435, 436, 437, 438, 439,440, 442, 444, 445, 447, 448, 450, 451, 453,455, 457, 458, 460, 461, 462, 463, 465, 466,472, 482, 491, 501, 503, 504, 505, 509, 553,577, 578, 579, 580, 645, 780, 782, 935, 1030,1038, 1060, 1061, 1073, 1079, 1082, 1099, 1103,1110, 1123, 1124, 1151, 1154, 1160, 1161, 1165,1182, 1188, 1224, 1225, 1226, 1227, 1228, 1229,1232, 1234, 1236, 1237, 1238, 1239, 1240, 1241,1243, 1244, 1245, 1246, 1247, 1248, 1253, 1258,1259, 1275, 1296, 1344, 1350, 1377.cur val level : 366, 410, 413, 419, 420, 421,423, 424, 427, 429, 430, 439, 449, 451, 455,461, 465, 466.cur width : 877*, 889.current page: 980.current character being worked on : 570.cv backup : 366.cvl backup : 366.d: 107, 176, 177, 259, 341, 440, 560, 649, 668, 679,706, 830, 944, 970, 1068, 1086, 1138, 1198.d �xed : 608, 609.danger : 1194, 1195, 1199.data : 210, 232, 1217, 1232, 1234.data structure assumptions: 161, 164, 204, 816*,968, 981, 1289.day : 236, 241*, 536, 617, 1328.\day primitive: 238.day code : 236, 237, 238.dd : 458.deactivate : 829, 851, 854.dead cycles : 419, 592, 593, 638, 1012, 1024, 1025,1054, 1242, 1246.\deadcycles primitive: 416.debug: 7*, 9*, 78, 84*, 93, 114, 165, 166, 167,172, 1031, 1338*.debug # : 1338*.debug help : 78, 84*, 93, 1338*.debugging: 7*, 84*, 96*, 114, 165, 182, 1031, 1338*.decent �t : 817, 834, 852, 853, 864.decr : 16, 42, 44, 64, 71, 86, 88, 89, 90, 92, 102,120, 121, 123, 175, 177, 200, 201, 205, 217, 245,260, 281, 282, 311, 322, 324, 325, 329, 331, 347,

356, 357, 360*, 362, 394, 399, 422, 429, 442, 477,483, 494, 509, 534, 538, 568, 576, 601, 619, 629,638, 642*, 643, 716, 717, 803, 808, 840, 858,869, 883, 915, 916, 930, 931, 940, 944, 948,965, 1060, 1100, 1120, 1127, 1131, 1174, 1186,1194, 1244, 1293, 1311, 1335, 1337.def : 209, 1208, 1209, 1210, 1213, 1218.\def primitive: 1208.def code : 209, 413, 1210, 1230, 1231, 1232.def family : 209, 413, 577, 1210, 1230, 1231, 1234.def font : 209, 265, 266, 413, 577, 1210, 1256.def ref : 305, 306, 473, 482, 960, 1101, 1218, 1226,1279, 1288, 1352, 1354, 1370.default code : 683, 697, 743, 1182.default hyphen char : 236, 576.\defaulthyphenchar primitive: 238.default hyphen char code : 236, 237, 238.default rule : 463.default rule thickness : 683, 701, 734, 735, 737,743, 745, 759.default skew char : 236, 576.\defaultskewchar primitive: 238.default skew char code : 236, 237, 238.defecation: 597*.de�ne : 1214, 1217, 1218, 1221, 1224, 1225, 1226,1227, 1228, 1232, 1234, 1236, 1248, 1257.de�ning : 305, 306, 339, 473, 482.del code : 236, 240, 1160.\delcode primitive: 1230.del code base : 236, 240, 242, 1230, 1232, 1233.delete glue ref : 201, 202, 275, 451, 465, 578, 732,802, 816*, 826, 881, 976, 996, 1004, 1017, 1022,1100, 1229, 1236, 1239, 1335.delete last : 1104, 1105.delete q : 726, 760, 763.delete token ref : 200, 202, 275, 324, 977, 979,1012, 1016, 1335, 1358.deletions allowed : 76, 77, 84*, 85, 98, 336, 346.delim num : 207, 265, 266, 1046, 1151, 1154, 1160.delimited code : 1178, 1179, 1182, 1183.delimiter : 687, 696, 762, 1191.\delimiter primitive: 265.delimiter factor : 236, 762.\delimiterfactor primitive: 238.delimiter factor code : 236, 237, 238.delimiter shortfall : 247, 762.\delimitershortfall primitive: 248.delimiter shortfall code : 247, 248.delim1 : 700, 748.delim2 : 700, 748.delta : 103, 726, 728, 733, 735, 736, 737, 738, 742,743, 745, 746, 747, 748, 749, 750, 754, 755, 756,

x1383 TEXGPC PART 55: INDEX 495759, 762, 994, 1008, 1010, 1123, 1125.delta node : 822, 830, 832, 843, 844, 860, 861,865, 874, 875.delta node size : 822, 843, 844, 860, 861, 865.delta1 : 743, 746, 762.delta2 : 743, 746, 762.den : 585, 587, 590.denom : 450, 458.denom style : 702, 744.denominator : 683, 690, 697, 698, 744, 1181, 1185.denom1 : 700, 744.denom2 : 700, 744.deplorable : 974, 1005.depth : 463.depth : 135, 136, 138, 139, 140, 184, 187, 188, 463,554, 622, 624, 626, 631, 632, 635, 641, 649, 653,656, 668, 670, 679, 688, 704, 706, 709, 713, 727,730, 731, 735, 736, 737, 745, 746, 747, 749, 750,751, 756, 758, 759, 768, 769, 801, 806, 810, 973,1002, 1009, 1010, 1021, 1087, 1100.depth base : 550, 552, 554, 566, 571, 1322, 1323.depth index : 543, 554.depth o�set : 135, 416, 769, 1247.depth threshold : 181, 182, 198, 233, 236, 692, 1339*.dig : 54, 64, 65, 67, 102, 452.digit sensed : 960, 961, 962.dimen : 247, 427, 1008, 1010.\dimen primitive: 411.dimen base : 220, 236, 247, 248, 249, 250, 251,252, 1070, 1145.\dimendef primitive: 1222.dimen def code : 1222, 1223, 1224.dimen par : 247.dimen pars : 247.dimen val : 410, 411, 412, 413, 415, 416, 417,418, 420, 421, 424, 425, 427, 428, 429, 449,455, 465, 1237.Dimension too large : 460.dirty Pascal: 3, 114, 172, 182, 186, 285, 812, 1331.disc break : 877*, 880, 881, 882, 890.disc group : 269, 1117, 1118, 1119.disc node : 145, 148, 175, 183, 202, 206, 730,761, 817, 819, 829, 856, 858, 866, 881, 914,1081, 1105.disc width : 839, 840, 869, 870.discretionary : 208, 1090, 1114, 1115, 1116.Discretionary list is too long : 1120.\discretionary primitive: 1114.Display math...with $$: 1197.display indent : 247, 800, 1138, 1145, 1199.\displayindent primitive: 248.display indent code : 247, 248, 1145.

\displaylimits primitive: 1156.display mlist : 689, 695, 698, 731, 1174.display style : 688, 694, 731, 1169, 1199.\displaystyle primitive: 1169.display widow penalty : 236, 1145.\displaywidowpenalty primitive: 238.display widow penalty code : 236, 237, 238.display width : 247, 1138, 1145, 1199.\displaywidth primitive: 248.display width code : 247, 248, 1145.div: 100, 627, 636.divide : 209, 265, 266, 1210, 1235, 1236.\divide primitive: 265.do all six : 823, 829, 832, 837, 843, 844, 860,861, 864, 970, 987.do assignments : 800, 1123, 1206, 1270.do endv : 1130, 1131.do extension : 1347, 1348, 1375.do nothing : 16, 27*, 33*, 34*, 57, 58, 84*, 175, 202,275, 344, 357, 538, 569, 609, 611, 612, 622, 631,651, 669, 692, 728, 733, 761, 837, 866, 899,1045, 1236, 1359, 1360, 1373, 1382*.do register command : 1235, 1236.doing leaders : 592, 593, 628, 637, 1374.done : 15, 47, 53, 202, 281, 282, 311, 380, 389, 397,440, 445, 448, 453, 458, 473, 474, 476, 482, 483,494, 526, 530, 531, 537*, 560, 567, 576, 615, 638,640, 641, 698, 726, 738, 740, 760, 761, 774, 777,815, 829, 837, 863, 873, 877*, 881, 895, 906,909, 911, 931, 960, 961, 970, 974, 977, 979,994, 997, 998, 1005, 1079, 1081, 1119, 1121,1138, 1146, 1211, 1227, 1252, 1358.done with noad : 726, 727, 728, 733, 754.done with node : 726, 727, 730, 731, 754.done1 : 15, 167, 168, 389, 399, 448, 452, 473, 474,738, 741, 774, 783, 815, 829, 852, 877*, 879*, 894,896, 899, 960, 965, 994, 997, 1000, 1302, 1315.done2 : 15, 167, 169, 448, 458, 459, 473, 478, 774,784, 815, 896, 1302, 1316.done3 : 15, 815, 897, 898.done4 : 15, 815, 899.done5 : 15, 815, 866, 869.done6 : 15.dont expand : 210, 258, 357, 369.Double subscript : 1177.Double superscript : 1177.double hyphen demerits : 236, 859.\doublehyphendemerits primitive: 238.double hyphen demerits code : 236, 237, 238.Doubly free location... : 169.down ptr : 605, 606, 607, 615.downdate width : 860.

496 PART 55: INDEX TEXGPC x1383down1 : 585, 586, 607, 609, 610, 613, 614, 616.down2 : 585, 594, 610.down3 : 585, 610.down4 : 585, 610.\dp primitive: 416.dry rot: 95.\dump...only by INITEX : 1335.\dump primitive: 1052.dump four ASCII : 1309.dump hh : 1305, 1318, 1324.dump int : 1305, 1307, 1309, 1311, 1313, 1315,1316, 1318, 1320, 1322, 1324, 1326.dump qqqq : 1305, 1309, 1322.dump wd : 1305, 1311, 1315, 1316, 1320.Duplicate pattern : 963.dvi buf : 594, 595, 597*, 598, 607, 613, 614.dvi buf size : 11*, 14, 594, 595, 596, 598, 599,607, 613, 614, 642*.dvi f : 616, 617, 620, 621.dvi �le : 532*, 592, 595, 597*, 642*.DVI �les: 583.dvi font def : 602, 621, 643.dvi four : 600, 602, 610, 617, 624, 633, 640,642*, 1368.dvi gone : 594, 595, 596, 598, 612.dvi h : 616, 617, 619, 620, 623, 624, 628, 629,632, 637.dvi index : 594, 595, 597*.dvi limit : 594, 595, 596, 598, 599.dvi o�set : 594, 595, 596, 598, 601, 605, 607, 613,614, 619, 629, 640, 642*.dvi out : 598, 600, 601, 602, 603, 609, 610, 617,619, 620, 621, 624, 629, 633, 640, 642*, 1368.dvi pop : 601, 619, 629.dvi ptr : 594, 595, 596, 598, 599, 601, 607, 619,629, 640, 642*.dvi swap : 598.dvi v : 616, 617, 619, 623, 628, 629, 632, 637.dyn used : 117, 120, 121, 122, 123, 164, 639,1311, 1312.e: 277, 279, 518, 519, 530, 1198, 1211.easy line : 819, 835, 847, 848, 850.ec : 540, 541, 543, 545, 560, 565, 566, 570, 576.\edef primitive: 1208.edge : 619, 623, 626, 629, 635.edit �le name : 79*, 80*, 84*, 1332*, 1380*.edit line : 79*, 80*, 84*, 1380*.eight bits : 25*, 64, 112*, 297, 549, 560, 581, 582,595, 607, 649, 706, 709, 712, 977, 992, 993,1079, 1247, 1288.eject penalty : 157, 829, 831, 851, 859, 873, 970,972, 974, 1005, 1010, 1011.

else: 10*.\else primitive: 491.else code : 489, 491, 498.em : 455.Emergency stop : 93.emergency stretch : 247, 828, 863.\emergencystretch primitive: 248.emergency stretch code : 247, 248.empty : 16, 421, 681, 685, 687, 692, 722, 723, 738,749, 751, 752, 754, 755, 756, 980, 986, 987,991, 1001, 1008, 1176, 1177, 1186.empty line at end of �le: 486, 538.empty �eld : 684, 685, 686, 742, 1163, 1165, 1181.empty ag : 124, 126, 130, 150, 164, 1312.end: 7*, 8, 10*.End of file on the terminal : 37*, 71.(\end occurred...) : 1335.\end primitive: 1052.end cs name : 208, 265, 266, 372, 1134.\endcsname primitive: 265.end diagnostic : 245, 284, 299, 323, 400, 401, 502,509, 581, 638, 641, 663, 675, 863, 987, 992,1006, 1011, 1121, 1298.end �le reading : 329, 330, 360*, 362, 483, 537*,1335.end graf : 1026, 1085, 1094, 1096, 1100, 1131,1133, 1168.end group : 208, 265, 266, 1063.\endgroup primitive: 265.\endinput primitive: 376.end line char : 87, 236, 240, 303, 318, 332, 360*,362, 483, 534, 538, 1337.\endlinechar primitive: 238.end line char code : 236, 237, 238.end line char inactive : 360*, 362, 483, 538, 1337.end match : 207, 289, 291, 294, 391, 392, 394.end match token : 289, 389, 391, 392, 393, 394,474, 476, 482.end name : 512, 517, 526, 531.end of TEX : 6, 81, 1332*.end span : 162, 768, 779, 793, 797, 801, 803.end template : 210, 366, 375, 380, 780, 1295.end template token : 780, 784, 790.end token list : 324, 325, 357, 390, 1026, 1335,1371.end write : 222, 1369, 1371.\endwrite : 1369.end write token : 1371, 1372.endcases: 10*.endv : 207, 298, 375, 380, 768, 780, 782, 791,1046, 1130, 1131.ensure dvi open : 532*, 617.

x1383 TEXGPC PART 55: INDEX 497ensure vbox : 993, 1009, 1018.eof : 26, 31*, 52, 564, 575, 1327, 1338*, 1339*.eoln : 31*, 52.eop : 583, 585, 586, 588, 640, 642*.eq de�ne : 277, 278, 279, 372, 782, 1070, 1077,1214.eq destroy : 275, 277, 279, 283.eq level : 221, 222, 228, 232, 236, 253, 264, 277,279, 283, 780, 977, 1315, 1369.eq level �eld : 221.eq no : 208, 1140, 1141, 1143, 1144.\eqno primitive: 1141.eq save : 276, 277, 278.eq type : 210, 221, 222, 223, 228, 232, 253, 258,264, 265, 267, 277, 279, 351, 353, 354, 357, 358,372, 389, 391, 780, 1152, 1315, 1369.eq type �eld : 221, 275.eq word de�ne : 278, 279, 1070, 1139, 1145, 1214.eqtb : 115, 163, 220, 221, 222, 223, 224, 228, 230,232, 236, 240, 242, 247, 250, 251, 252, 253, 255,262, 264, 265, 266, 267, 268, 270, 272, 274,275, 276, 277, 278, 279, 281, 282, 283, 284,285, 286, 289, 291, 297, 298, 305, 307, 332,333, 354, 389, 413, 414, 473, 491, 548, 553,780, 814, 1188, 1208, 1222, 1238, 1240, 1253,1257, 1315, 1316, 1317, 1339*, 1345.eqtb size : 220, 247, 250, 252, 253, 254, 1307,1308, 1316, 1317.equiv : 221, 222, 223, 224, 228, 229, 230, 232,233, 234, 235, 253, 255, 264, 265, 267, 275,277, 279, 351, 353, 354, 357, 358, 413, 414,415, 508, 577, 780, 1152, 1227, 1239, 1240,1257, 1289, 1315, 1369.equiv �eld : 221, 275, 285.err help : 79*, 230, 1283, 1284.\errhelp primitive: 230.err help loc : 230.\errmessage primitive: 1277.error : 72, 75, 76, 78, 79*, 82, 88, 91, 93, 98, 327,338, 346, 370, 398, 408, 418, 428, 445, 454, 456,459, 460, 475, 476, 486, 500, 510, 523, 535, 561,567, 579, 641, 723, 776, 784, 792, 826, 936,937, 960, 961, 962, 963, 976, 978, 992, 1004,1009, 1024, 1027, 1050, 1064, 1066, 1068, 1069,1080, 1082, 1095, 1099, 1106, 1110, 1120, 1121,1128, 1129, 1135, 1159, 1166, 1177, 1183, 1192,1195, 1213, 1225, 1232, 1236, 1237, 1241, 1252,1259, 1283, 1284, 1293, 1372, 1382*.error context lines : 236, 311.\errorcontextlines primitive: 238.error context lines code : 236, 237, 238.error count : 76, 77, 82, 86, 1096, 1293.

error line : 11*, 14, 54, 58, 306, 311, 315, 316, 317.error message issued : 76, 82, 95.error stop mode : 72, 73, 74, 82, 93, 98, 1262,1283, 1293, 1294, 1297, 1327, 1335.\errorstopmode primitive: 1262.erstat : 27*.escape : 207, 232, 344, 1337.escape char : 236, 240, 243.\escapechar primitive: 238.escape char code : 236, 237, 238.etc : 182.ETC : 292.every cr : 230, 774, 799.\everycr primitive: 230.every cr loc : 230, 231.every cr text : 307, 314, 774, 799.every display : 230, 1145.\everydisplay primitive: 230.every display loc : 230, 231.every display text : 307, 314, 1145.every hbox : 230, 1083.\everyhbox primitive: 230.every hbox loc : 230, 231.every hbox text : 307, 314, 1083.every job : 230, 1030.\everyjob primitive: 230.every job loc : 230, 231.every job text : 307, 314, 1030.every math : 230, 1139.\everymath primitive: 230.every math loc : 230, 231.every math text : 307, 314, 1139.every par : 230, 1091.\everypar primitive: 230.every par loc : 230, 231, 307, 1226.every par text : 307, 314, 1091.every vbox : 230, 1083, 1167.\everyvbox primitive: 230.every vbox loc : 230, 231.every vbox text : 307, 314, 1083, 1167.ex : 455.ex hyphen penalty : 145, 236, 869.\exhyphenpenalty primitive: 238.ex hyphen penalty code : 236, 237, 238.ex space : 208, 265, 266, 1030, 1090.exactly : 644, 645, 715, 889, 977, 1017, 1062, 1201.exit : 15, 16, 37*, 47, 58, 59, 69, 82, 125, 182, 292,341, 389, 407, 461, 497, 498, 524, 582, 607,615, 649, 668, 752, 791, 829, 895, 934, 944,948, 977, 994, 1012, 1030, 1054, 1079, 1105,1110, 1113, 1119, 1151, 1159, 1174, 1211, 1236,1270, 1303, 1335, 1338*.

498 PART 55: INDEX TEXGPC x1383expand : 358, 366, 368, 371, 380, 381, 439, 467,478, 498, 510, 782.expand after : 210, 265, 266, 366, 367.\expandafter primitive: 265.explicit : 155, 717, 837, 866, 868, 879*, 1058, 1113.ext bot : 546, 713, 714.ext delimiter : 513, 515, 516*, 517.ext mid : 546, 713, 714.ext rep : 546, 713, 714.ext tag : 544, 569, 708, 710.ext top : 546, 713, 714.exten : 544.exten base : 550, 552, 566, 573, 574, 576, 713,1322, 1323.extensible recipe : 541, 546.extension : 208, 1344, 1346, 1347, 1375.extensions to TEX: 2*, 146, 1340.Extra \else : 510.Extra \endcsname : 1135.Extra \fi : 510.Extra \or : 500, 510.Extra \right. : 1192.Extra }, or forgotten x : 1069.Extra alignment tab... : 792.Extra x : 1066.extra info : 769, 788, 789, 791, 792.extra right brace : 1068, 1069.extra space : 547, 558, 1044.extra space code : 547, 558.eyes and mouth: 332.f : 27*, 28*, 31*, 144, 448, 525, 560, 577, 578, 581,582, 592, 602, 649, 706, 709, 711, 712, 715,716, 717, 738, 830, 862*, 1068, 1113, 1123,1138, 1211, 1257.false : 31*, 37*, 45, 46, 47, 51, 76, 80*, 88, 89, 98,106, 107, 166, 167, 168, 169, 264, 284, 299, 311,323, 327, 331, 336, 346, 361, 362, 365, 374, 400,401, 407, 425, 440, 441, 445, 447, 448, 449, 455,460, 461, 462, 465, 485, 501, 502, 505, 507,509, 512, 516*, 524, 526, 528, 538, 551, 563,581, 593, 706, 720, 722, 754, 774, 791, 826,828, 837, 851, 854, 863, 881, 903, 906, 910,911, 951, 954, 960, 961, 962, 963, 966, 987,990, 1006, 1011, 1020, 1026, 1031, 1033, 1034,1035, 1040, 1051, 1054, 1061, 1101, 1167, 1182,1183, 1191, 1192, 1194, 1199, 1226, 1236, 1258,1270, 1279, 1282, 1283, 1288, 1303, 1325, 1336,1342, 1343, 1352, 1354, 1371, 1374.false bchar : 1032, 1034, 1038.fam : 681, 682, 683, 687, 691, 722, 723, 752, 753,1151, 1155, 1165.\fam primitive: 238.

fam fnt : 230, 700, 701, 707, 722, 1195.fam in range : 1151, 1155, 1165.fast delete glue ref : 201, 202.fast get avail : 122, 371, 1034, 1038.fast store new token : 371, 399, 464, 466.Fatal format file error : 1303.fatal error : 71, 93, 324, 360*, 484, 530, 535, 782,789, 791, 1131.fatal error stop : 76, 77, 82, 93, 1332*.fbyte : 564, 568, 571, 575.Ferguson, Michael John: 2*.fetch : 722, 724, 738, 741, 749, 752, 755.fewest demerits : 872, 874, 875.fget : 564, 565, 568, 571, 575.\fi primitive: 491.� code : 489, 491, 492, 494, 498, 500, 509, 510.� or else : 210, 366, 367, 489, 491, 492, 494, 510.fil : 454.�l : 135, 150, 164, 177, 454, 650, 659, 665, 1201.�l code : 1058, 1059, 1060.�l glue : 162, 164, 1060.�l neg code : 1058, 1060.�l neg glue : 162, 164, 1060.File ended while scanning... : 338.File ended within \read : 486.�le name size : 11*, 26, 519, 522, 523, 525, 1380*.�le o�set : 54, 55, 57, 58, 62, 537*, 638, 1280.�le opened : 560, 561, 563.�ll : 135, 150, 164, 650, 659, 665, 1201.�ll code : 1058, 1059, 1060.�ll glue : 162, 164, 1054, 1060.�lll : 135, 150, 177, 454, 650, 659, 665, 1201.�n align : 773, 785, 800, 1131.�n col : 773, 791, 1131.�n mlist : 1174, 1184, 1186, 1191, 1194.�n row : 773, 799, 1131.�n rule : 619, 622, 626, 629, 631, 635.�nal cleanup : 1332*, 1335.�nal end : 6, 35, 331, 1332*, 1337, 1379*.�nal hyphen demerits : 236, 859.\finalhyphendemerits primitive: 238.�nal hyphen demerits code : 236, 237, 238.�nal pass : 828, 854, 863, 873.�nal widow penalty : 814, 815, 876*, 877*, 890.�nd font dimen : 425, 578, 1042, 1253.�ngers: 511.�nite shrink : 825, 826.�re up : 1005, 1012.�rm up the line : 340, 362, 363, 538.�rst : 30, 31*, 35, 36*, 37*, 71, 83, 87, 88, 328, 329,331, 355, 360*, 362, 363, 374, 483, 531, 538.�rst child : 960, 963, 964.

x1383 TEXGPC PART 55: INDEX 499�rst count : 54, 315, 316, 317.�rst �t : 953, 957, 966.�rst indent : 847, 849, 889.�rst mark : 382, 383, 1012, 1016.\firstmark primitive: 384.�rst mark code : 382, 384, 385.�rst text char : 19, 24.�rst width : 847, 849, 850, 889.�t class : 830, 836, 845, 846, 852, 853, 855, 859.�tness : 819, 845, 859, 864.�x date and time : 241*, 1332*, 1337.�x language : 1034, 1376.�x word : 541, 542, 547, 548, 571.oat : 109*, 114, 186, 625, 634, 809.oat constant : 109*, 186, 619, 625, 629, 1123, 1125.oat cost : 140, 188, 1008, 1100.oating penalty : 140, 236, 1068, 1100.\floatingpenalty primitive: 238.oating penalty code : 236, 237, 238.ush char : 42, 180, 195, 692, 695.ush list : 123, 200, 324, 372, 396, 407, 801, 903,960, 1279, 1297, 1370.ush math : 718, 776, 1195.ush node list : 199, 202, 275, 639, 698, 718, 731,732, 742, 800, 816*, 879*, 883, 903, 918, 968, 992,999, 1078, 1105, 1120, 1121, 1375.ush string : 44, 264, 1260, 1279, 1328.ushable string : 1257, 1260.fmem ptr : 425, 549, 552, 566, 569, 570, 576, 578,579, 580, 1320, 1321, 1323, 1334.fmt �le : 524, 1305, 1306, 1308, 1327, 1328, 1329,1337, 1379*.fnt def1 : 585, 586, 602.fnt def2 : 585.fnt def3 : 585.fnt def4 : 585.fnt num 0 : 585, 586, 621.fnt1 : 585, 586, 621.fnt2 : 585.fnt3 : 585.fnt4 : 585.font : 134, 143, 144, 174, 176, 193, 206, 267, 548,582, 620, 654, 681, 709, 715, 724, 841, 842,866, 867, 870, 871, 896, 897, 898, 903, 908,911, 1034, 1038, 1113, 1147.font metric �les: 539.font parameters: 700, 701.Font x has only... : 579.Font x=xx not loadable... : 561.Font x=xx not loaded... : 567.\font primitive: 265.

font area : 549, 552, 576, 602, 603, 1260, 1322,1323.font base : 11*, 12, 111, 134, 174, 176, 222, 232,548, 551, 602, 621, 643, 1260, 1320, 1321, 1334.font bc : 549, 552, 576, 582, 708, 722, 1036,1322, 1323.font bchar : 549, 552, 576, 897, 898, 915, 1032,1034, 1322, 1323.font check : 549, 568, 602, 1322, 1323.\fontdimen primitive: 265.font dsize : 472, 549, 552, 568, 602, 1260, 1261,1322, 1323.font ec : 549, 552, 576, 582, 708, 722, 1036,1322, 1323.font false bchar : 549, 552, 576, 1032, 1034,1322, 1323.font glue : 549, 552, 576, 578, 1042, 1322, 1323.font id base : 222, 234, 256, 415, 548, 1257.font id text : 234, 256, 267, 579, 1257, 1322.font in short display : 173, 174, 193, 663, 864,1339*.font index : 548, 549, 560, 906, 1032, 1211.font info : 11*, 425, 548, 549, 550, 552, 554, 557,558, 560, 566, 569, 571, 573, 574, 575, 578,580, 700, 701, 713, 741, 752, 909, 1032, 1039,1042, 1211, 1253, 1320, 1321, 1339*.font max : 11*, 111, 174, 176, 548, 551, 566,1321, 1334.font mem size : 11*, 548, 566, 580, 1321, 1334.font name : 472, 549, 552, 576, 581, 602, 603,1260, 1261, 1322, 1323.\fontname primitive: 468.font name code : 468, 469, 471, 472.font params : 549, 552, 576, 578, 579, 580, 1195,1322, 1323.font ptr : 549, 552, 566, 576, 578, 643, 1260,1320, 1321, 1334.font size : 472, 549, 552, 568, 602, 1260, 1261,1322, 1323.font used : 549, 551, 621, 643.FONTx : 1257.for accent : 191.Forbidden control sequence... : 338.force eof : 331, 361, 362, 378.format area length : 520, 524.format default length : 520, 522, 523, 524, 1379*.format ext length : 520, 523, 524, 1379*.format extension : 520, 529, 1328.format ident : 35, 61, 536, 1299, 1300, 1301, 1326,1327, 1328, 1337, 1379*.forward : 4*, 78, 218, 281, 340, 366, 409, 618, 692,693, 720, 774, 800.

500 PART 55: INDEX TEXGPC x1383found : 15, 125, 128, 129, 259, 341, 354, 356,389, 392, 394, 448, 455, 473, 475, 477, 524,607, 609, 612, 613, 614, 645, 706, 708, 720,895, 923, 931, 934, 941, 953, 955, 1138, 1146,1147, 1148, 1236, 1237.found1 : 15, 895, 902, 1302, 1315.found2 : 15, 895, 903, 1302, 1316.four choices : 113.four quarters : 113, 548, 549, 554, 555, 560, 649,683, 684, 706, 709, 712, 724, 738, 749, 906,1032, 1123, 1302, 1303.fraction noad : 683, 687, 690, 698, 733, 761,1178, 1181.fraction noad size : 683, 698, 761, 1181.fraction rule : 704, 705, 735, 747.free : 165, 167, 168, 169, 170, 171.free avail : 121, 202, 204, 217, 400, 452, 772,915, 1036, 1226, 1288.free node : 130, 201, 202, 275, 496, 615, 655, 698,715, 721, 727, 751, 753, 756, 760, 772, 803, 860,861, 865, 903, 910, 977, 1019, 1021, 1022, 1037,1100, 1110, 1186, 1187, 1201, 1335, 1358.freeze page specs : 987, 1001, 1008.frozen control sequence : 222, 258, 1215, 1314,1318, 1319.frozen cr : 222, 339, 780, 1132.frozen dont expand : 222, 258, 369.frozen end group : 222, 265, 1065.frozen end template : 222, 375, 780.frozen endv : 222, 375, 380, 780.frozen � : 222, 336, 491.frozen null font : 222, 553.frozen protection : 222, 1215, 1216.frozen relax : 222, 265, 379.frozen right : 222, 1065, 1188.Fuchs, David Raymond: 2*, 583, 591.\futurelet primitive: 1219.g: 47, 182, 560, 592, 649, 668, 706, 716.g order : 619, 625, 629, 634.g sign : 619, 625, 629, 634.garbage : 162, 467, 470, 960, 1183, 1192, 1279.\gdef primitive: 1208.geq de�ne : 279, 782, 1077, 1214.geq word de�ne : 279, 288, 1013, 1214.get : 26, 29, 31*, 33*, 485, 538, 564, 1306.get avail : 120, 122, 204, 205, 216, 325, 337, 339,369, 371, 372, 452, 473, 482, 582, 709, 772, 783,784, 794, 908, 911, 938, 1064, 1065, 1226, 1371.get next : 76, 297, 332, 336, 340, 341, 357, 360*,364, 365, 366, 369, 380, 381, 387, 389, 478,494, 507, 644, 1038, 1126.

get node : 125, 131, 136, 139, 144, 145, 147, 151,152, 153, 156, 158, 206, 495, 607, 649, 668,686, 688, 689, 716, 772, 798, 843, 844, 845,864, 914, 1009, 1100, 1101, 1163, 1165, 1181,1248, 1249, 1349, 1357.get preamble token : 782, 783, 784.get r token : 1215, 1218, 1221, 1224, 1225, 1257.get strings started : 47, 51, 1332*.get token : 76, 78, 88, 364, 365, 368, 369, 392,399, 442, 452, 471, 473, 474, 476, 477, 479,483, 782, 1027, 1138, 1215, 1221, 1252, 1268,1271, 1294, 1371, 1372.get x token : 364, 366, 372, 380, 381, 402, 404, 406,407, 443, 444, 445, 452, 465, 479, 506, 526, 780,935, 961, 1029, 1030, 1138, 1197, 1237, 1375.get x token or active char : 506.give err help : 78, 89, 90, 1284.global : 1214, 1218, 1241.global de�nitions: 221, 279, 283.\global primitive: 1208.global defs : 236, 782, 1214, 1218.\globaldefs primitive: 238.global defs code : 236, 237, 238.glue base : 220, 222, 224, 226, 227, 228, 229,252, 782.glue node : 149, 152, 153, 175, 183, 202, 206, 424,622, 631, 651, 669, 730, 732, 761, 816*, 817,837, 856, 862*, 866, 879*, 881, 899, 903, 968,972, 973, 988, 996, 997, 1000, 1106, 1107,1108, 1147, 1202.glue o�set : 135, 159, 186.glue ord : 150, 447, 619, 629, 646, 649, 668, 791.glue order : 135, 136, 159, 185, 186, 619, 629,657, 658, 664, 672, 673, 676, 769, 796, 801,807, 809, 810, 811, 1148.glue par : 224, 766.glue pars : 224.glue ptr : 149, 152, 153, 175, 189, 190, 202, 206,424, 625, 634, 656, 671, 679, 732, 786, 793,795, 802, 803, 809, 816*, 838, 868, 881, 969,976, 996, 1001, 1004, 1148.glue ratio : 9*, 109*, 110, 113, 135, 186.glue ref : 210, 228, 275, 782, 1228, 1236.glue ref count : 150, 151, 152, 153, 154, 164, 201,203, 228, 766, 1043, 1060.glue set : 135, 136, 159, 186, 625, 634, 657, 658,664, 672, 673, 676, 807, 809, 810, 811, 1148.glue shrink : 159, 185, 796, 799, 801, 810, 811.glue sign : 135, 136, 159, 185, 186, 619, 629, 657,658, 664, 672, 673, 676, 769, 796, 801, 807,809, 810, 811, 1148.glue spec size : 150, 151, 162, 164, 201, 716.

x1383 TEXGPC PART 55: INDEX 501glue stretch : 159, 185, 796, 799, 801, 810, 811.glue temp : 619, 625, 629, 634.glue val : 410, 411, 412, 413, 416, 417, 424, 427,429, 430, 451, 461, 465, 782, 1060, 1228, 1236,1237, 1238, 1240.GNU Pascal: 9*, 10*, 25*, 27*, 28*, 34*, 36*, 96*, 109*,241*, 1332*, 1380*.goal height : 986, 987.goto: 35, 81.gpc block write : 597*.gpc byte : 25*.gpc close : 28*.gpc day : 241*.gpc execute : 4*, 1332*, 1380*.gpc get time stamp : 241*.gpc gpc : 4*.gpc halt : 1332*.gpc hour : 241*.gpc import: 4*.gpc install signal handler : 4*, 1381*, 1382*.gpc integer : 4*, 1381*.gpc io result : 27*.gpc length : 36*.gpc minute : 241*.gpc month : 241*.gpc null : 1381*, 1382*.gpc only: 4*.gpc param count : 36*.gpc param str : 36*, 1380*.gpc short real : 109*.gpc sig int : 4*, 1381*, 1382*.gpc string : 36*, 1380*.gpc time stamp : 241*.gpc trim : 27*, 1380*.gpc untyped �le : 27*, 28*, 532*.gpc write str : 1380*.gpc year : 241*.gr : 110, 113, 114, 135.group code : 269, 271, 274, 645, 1136.gubed: 7*.Guibas, Leonidas Ioannis: 2*.g1 : 1198, 1203.g2 : 1198, 1203, 1205.h: 204, 259, 649, 668, 738, 929, 934, 944, 948, 953,966, 970, 977, 994, 1086, 1091, 1123.h o�set : 247, 617, 641.\hoffset primitive: 248.h o�set code : 247, 248.ha : 892, 896, 900, 903, 912.half : 100, 706, 736, 737, 738, 745, 746, 749,750, 1202.half buf : 594, 595, 596, 598, 599.

half error line : 11*, 14, 311, 315, 316, 317.halfword : 108, 110, 113, 115, 130, 264, 277, 279,280, 281, 297, 298, 300, 333, 341, 366, 389, 413,464, 473, 549, 560, 577, 681, 791, 800, 821, 829,830, 833, 847, 872, 877*, 892, 901, 906, 907,1032, 1079, 1211, 1243, 1266, 1288.halign : 208, 265, 266, 1094, 1130.\halign primitive: 265.handle right brace : 1067, 1068.hang after : 236, 240, 847, 849, 1070, 1149.\hangafter primitive: 238.hang after code : 236, 237, 238, 1070.hang indent : 247, 847, 848, 849, 1070, 1149.\hangindent primitive: 248.hang indent code : 247, 248, 1070.hanging indentation: 847.hash : 234, 256, 257, 259, 260, 1318, 1319.hash base : 220, 222, 256, 257, 259, 262, 263,1257, 1314, 1318, 1319.hash brace : 473, 476.hash is full : 256, 260.hash prime : 12, 14, 259, 261, 1307, 1308.hash size : 12, 14, 222, 260, 261, 1334.hash used : 256, 258, 260, 1318, 1319.hb : 892, 897, 898, 900, 903.hbadness : 236, 660, 666, 667.\hbadness primitive: 238.hbadness code : 236, 237, 238.\hbox primitive: 1071.hbox group : 269, 274, 1083, 1085.hc : 892, 893, 897, 898, 900, 901, 919, 920, 923,930, 931, 934, 937, 939, 960, 962, 963, 965.hchar : 905, 906, 908, 909.hd : 649, 654, 706, 708, 709, 712.head : 212, 213, 215, 216, 217, 424, 718, 776, 796,799, 805, 812, 814, 816*, 1026, 1054, 1080,1081, 1086, 1091, 1096, 1100, 1105, 1113,1119, 1121, 1145, 1159, 1168, 1176, 1181,1184, 1185, 1187, 1191.head �eld : 212, 213, 218.head for vmode : 1094, 1095.header : 542.Heckenbach, Frank: 31*.Hedrick, Charles Locke: 3.height : 135, 136, 138, 139, 140, 184, 187, 188, 463,554, 622, 624, 626, 629, 631, 632, 635, 637, 640,641, 649, 653, 656, 670, 672, 679, 704, 706,709, 711, 713, 727, 730, 735, 736, 737, 738,739, 742, 745, 746, 747, 749, 750, 751, 756,757, 759, 768, 769, 796, 801, 804, 806, 807,809, 810, 811, 969, 973, 981, 986, 1001, 1002,1008, 1009, 1010, 1021, 1087, 1100.

502 PART 55: INDEX TEXGPC x1383height : 463.height base : 550, 552, 554, 566, 571, 1322, 1323.height depth : 554, 654, 708, 709, 712, 1125.height index : 543, 554.height o�set : 135, 416, 417, 769, 1247.height plus depth : 712, 714.held over for next output : 986.help line : 79*, 89, 90, 336, 1106.help ptr : 79*, 80*, 89, 90.help0 : 79*, 1252, 1293.help1 : 79*, 93, 95, 288, 408, 428, 454, 476, 486,500, 503, 510, 960, 961, 962, 963, 1066, 1080,1099, 1121, 1132, 1135, 1159, 1177, 1192, 1212,1213, 1232, 1237, 1243, 1244, 1258, 1283, 1304.help2 : 72, 79*, 88, 89, 94, 95, 288, 346, 373, 433,434, 435, 436, 437, 442, 445, 460, 475, 476,577, 579, 641, 936, 937, 978, 1015, 1027, 1047,1068, 1080, 1082, 1095, 1106, 1120, 1129, 1166,1197, 1207, 1225, 1236, 1241, 1259, 1372.help3 : 72, 79*, 98, 336, 396, 415, 446, 479, 776,783, 784, 792, 993, 1009, 1024, 1028, 1078,1084, 1110, 1127, 1183, 1195, 1293.help4 : 79*, 89, 338, 398, 403, 418, 456, 567, 723,976, 1004, 1050, 1283.help5 : 79*, 370, 561, 826, 1064, 1069, 1128,1215, 1293.help6 : 79*, 395, 459, 1128, 1161.Here is how much... : 1334.hex to cur chr : 352, 355.hex token : 438, 444.hf : 892, 896, 897, 898, 903, 908, 909, 910,911, 915, 916.\hfil primitive: 1058.\hfilneg primitive: 1058.\hfill primitive: 1058.hfuzz : 247, 666.\hfuzz primitive: 248.hfuzz code : 247, 248.hh : 110, 113, 114, 118, 133, 182, 213, 219, 221, 268,686, 742, 1163, 1165, 1181, 1186, 1305, 1306.hi : 112*, 232, 1232.hi mem min : 116, 118, 120, 125, 126, 134, 164,165, 167, 168, 171, 172, 176, 293, 639, 1311,1312, 1334.hi mem stat min : 162, 164, 1312.hi mem stat usage : 162, 164.history : 76, 77, 82, 93, 95, 245, 1332*, 1335.hlist node : 135, 136, 137, 138, 148, 159, 175, 183,184, 202, 206, 505, 618, 619, 622, 631, 644,649, 651, 669, 681, 807, 810, 814, 841, 842,866, 870, 871, 968, 973, 993, 1000, 1074, 1080,1087, 1110, 1147, 1203.

hlist out : 592, 615, 616, 618, 619, 620, 623, 628,629, 632, 637, 638, 640, 693, 1373.hlp1 : 79*.hlp2 : 79*.hlp3 : 79*.hlp4 : 79*.hlp5 : 79*.hlp6 : 79*.hmode : 211, 218, 416, 501, 786, 787, 796, 799,1030, 1045, 1046, 1048, 1056, 1057, 1071, 1073,1076, 1079, 1083, 1086, 1091, 1092, 1093, 1094,1096, 1097, 1109, 1110, 1112, 1116, 1117, 1119,1122, 1130, 1137, 1200, 1243, 1377.hmove : 208, 1048, 1071, 1072, 1073.hn : 892, 897, 898, 899, 902, 912, 913, 915, 916,917, 919, 923, 930, 931.ho : 112*, 235, 414, 1151, 1154.hold head : 162, 306, 779, 783, 784, 794, 808, 905,906, 913, 914, 915, 916, 917, 1014, 1017.holding inserts : 236, 1014.\holdinginserts primitive: 238.holding inserts code : 236, 237, 238.hpack : 162, 236, 644, 645, 646, 647, 649, 661,709, 715, 720, 727, 737, 748, 754, 756, 796,799, 804, 806, 889, 1062, 1086, 1125, 1194,1199, 1201, 1204.hrule : 208, 265, 266, 463, 1046, 1056, 1084,1094, 1095.\hrule primitive: 265.hsize : 247, 847, 848, 849, 1054, 1149.\hsize primitive: 248.hsize code : 247, 248.hskip : 208, 1057, 1058, 1059, 1078, 1090.\hskip primitive: 1058.\hss primitive: 1058.\ht primitive: 416.hu : 892, 893, 897, 898, 901, 903, 905, 907, 908,910, 911, 912, 915, 916.Huge page... : 641.hyf : 900, 902, 905, 908, 909, 913, 914, 919, 920,923, 924, 932, 960, 961, 962, 963, 965.hyf bchar : 892, 897, 898, 903.hyf char : 892, 896, 913, 915.hyf distance : 920, 921, 922, 924, 943, 944, 945,1324, 1325.hyf next : 920, 921, 924, 943, 944, 945, 1324, 1325.hyf node : 912, 915.hyf num : 920, 921, 924, 943, 944, 945, 1324, 1325.hyph count : 926, 928, 940, 1324, 1325, 1334.hyph data : 209, 1210, 1250, 1251, 1252.hyph list : 926, 928, 929, 932, 933, 934, 940,941, 1324, 1325.

x1383 TEXGPC PART 55: INDEX 503hyph pointer : 925, 926, 927, 929, 934.hyph size : 12, 925, 928, 930, 933, 939, 940, 1307,1308, 1324, 1325, 1334.hyph word : 926, 928, 929, 931, 934, 940, 941,1324, 1325.hyphen char : 426, 549, 552, 576, 891, 896, 1035,1117, 1253, 1322, 1323.\hyphenchar primitive: 1254.hyphen passed : 905, 906, 909, 913, 914.hyphen penalty : 145, 236, 869.\hyphenpenalty primitive: 238.hyphen penalty code : 236, 237, 238.hyphenate : 894, 895.hyphenated : 819, 820, 829, 846, 859, 869, 873.Hyphenation trie... : 1324.\hyphenation primitive: 1250.i: 19, 315, 587, 649, 738, 749, 901, 1123, 1348,1380*.I can't find file x : 530.I can't find PLAIN... : 524.I can't go on... : 95.I can't read TEX.POOL : 51.I can't write on file x : 530.id byte : 587, 617, 642*.id lookup : 259, 264, 356, 374.ident val : 410, 415, 465, 466.\ifcase primitive: 487.if case code : 487, 488, 501.if cat code : 487, 488, 501.\ifcat primitive: 487.\if primitive: 487.if char code : 487, 501, 506.if code : 489, 495, 510.\ifdim primitive: 487.if dim code : 487, 488, 501.\ifeof primitive: 487.if eof code : 487, 488, 501.\iffalse primitive: 487.if false code : 487, 488, 501.\ifhbox primitive: 487.if hbox code : 487, 488, 501, 505.\ifhmode primitive: 487.if hmode code : 487, 488, 501.\ifinner primitive: 487.if inner code : 487, 488, 501.\ifnum primitive: 487.if int code : 487, 488, 501, 503.if limit : 489, 490, 495, 496, 497, 498, 510.if line : 489, 490, 495, 496, 1335.if line �eld : 489, 495, 496, 1335.\ifmmode primitive: 487.if mmode code : 487, 488, 501.

if node size : 489, 495, 496, 1335.\ifodd primitive: 487.if odd code : 487, 488, 501.if test : 210, 336, 366, 367, 487, 488, 494, 498,503, 1335.\iftrue primitive: 487.if true code : 487, 488, 501.\ifvbox primitive: 487.if vbox code : 487, 488, 501.\ifvmode primitive: 487.if vmode code : 487, 488, 501.\ifvoid primitive: 487.if void code : 487, 488, 501, 505.\ifx primitive: 487.ifx code : 487, 488, 501.ignore : 207, 232, 332, 345.ignore depth : 212, 215, 219, 679, 787, 1025, 1056,1083, 1099, 1167.ignore spaces : 208, 265, 266, 1045.\ignorespaces primitive: 265.Illegal magnification... : 288, 1258.Illegal math \disc... : 1120.Illegal parameter number... : 479.Illegal unit of measure : 454, 456, 459.\immediate primitive: 1344.immediate code : 1344, 1346, 1348.IMPOSSIBLE : 262.Improper \halign... : 776.Improper \hyphenation... : 936.Improper \prevdepth : 418.Improper \setbox : 1241.Improper \spacefactor : 418.Improper `at' size... : 1259.Improper alphabetic constant : 442.Improper discretionary list : 1121.in : 458.in open : 304, 328, 329, 331.in state record : 300, 301.in stream : 208, 1272, 1273, 1274.Incompatible glue units : 408.Incompatible list... : 1110.Incompatible magnification : 288.incompleat noad : 212, 213, 718, 776, 1136, 1178,1181, 1182, 1184, 1185.Incomplete \if... : 336.incr : 16, 31*, 36*, 42, 43, 45, 46, 53, 58, 59, 60, 65,67, 70, 71, 82, 90, 98, 120, 122, 152, 153, 170,182, 203, 216, 260, 274, 276, 280, 294, 311, 312,321, 325, 328, 343, 347, 352, 354, 355, 356, 357,360*, 362, 374, 392, 395, 397, 399, 400, 403, 407,442, 452, 454, 464, 475, 476, 477, 494, 517, 519,524, 531, 537*, 580, 598, 619, 629, 640, 642*, 645,

504 PART 55: INDEX TEXGPC x1383714, 798, 845, 877*, 897, 898, 910, 911, 914, 915,923, 930, 931, 937, 939, 940, 941, 944, 954,956, 962, 963, 964, 986, 1022, 1025, 1035, 1039,1069, 1099, 1117, 1119, 1121, 1127, 1142, 1153,1172, 1174, 1315, 1316, 1318, 1337, 1380*.\indent primitive: 1088.indent in hmode : 1092, 1093.indented : 1091.index : 300, 302, 303, 304, 307, 328, 329, 331.index �eld : 300, 302, 1131.inf : 447, 448, 453.inf bad : 108, 157, 851, 852, 853, 856, 863, 974,1005, 1017.inf penalty : 157, 761, 767, 816*, 829, 831, 974,1005, 1013, 1203, 1205.Infinite glue shrinkage... : 826, 976, 1004,1009.in�nity : 445.info : 118, 124, 126, 140, 164, 172, 200, 233, 275,291, 293, 325, 337, 339, 357, 358, 369, 371, 374,389, 391, 392, 393, 394, 397, 400, 423, 452, 466,508, 605, 608, 609, 610, 611, 612, 613, 614, 615,681, 689, 692, 693, 698, 720, 734, 735, 736, 737,738, 742, 749, 754, 768, 769, 772, 779, 783,784, 790, 793, 794, 797, 798, 801, 803, 821,847, 848, 925, 932, 938, 981, 1065, 1076, 1093,1149, 1151, 1168, 1181, 1185, 1186, 1191, 1226,1248, 1249, 1289, 1312, 1339*, 1341, 1371.init: 8, 47, 50, 131, 264, 891, 942, 943, 947, 950,1252, 1302, 1325, 1332*, 1335, 1336.init align : 773, 774, 1130.init col : 773, 785, 788, 791.init cur lang : 816*, 891, 892.init l hyf : 816*, 891, 892.init lft : 900, 903, 905, 908.init lig : 900, 903, 905, 908.init list : 900, 903, 905, 908.init math : 1137, 1138.init pool ptr : 39, 42, 1310, 1332*, 1334.init prim : 1332*, 1336.init r hyf : 816*, 891, 892.init row : 773, 785, 786.init span : 773, 786, 787, 791.init str ptr : 39, 43, 517, 1310, 1332*, 1334.init terminal : 37*, 331.init trie : 891, 966, 1324.INITEX : 8, 11*, 12, 47, 50, 116, 1299, 1331.initialize : 4*, 1332*, 1337.inner loop: 31*, 112*, 120, 121, 122, 123, 125, 127,128, 130, 202, 324, 325, 341, 342, 343, 357, 365,380, 399, 407, 554, 597*, 611, 620, 651, 654, 655,832, 835, 851, 852, 867, 1030, 1039, 1041.

inner noad : 682, 683, 690, 696, 698, 733, 761,764, 1156, 1157, 1191.input : 31*, 210, 366, 367, 376, 377.\input primitive: 376.input command ln : 36*, 37*.input �le : 304.\inputlineno primitive: 416.input line no code : 416, 417, 424.input ln : 30, 31*, 36*, 37*, 58, 71, 362, 485, 486, 538.input ptr : 301, 311, 312, 321, 322, 330, 331,360*, 534, 1131, 1335.input stack : 84*, 301, 311, 321, 322, 534, 1131.ins disc : 1032, 1033, 1035.ins error : 327, 336, 395, 1047, 1127, 1132, 1215.ins list : 323, 339, 467, 470, 1064, 1371.ins node : 140, 148, 175, 183, 202, 206, 647,651, 730, 761, 866, 899, 968, 973, 981, 986,1000, 1014, 1100.ins node size : 140, 202, 206, 1022, 1100.ins ptr : 140, 188, 202, 206, 1010, 1020, 1021, 1100.ins the toks : 366, 367, 467.insert : 208, 265, 266, 1097.insert> : 87.\insert primitive: 265.insert dollar sign : 1045, 1047.insert group : 269, 1068, 1099, 1100.insert penalties : 419, 982, 990, 1005, 1008, 1010,1014, 1022, 1026, 1242, 1246.\insertpenalties primitive: 416.insert relax : 378, 379, 510.insert token : 268, 280, 282.inserted : 307, 314, 323, 324, 327, 379, 1095.inserting : 981, 1009.Insertions can only... : 993.inserts only : 980, 987, 1008.int : 110, 113, 114, 140, 141, 157, 186, 213, 219,236, 240, 242, 274, 278, 279, 413, 414, 489,605, 725, 769, 772, 819, 1238, 1240, 1305,1306, 1308, 1316.int base : 220, 230, 232, 236, 238, 239, 240, 242,252, 253, 254, 268, 283, 288, 1013, 1070,1139, 1145, 1315.int error : 91, 288, 433, 434, 435, 436, 437, 1243,1244, 1258.int par : 236.int pars : 236.int val : 410, 411, 412, 413, 414, 416, 417, 418,419, 422, 423, 424, 426, 427, 428, 429, 439, 440,449, 461, 465, 1236, 1237, 1238, 1240.integer : 3, 13, 19, 36*, 45, 47, 54, 59, 60, 63, 65, 66,67, 69, 79*, 82, 91, 94, 96*, 100, 101, 102, 105,106, 107, 108, 109*, 110, 113, 117, 125, 158, 163,

x1383 TEXGPC PART 55: INDEX 505172, 173, 174, 176, 177, 178, 181, 182, 211, 212,218, 225, 237, 247, 256, 259, 262, 278, 279, 286,292, 304, 308, 309, 311, 315, 366, 410, 440, 448,450, 482, 489, 493, 494, 498, 518, 519, 523, 549,550, 560, 578, 592, 595, 600, 601, 607, 615, 616,619, 629, 638, 645, 646, 661, 691, 694, 699, 706,716, 717, 726, 738, 752, 764, 815, 828, 829, 830,833, 872, 877*, 892, 912, 922, 966, 970, 980, 982,994, 1012, 1030, 1032, 1068, 1075, 1079, 1084,1091, 1117, 1119, 1138, 1151, 1155, 1194, 1211,1302, 1303, 1331, 1333*, 1338*, 1348, 1370, 1380*.inter line penalty : 236, 890.\interlinepenalty primitive: 238.inter line penalty code : 236, 237, 238.interaction : 71, 72, 73, 74, 75, 82, 84*, 86, 90, 92,93, 98, 360*, 363, 484, 530, 1265, 1283, 1293,1294, 1297, 1326, 1327, 1328, 1335.internal font number : 548, 549, 550, 560, 577,578, 581, 582, 602, 616, 649, 706, 709, 711,712, 715, 724, 738, 830, 862*, 892, 1032, 1113,1123, 1138, 1211, 1257.interrupt : 96*, 97, 98, 1031, 1381*, 1382*.Interruption : 98.interwoven alignment preambles... : 324,782, 789, 791, 1131.Invalid code : 1232.invalid char : 207, 232, 344.invalid code : 22, 24, 232.is char node : 134, 174, 183, 202, 205, 424, 620,630, 651, 669, 715, 720, 721, 756, 805, 816*,837, 841, 842, 866, 867, 868, 870, 871, 879*,896, 897, 899, 903, 1036, 1040, 1080, 1081,1105, 1113, 1121, 1147, 1202.is empty : 124, 127, 169, 170.is hex : 352, 355.is running : 138, 176, 624, 633, 806.issue message : 1276, 1279.ital corr : 208, 265, 266, 1111, 1112.italic correction: 543.italic base : 550, 552, 554, 566, 571, 1322, 1323.italic index : 543.its all over : 1045, 1054, 1335.j: 45, 46, 59, 60, 69, 70, 259, 264, 315, 366, 519,523, 524, 638, 893, 901, 906, 934, 966, 1211,1302, 1303, 1348, 1370, 1373.Japanese characters: 134, 585.Jerabek, Emil: 597*.job aborted : 360*.job aborted, file error... : 530.job name : 92, 471, 472, 527, 528, 529, 532*, 534,537*, 1257, 1328, 1335.\jobname primitive: 468.

job name code : 468, 470, 471, 472.jump out : 81, 82, 84*, 93.just box : 814, 888, 889, 1146, 1148.just open : 480, 483, 1275.k: 45, 46, 47, 64, 65, 67, 69, 71, 102, 163, 259,264, 341, 363, 407, 450, 464, 519, 523, 525,530, 534, 560, 587, 602, 607, 638, 705, 906,929, 934, 960, 966, 1079, 1211, 1302, 1303,1333*, 1338*, 1348, 1368.kern : 208, 545, 1057, 1058, 1059.\kern primitive: 1058.kern base : 550, 552, 557, 566, 573, 576, 1322, 1323.kern base o�set : 557, 566, 573.kern break : 866.kern ag : 545, 741, 753, 909, 1040.kern node : 155, 156, 183, 202, 206, 424, 622, 631,651, 669, 721, 730, 732, 761, 837, 841, 842,856, 866, 868, 870, 871, 879*, 881, 896, 897,899, 968, 972, 973, 976, 996, 997, 1000, 1004,1106, 1107, 1108, 1121, 1147.kk : 450, 452.Knuth, Donald Ervin: 2*, 86, 693, 813, 891, 925,997, 1154, 1371.Kuebart, Joachim: 37*.l: 47, 259, 264, 276, 281, 292, 315, 494, 497, 534,601, 615, 668, 830, 901, 944, 953, 960, 1138,1194, 1236, 1302, 1338*, 1376.l hyf : 891, 892, 894, 899, 902, 923, 1362.label: 4*.language : 236, 934, 1034, 1376.\language primitive: 238.language code : 236, 237, 238.language node : 1341, 1356, 1357, 1358, 1362,1373, 1376, 1377.large attempt : 706.large char : 683, 691, 697, 706, 1160.large fam : 683, 691, 697, 706, 1160.last : 30, 31*, 35, 36*, 37*, 71, 83, 87, 88, 331, 360*,363, 483, 524, 531.last active : 819, 820, 832, 835, 844, 854, 860, 861,863, 864, 865, 873, 874, 875.last badness : 424, 646, 648, 649, 660, 664, 667,668, 674, 676, 678.last bop : 592, 593, 640, 642*.\lastbox primitive: 1071.last box code : 1071, 1072, 1079.last glue : 424, 982, 991, 996, 1017, 1106, 1335.last ins ptr : 981, 1005, 1008, 1018, 1020.last item : 208, 413, 416, 417, 1048.last kern : 424, 982, 991, 996.\lastkern primitive: 416.last penalty : 424, 982, 991, 996.

506 PART 55: INDEX TEXGPC x1383\lastpenalty primitive: 416.\lastskip primitive: 416.last special line : 847, 848, 849, 850, 889.last text char : 19, 24.lc code : 230, 232, 891, 896, 897, 898, 937, 962.\lccode primitive: 1230.lc code base : 230, 235, 1230, 1231, 1286, 1287,1288.leader box : 619, 626, 628, 629, 635, 637.leader ag : 1071, 1073, 1078, 1084.leader ht : 629, 635, 636, 637.leader ptr : 149, 152, 153, 190, 202, 206, 626,635, 656, 671, 816*, 1078.leader ship : 208, 1071, 1072, 1073.leader wd : 619, 626, 627, 628.leaders: 1374.Leaders not followed by... : 1078.\leaders primitive: 1071.least cost : 970, 974, 980.least page cost : 980, 987, 1005, 1006.\left primitive: 1188.left brace : 207, 289, 294, 298, 347, 357, 403, 473,476, 777, 1063, 1150, 1226.left brace limit : 289, 325, 392, 394, 399.left brace token : 289, 403, 1127, 1226, 1371.left delimiter : 683, 696, 697, 737, 748, 1163,1181, 1182.left edge : 619, 627, 629, 632, 637.left hyphen min : 236, 1091, 1200, 1376, 1377.\lefthyphenmin primitive: 238.left hyphen min code : 236, 237, 238.left noad : 687, 690, 696, 698, 725, 728, 733, 760,761, 762, 1185, 1188, 1189, 1191.left right : 208, 1046, 1188, 1189, 1190.left skip : 224, 827, 880, 887.\leftskip primitive: 226.left skip code : 224, 225, 226, 887.length : 40, 46, 259, 537*, 602, 931, 941, 1280.length of lines: 847.\leqno primitive: 1141.let : 209, 1210, 1219, 1220, 1221.\let primitive: 1219.letter : 207, 232, 262, 289, 291, 294, 298, 347,354, 356, 935, 961, 1029, 1030, 1038, 1090,1124, 1151, 1154, 1160.letter token : 289, 445.level : 410, 413, 415, 418, 428, 461.level boundary : 268, 270, 274, 282.level one : 221, 228, 232, 254, 264, 272, 277, 278,279, 280, 281, 283, 780, 1304, 1335, 1369.level zero : 221, 222, 272, 276, 280.lf : 540, 560, 565, 566, 575, 576.

lft hit : 906, 907, 908, 910, 911, 1033, 1035, 1040.lh : 110, 113, 114, 118, 213, 219, 256, 540, 541,560, 565, 566, 568, 685, 950.Liang, Franklin Mark: 2*, 919.lig char : 143, 144, 193, 206, 652, 841, 842, 866,870, 871, 898, 903, 1113.lig kern : 544, 545, 549.lig kern base : 550, 552, 557, 566, 571, 573, 576,1322, 1323.lig kern command : 541, 545.lig kern restart : 557, 741, 752, 909, 1039.lig kern restart end : 557.lig kern start : 557, 741, 752, 909, 1039.lig ptr : 143, 144, 175, 193, 202, 206, 896, 898,903, 907, 910, 911, 1037, 1040.lig stack : 907, 908, 910, 911, 1032, 1034, 1035,1036, 1037, 1038, 1040.lig tag : 544, 569, 741, 752, 909, 1039.lig trick : 162, 652.ligature node : 143, 144, 148, 175, 183, 202, 206,622, 651, 752, 841, 842, 866, 870, 871, 896,897, 899, 903, 1113, 1121, 1147.ligature present : 906, 907, 908, 910, 911, 1033,1035, 1037, 1040.limit : 300, 302, 303, 307, 318, 328, 330, 331, 343,348, 350, 351, 352, 354, 355, 356, 360*, 362,363, 483, 537*, 538, 1337.Limit controls must follow... : 1159.limit �eld : 35, 87, 300, 302, 534.limit switch : 208, 1046, 1156, 1157, 1158.limits : 682, 696, 733, 749, 1156, 1157.\limits primitive: 1156.line : 84*, 216, 304, 313, 328, 329, 331, 362, 424,494, 495, 538, 663, 675, 1025, 1380*.line break : 162, 814, 815, 828, 839, 848, 862*, 863,866, 876*, 894, 934, 967, 970, 982, 1096, 1145.line di� : 872, 875.line number : 819, 820, 833, 835, 845, 846, 850,864, 872, 874, 875.line penalty : 236, 859.\linepenalty primitive: 238.line penalty code : 236, 237, 238.line skip : 224, 247.\lineskip primitive: 226.line skip code : 149, 152, 224, 225, 226, 679.line skip limit : 247, 679.\lineskiplimit primitive: 248.line skip limit code : 247, 248.line stack : 304, 328, 329.line width : 830, 850, 851.link : 118, 120, 121, 122, 123, 124, 125, 126, 130,133, 134, 135, 140, 143, 150, 164, 168, 172, 174,

x1383 TEXGPC PART 55: INDEX 507175, 176, 182, 202, 204, 212, 214, 218, 223, 233,292, 295, 306, 319, 323, 339, 357, 358, 366, 369,371, 374, 389, 390, 391, 394, 396, 397, 400, 407,452, 464, 466, 467, 470, 478, 489, 495, 496, 497,508, 605, 607, 609, 611, 615, 620, 622, 630, 649,651, 652, 654, 655, 666, 669, 679, 681, 689, 705,711, 715, 718, 719, 720, 721, 727, 731, 732, 735,737, 738, 739, 747, 748, 751, 752, 753, 754, 755,756, 759, 760, 761, 766, 767, 770, 772, 778, 779,783, 784, 786, 790, 791, 793, 794, 795, 796, 797,798, 799, 801, 802, 803, 804, 805, 806, 807, 808,809, 812, 814, 816*, 819, 821, 822, 829, 830, 837,840, 843, 844, 845, 854, 857, 858, 860, 861, 862*,863, 864, 865, 866, 867, 869, 873, 874, 875, 877*,879*, 880, 881, 882, 883, 884, 885, 886, 887, 888,890, 894, 896, 897, 898, 899, 903, 905, 906,907, 908, 910, 911, 913, 914, 915, 916, 917,918, 932, 938, 960, 968, 969, 970, 973, 979,980, 981, 986, 988, 991, 994, 998, 999, 1000,1001, 1005, 1008, 1009, 1014, 1017, 1018, 1019,1020, 1021, 1022, 1023, 1026, 1035, 1036, 1037,1040, 1041, 1043, 1064, 1065, 1076, 1081, 1086,1091, 1100, 1101, 1105, 1110, 1119, 1120, 1121,1123, 1125, 1146, 1155, 1168, 1181, 1184, 1185,1186, 1187, 1191, 1194, 1196, 1199, 1204, 1205,1206, 1226, 1279, 1288, 1297, 1311, 1312, 1335,1339*, 1341, 1349, 1368, 1371, 1375.list o�set : 135, 649, 769, 1018.list ptr : 135, 136, 184, 202, 206, 619, 623, 629,632, 658, 663, 664, 668, 673, 676, 709, 711,715, 721, 739, 747, 751, 807, 977, 979, 1021,1087, 1100, 1110, 1146, 1199.list state record : 212, 213.list tag : 544, 569, 570, 708, 740, 749.ll : 953, 956.llink : 124, 126, 127, 129, 130, 131, 145, 149, 164,169, 772, 819, 821, 1312.lo mem max : 116, 120, 125, 126, 164, 165, 167,169, 170, 171, 172, 178, 639, 1311, 1312,1323, 1334.lo mem stat max : 162, 164, 1312.load fmt �le : 1303, 1337, 1379*.loc : 36*, 37*, 87, 300, 302, 303, 307, 312, 314, 318,319, 323, 325, 328, 330, 331, 343, 348, 350, 351,352, 354, 356, 357, 358, 360*, 362, 369, 390,483, 524, 537*, 538, 1026, 1027, 1337.loc �eld : 35, 36*, 300, 302, 1131.local base : 220, 224, 228, 230, 252.location : 605, 607, 612, 613, 614, 615.log �le : 54, 56, 75, 534, 1333*.log name : 532*, 534, 1333*.log only : 54, 57, 58, 62, 75, 98, 360*, 534, 1328,

1370.log opened : 92, 93, 527, 528, 534, 535, 1265,1333*, 1334.\long primitive: 1208.long call : 210, 275, 366, 387, 389, 392, 399, 1295.long help seen : 1281, 1282, 1283.long outer call : 210, 275, 366, 387, 389, 1295.long state : 339, 387, 391, 392, 395, 396, 399.loop: 15, 16.Loose \hbox... : 660.Loose \vbox... : 674.loose �t : 817, 834, 852.looseness : 236, 848, 873, 875, 1070.\looseness primitive: 238.looseness code : 236, 237, 238, 1070.\lower primitive: 1071.\lowercase primitive: 1286.lq : 592, 627, 636.lr : 592, 627, 636.lx : 619, 626, 627, 628, 629, 635, 636, 637.m: 47, 65, 158, 211, 218, 292, 315, 389, 413,440, 482, 498, 577, 649, 668, 706, 716, 717,1079, 1105, 1194, 1338*.mac param : 207, 291, 294, 298, 347, 474, 477,479, 783, 784, 1045.macro : 307, 314, 319, 323, 324, 390.macro call : 291, 366, 380, 382, 387, 388, 389, 391.macro def : 473, 477.mag : 236, 240, 288, 457, 585, 587, 588, 590,617, 642*.\mag primitive: 238.mag code : 236, 237, 238, 288.mag set : 286, 287, 288.magic o�set : 764, 765, 766.main control : 1029, 1030, 1032, 1040, 1041, 1052,1054, 1055, 1056, 1057, 1126, 1134, 1208, 1290,1332*, 1337, 1344, 1347.main f : 1032, 1034, 1035, 1036, 1037, 1038,1039, 1040.main i : 1032, 1036, 1037, 1039, 1040.main j : 1032, 1039, 1040.main k : 1032, 1034, 1039, 1040, 1042.main lig loop : 1030, 1034, 1037, 1038, 1039, 1040.main loop : 1030.main loop lookahead : 1030, 1034, 1036, 1037,1038.main loop move : 1030, 1034, 1036, 1040.main loop move lig : 1030, 1034, 1036, 1037.main loop wrapup : 1030, 1034, 1039, 1040.main p : 1032, 1035, 1037, 1040, 1041, 1042,1043, 1044.main s : 1032, 1034.

508 PART 55: INDEX TEXGPC x1383major tail : 912, 914, 917, 918.make accent : 1122, 1123.make box : 208, 1071, 1072, 1073, 1079, 1084.make fraction : 733, 734, 743.make left right : 761, 762.make mark : 1097, 1101.make math accent : 733, 738.make name string : 525, 532*.make op : 733, 749.make ord : 733, 752.make over : 733, 734.make radical : 733, 734, 737.make scripts : 754, 756.make string : 43, 48, 52, 260, 517, 525, 939, 1257,1279, 1328, 1333*.make under : 733, 735.make vcenter : 733, 736.mark : 208, 265, 266, 1097.\mark primitive: 265.mark node : 141, 148, 175, 183, 202, 206, 647,651, 730, 761, 866, 899, 968, 973, 979, 1000,1014, 1101.mark ptr : 141, 142, 196, 202, 206, 979, 1016, 1101.mark text : 307, 314, 323, 386.mastication: 341.match : 207, 289, 291, 292, 294, 391, 392.match chr : 292, 294, 389, 391, 400.match token : 289, 391, 392, 393, 394, 476.matching : 305, 306, 339, 391.Math formula deleted... : 1195.math ac : 1164, 1165.math accent : 208, 265, 266, 1046, 1164.\mathaccent primitive: 265.\mathbin primitive: 1156.math char : 681, 692, 720, 722, 724, 738, 741, 749,752, 753, 754, 1151, 1155, 1165.\mathchar primitive: 265.\mathchardef primitive: 1222.math char def code : 1222, 1223, 1224.math char num : 208, 265, 266, 1046, 1151, 1154.math choice : 208, 265, 266, 1046, 1171.\mathchoice primitive: 265.math choice group : 269, 1172, 1173, 1174.\mathclose primitive: 1156.math code : 230, 232, 236, 414, 1151, 1154.\mathcode primitive: 1230.math code base : 230, 235, 414, 1230, 1231,1232, 1233.math comp : 208, 1046, 1156, 1157, 1158.math font base : 230, 232, 234, 1230, 1231.math fraction : 1180, 1181.

math given : 208, 413, 1046, 1151, 1154, 1222,1223, 1224.math glue : 716, 732, 766.math group : 269, 1136, 1150, 1153, 1186.\mathinner primitive: 1156.math kern : 717, 730.math left group : 269, 1065, 1068, 1069, 1150, 1191.math left right : 1190, 1191.math limit switch : 1158, 1159.math node : 147, 148, 175, 183, 202, 206, 622, 651,817, 837, 866, 879*, 881, 1147.\mathop primitive: 1156.\mathopen primitive: 1156.\mathord primitive: 1156.\mathpunct primitive: 1156.math quad : 700, 703, 1199.math radical : 1162, 1163.\mathrel primitive: 1156.math shift : 207, 289, 294, 298, 347, 1090, 1137,1138, 1193, 1197, 1206.math shift group : 269, 1065, 1068, 1069, 1130,1139, 1140, 1142, 1145, 1192, 1193, 1194, 1200.math shift token : 289, 1047, 1065.math spacing : 764, 765.math style : 208, 1046, 1169, 1170, 1171.math surround : 247, 1196.\mathsurround primitive: 248.math surround code : 247, 248.math text char : 681, 752, 753, 754, 755.math type : 681, 683, 687, 692, 698, 720, 722, 723,734, 735, 737, 738, 741, 742, 749, 751, 752, 753,754, 755, 756, 1076, 1093, 1151, 1155, 1165,1168, 1176, 1181, 1185, 1186, 1191.math x height : 700, 737, 757, 758, 759.mathex : 701.mathsy : 700.mathsy end : 700.max answer : 105.max buf stack : 30, 31*, 331, 374, 1334.max char code : 207, 303, 341, 344, 1233.max command : 209, 210, 211, 219, 358, 366, 368,380, 381, 478, 782.max d : 726, 727, 730, 760, 761, 762.max dead cycles : 236, 240, 1012.\maxdeadcycles primitive: 238.max dead cycles code : 236, 237, 238.max depth : 247, 980, 987.\maxdepth primitive: 248.max depth code : 247, 248.max dimen : 421, 460, 641, 668, 1010, 1017,1145, 1146, 1148.max group code : 269.

x1383 TEXGPC PART 55: INDEX 509max h : 592, 593, 641, 642*, 726, 727, 730, 760,761, 762.max halfword : 11*, 14, 110, 111, 113, 124, 125,126, 131, 132, 289, 290, 424, 820, 848, 850, 982,991, 996, 1017, 1106, 1249, 1323, 1325, 1335.max in open : 11*, 14, 304, 328.max in stack : 301, 321, 331, 1334.max internal : 209, 413, 440, 448, 455, 461.max nest stack : 213, 215, 216, 1334.max non pre�xed command : 208, 1211, 1270.max param stack : 308, 331, 390, 1334.max print line : 11*, 14, 54, 58, 61, 72, 176, 537*,638, 1280.max push : 592, 593, 619, 629, 642*.max quarterword : 11*, 110, 111, 113, 274, 797,798, 944, 1120, 1325.max save stack : 271, 272, 273, 1334.max selector : 54, 246, 311, 465, 470, 534, 638,1257, 1279, 1368, 1370.max strings : 11*, 38, 43, 111, 517, 525, 1310, 1334.max v : 592, 593, 641, 642*.\meaning primitive: 468.meaning code : 468, 469, 471, 472.med mu skip : 224.\medmuskip primitive: 226.med mu skip code : 224, 225, 226, 766.mem : 11*, 12, 115, 116, 118, 124, 126, 131, 133,134, 135, 140, 141, 150, 151, 157, 159, 162,163, 164, 165, 167, 172, 182, 186, 203, 205,206, 221, 224, 275, 291, 387, 420, 489, 605,652, 680, 681, 683, 686, 687, 720, 725, 742,753, 769, 770, 772, 797, 816*, 818, 819, 822,823, 832, 843, 844, 847, 848, 850, 860, 861,889, 925, 1149, 1151, 1160, 1163, 1165, 1181,1186, 1247, 1248, 1311, 1312, 1339*.mem bot : 11*, 12, 14, 111, 116, 125, 126, 162, 164,1307, 1308, 1311, 1312.mem end : 116, 118, 120, 164, 165, 167, 168, 171,172, 174, 176, 182, 293, 1311, 1312, 1334.mem max : 11*, 12, 14, 110, 111, 116, 120, 124,125, 165, 166.mem min : 11*, 12, 111, 116, 120, 125, 165, 166,167, 169, 170, 171, 172, 174, 178, 182, 1249,1312, 1334.mem top : 11*, 12, 14, 111, 116, 162, 164, 1249,1307, 1308, 1312.Memory usage... : 639.memory word : 110, 113, 114, 116, 182, 212, 218,221, 253, 268, 271, 275, 548, 549, 800, 1305.message : 208, 1276, 1277, 1278.\message primitive: 1277.METAFONT: 589.

mid : 546.mid line : 87, 303, 328, 344, 347, 352, 353, 354.min halfword : 11*, 110, 111, 113, 115, 230, 1027,1323, 1325.min internal : 208, 413, 440, 448, 455, 461.min quarterword : 12, 110, 111, 112*, 113, 134, 136,140, 185, 221, 274, 549, 550, 554, 556, 557, 566,576, 649, 668, 685, 697, 707, 713, 714, 796, 801,803, 808, 920, 923, 924, 943, 944, 945, 946, 958,963, 964, 965, 994, 1012, 1323, 1324, 1325.minimal demerits : 833, 834, 836, 845, 855.minimum demerits : 833, 834, 835, 836, 854, 855.minor tail : 912, 915, 916.minus : 462.Misplaced & : 1128.Misplaced \cr : 1128.Misplaced \noalign : 1129.Misplaced \omit : 1129.Misplaced \span : 1128.Missing = inserted : 503.Missing # inserted... : 783.Missing $ inserted : 1047, 1065.Missing \cr inserted : 1132.Missing \endcsname... : 373.Missing \endgroup inserted : 1065.Missing \right. inserted : 1065.Missing { inserted : 403, 475, 1127.Missing } inserted : 1065, 1127.Missing `to' inserted : 1082.Missing `to'... : 1225.Missing $$ inserted : 1207.Missing character : 581.Missing control... : 1215.Missing delimiter... : 1161.Missing font identifier : 577.Missing number... : 415, 446.mkern : 208, 1046, 1057, 1058, 1059.\mkern primitive: 1058.ml �eld : 212, 213, 218.mlist : 726, 760.mlist penalties : 719, 720, 726, 754, 1194, 1196,1199.mlist to hlist : 693, 719, 720, 725, 726, 734, 754,760, 1194, 1196, 1199.mm : 458.mmode : 211, 212, 213, 218, 501, 718, 775, 776,800, 812, 1030, 1045, 1046, 1048, 1056, 1057,1073, 1080, 1092, 1097, 1109, 1110, 1112,1116, 1120, 1130, 1136, 1140, 1145, 1150,1154, 1158, 1162, 1164, 1167, 1171, 1175,1180, 1190, 1193, 1194.

510 PART 55: INDEX TEXGPC x1383mode : 211, 212, 213, 215, 216, 299, 418, 422, 424,501, 718, 775, 776, 785, 786, 787, 796, 799,804, 807, 808, 809, 812, 1025, 1029, 1030, 1034,1035, 1049, 1051, 1056, 1076, 1078, 1080, 1083,1086, 1091, 1093, 1094, 1095, 1096, 1099, 1103,1105, 1110, 1117, 1119, 1120, 1136, 1138, 1145,1167, 1194, 1196, 1200, 1243, 1370, 1371, 1377.mode �eld : 212, 213, 218, 422, 800, 1244.mode line : 212, 213, 215, 216, 304, 804, 815, 1025.Monperrus, Martin: 1382*.month : 236, 241*, 536, 617, 1328.\month primitive: 238.month code : 236, 237, 238.months : 534, 536.more name : 512, 516*, 526, 531.\moveleft primitive: 1071.move past : 619, 622, 625, 629, 631, 634.\moveright primitive: 1071.movement : 607, 609, 616.movement node size : 605, 607, 615.mskip : 208, 1046, 1057, 1058, 1059.\mskip primitive: 1058.mskip code : 1058, 1060.mstate : 607, 611, 612.mtype: 4*.mu : 447, 448, 449, 453, 455, 461, 462.mu : 456.mu error : 408, 429, 449, 455, 461.mu glue : 149, 155, 191, 424, 717, 732, 1058,1060, 1061.mu mult : 716, 717.mu skip : 224, 427.\muskip primitive: 411.mu skip base : 224, 227, 229, 1224, 1237.\muskipdef primitive: 1222.mu skip def code : 1222, 1223, 1224.mu val : 410, 411, 413, 424, 427, 429, 430, 449,451, 455, 461, 465, 1060, 1228, 1236, 1237.mult and add : 105.mult integers : 105, 1240.multiply : 209, 265, 266, 1210, 1235, 1236, 1240.\multiply primitive: 265.Must increase the x : 1303.n: 47, 65, 66, 67, 69, 91, 94, 105, 106, 107, 152,154, 174, 182, 225, 237, 247, 252, 292, 315, 389,482, 498, 518, 519, 523, 578, 706, 716, 717, 791,800, 906, 934, 944, 977, 992, 993, 994, 1012,1079, 1119, 1138, 1211, 1275, 1338*.name : 300, 302, 303, 304, 307, 311, 313, 314, 323,328, 329, 331, 337, 360*, 390, 483, 537*.name �eld : 84*, 300, 302.name in progress : 378, 526, 527, 528, 1258.

name length : 26, 51, 519, 523, 525.name of �le : 26, 27*, 51, 519, 523, 525, 530,1379*, 1380*.natural : 644, 705, 715, 720, 727, 735, 737, 738,748, 754, 756, 759, 796, 799, 806, 977, 1021,1100, 1125, 1194, 1199, 1204.nd : 540, 541, 560, 565, 566, 569.ne : 540, 541, 560, 565, 566, 569.negate : 16, 65, 103, 105, 106, 107, 430, 431,440, 448, 461, 775.negative : 106, 413, 430, 440, 441, 448, 461.nest : 212, 213, 216, 217, 218, 219, 413, 422,775, 800, 995, 1244.nest ptr : 213, 215, 216, 217, 218, 422, 775, 800,995, 1017, 1023, 1091, 1100, 1145, 1200, 1244.nest size : 11*, 213, 216, 218, 413, 1244, 1334.new character : 582, 755, 915, 1117, 1123, 1124.new choice : 689, 1172.new delta from break width : 844.new delta to break width : 843.new disc : 145, 1035, 1117.new font : 1256, 1257.new glue : 153, 154, 715, 766, 786, 793, 795, 809,1041, 1043, 1054, 1060, 1171.new graf : 1090, 1091.new hlist : 725, 727, 743, 748, 749, 750, 754,756, 762, 767.new hyph exceptions : 934, 1252.new interaction : 1264, 1265.new kern : 156, 705, 715, 735, 738, 739, 747,751, 753, 755, 759, 910, 1040, 1061, 1112,1113, 1125, 1204.new lig item : 144, 911, 1040.new ligature : 144, 910, 1035.new line : 303, 331, 343, 344, 345, 347, 483, 537*.new line char : 59, 236, 244.\newlinechar primitive: 238.new line char code : 236, 237, 238.new math : 147, 1196.new noad : 686, 720, 742, 753, 1076, 1093, 1150,1155, 1158, 1168, 1177, 1191.new null box : 136, 706, 709, 713, 720, 747, 750,779, 793, 809, 1018, 1054, 1091, 1093.new param glue : 152, 154, 679, 778, 816*, 886, 887,1041, 1043, 1091, 1203, 1205, 1206.new patterns : 960, 1252.new penalty : 158, 767, 816*, 890, 1054, 1103,1203, 1205, 1206.new rule : 139, 463, 666, 704.new save level : 274, 645, 774, 785, 791, 1025,1063, 1099, 1117, 1119, 1136.new skip param : 154, 679, 969, 1001.

x1383 TEXGPC PART 55: INDEX 511new spec : 151, 154, 430, 462, 826, 976, 1004,1042, 1043, 1239, 1240.new string : 54, 57, 58, 465, 470, 617, 1257,1279, 1328, 1368.new style : 688, 1171.new trie op : 943, 944, 945, 965.new whatsit : 1349, 1350, 1354, 1376, 1377.new write whatsit : 1350, 1351, 1352, 1353.next : 256, 257, 259, 260.next break : 877*, 878.next char : 545, 741, 753, 909, 1039.next p : 619, 622, 626, 629, 630, 631, 633, 635.nh : 540, 541, 560, 565, 566, 569.ni : 540, 541, 560, 565, 566, 569.nil: 16.nk : 540, 541, 560, 565, 566, 573.nl : 59, 540, 541, 545, 560, 565, 566, 569, 573, 576.nn : 311, 312.No pages of output : 642*.no align : 208, 265, 266, 785, 1126.\noalign primitive: 265.no align error : 1126, 1129.no align group : 269, 768, 785, 1133.no boundary : 208, 265, 266, 1030, 1038, 1045,1090.\noboundary primitive: 265.no break yet : 829, 836, 837.no expand : 210, 265, 266, 366, 367.\noexpand primitive: 265.no expand ag : 358, 506.\noindent primitive: 1088.no limits : 682, 1156, 1157.\nolimits primitive: 1156.no new control sequence : 256, 257, 259, 264,365, 374, 1336.no print : 54, 57, 58, 75, 98.no shrink error yet : 825, 826, 827.no tag : 544, 569.noad size : 681, 686, 698, 753, 761, 1186, 1187.node list display : 180, 184, 188, 190, 195, 197.node r stays active : 830, 851, 854.node size : 124, 126, 127, 128, 130, 164, 169,1311, 1312.nom : 560, 561, 563, 576.non address : 549, 552, 576, 909, 916, 1034.non char : 549, 552, 576, 897, 898, 901, 908, 909,910, 911, 915, 916, 917, 1032, 1034, 1035,1038, 1039, 1040, 1323.non discardable : 148, 879*.non math : 1046, 1063, 1144.non prunable p : 816*, 862*, 876*, 877*, 879*.non script : 208, 265, 266, 1046, 1171.

\nonscript primitive: 265, 732.none seen : 611, 612.NONEXISTENT : 262.Nonletter : 962.nonnegative integer : 69, 101, 107.nonstop mode : 73, 86, 360*, 363, 484, 1262, 1263.\nonstopmode primitive: 1262.nop : 583, 585, 586, 588, 590.norm min : 1091, 1200, 1376, 1377.normal : 135, 136, 149, 150, 153, 155, 156, 164,177, 186, 189, 191, 305, 331, 336, 369, 439, 448,471, 473, 480, 482, 485, 489, 490, 507, 619, 625,629, 634, 650, 657, 658, 659, 660, 664, 665, 666,667, 672, 673, 674, 676, 677, 678, 682, 686, 696,716, 732, 749, 777, 801, 810, 811, 825, 826,896, 897, 899, 976, 988, 1004, 1009, 1156, 1163,1165, 1181, 1201, 1219, 1220, 1221, 1239.normal paragraph : 774, 785, 787, 1025, 1070,1083, 1094, 1096, 1099, 1167.normalize selector : 78, 92, 93, 94, 95, 863.Not a letter : 937.not found : 15, 45, 46, 448, 455, 560, 570, 607,611, 612, 895, 930, 931, 934, 941, 953, 955,970, 972, 973, 1138, 1146, 1365.notexpanded: : 258.np : 540, 541, 560, 565, 566, 575, 576.nucleus : 681, 682, 683, 686, 687, 690, 696, 698,720, 725, 734, 735, 736, 737, 738, 741, 742, 749,750, 752, 753, 754, 755, 1076, 1093, 1150, 1151,1155, 1158, 1163, 1165, 1168, 1186, 1191.null : 115, 116, 118, 120, 122, 123, 125, 126, 135,136, 144, 145, 149, 150, 151, 152, 153, 154, 164,168, 169, 175, 176, 182, 200, 201, 202, 204, 210,212, 218, 219, 222, 223, 232, 233, 275, 292, 295,306, 307, 312, 314, 325, 331, 357, 358, 371, 374,382, 383, 386, 390, 391, 392, 397, 400, 407, 410,420, 423, 452, 464, 466, 473, 478, 482, 489, 490,497, 505, 508, 549, 552, 576, 578, 582, 606, 611,615, 619, 623, 629, 632, 648, 649, 651, 655, 658,664, 666, 668, 673, 676, 681, 685, 689, 692, 715,718, 719, 720, 721, 726, 731, 732, 752, 754, 755,756, 760, 761, 766, 767, 771, 774, 776, 777, 783,784, 789, 790, 791, 792, 794, 796, 797, 799, 801,804, 805, 806, 807, 812, 821, 829, 837, 840, 846,847, 848, 850, 856, 857, 858, 859, 863, 864, 865,867, 869, 872, 877*, 878, 879*, 881, 882, 883,884, 885, 887, 888, 889, 894, 896, 898, 903,906, 907, 908, 910, 911, 913, 914, 915, 916,917, 918, 928, 932, 935, 968, 969, 970, 972,973, 977, 978, 979, 981, 991, 992, 993, 994,998, 999, 1000, 1009, 1010, 1011, 1012, 1014,1015, 1016, 1017, 1018, 1020, 1021, 1022, 1023,

512 PART 55: INDEX TEXGPC x13831026, 1027, 1028, 1030, 1032, 1035, 1036, 1037,1038, 1040, 1042, 1043, 1070, 1074, 1075, 1076,1079, 1080, 1081, 1083, 1087, 1091, 1105, 1110,1121, 1123, 1124, 1131, 1136, 1139, 1145, 1146,1149, 1167, 1174, 1176, 1181, 1184, 1185, 1186,1194, 1196, 1199, 1202, 1205, 1206, 1226, 1227,1247, 1248, 1283, 1288, 1296, 1311, 1312, 1335,1339*, 1353, 1354, 1368, 1369, 1375.null delimiter: 240, 1065.null character : 555, 556, 722, 723.null code : 22, 232.null cs : 222, 262, 263, 354, 374, 1257.null delimiter : 684, 685, 1181.null delimiter space : 247, 706.\nulldelimiterspace primitive: 248.null delimiter space code : 247, 248.null ag : 138, 139, 463, 653, 779, 793, 801.null font : 232, 552, 553, 560, 577, 617, 663, 706,707, 722, 864, 1257, 1320, 1321, 1339*.\nullfont primitive: 553.null list : 14, 162, 380, 780.num : 450, 458, 585, 587, 590.num style : 702, 744.Number too big : 445.\number primitive: 468.number code : 468, 469, 470, 471, 472.numerator : 683, 690, 697, 698, 744, 1181, 1185.num1 : 700, 744.num2 : 700, 744.num3 : 700, 744.nw : 540, 541, 560, 565, 566, 569.nx plus y : 105, 455, 716, 1240.o: 264, 607, 649, 668, 791, 800.octal token : 438, 444.odd : 62, 100, 193, 504, 758, 898, 902, 908, 909,913, 914, 1211, 1218.o� save : 1063, 1064, 1094, 1095, 1130, 1131,1140, 1192, 1193.OK : 1298.OK so far : 440, 445.OK to interrupt : 88, 96*, 97, 98, 327, 1031.old l : 829, 835, 850.old mode : 1370, 1371.old rover : 131.old setting : 245, 246, 311, 312, 465, 470, 534, 617,638, 1257, 1279, 1368, 1370.omit : 208, 265, 266, 788, 789, 1126.\omit primitive: 265.omit error : 1126, 1129.omit template : 162, 789, 790.Only one # is allowed... : 784.op byte : 545, 557, 741, 753, 909, 911, 1040.

op noad : 682, 690, 696, 698, 726, 728, 733, 749,761, 1156, 1157, 1159.op start : 920, 921, 924, 945, 1325.open area : 1341, 1351, 1356, 1374.open ext : 1341, 1351, 1356, 1374.open fmt �le : 524, 1337.\openin primitive: 1272.open log �le : 78, 92, 360*, 471, 532*, 534, 535,537*, 1257, 1335.open name : 1341, 1351, 1356, 1374.open noad : 682, 690, 696, 698, 728, 733, 761,762, 1156, 1157.open node : 1341, 1344, 1346, 1348, 1356, 1357,1358, 1373.open node size : 1341, 1351, 1357, 1358.open or close in : 1274, 1275.\openout primitive: 1344.open parens : 304, 331, 362, 537*, 1335.\or primitive: 491.or code : 489, 491, 492, 500, 509.ord : 20.ord noad : 681, 682, 686, 687, 690, 696, 698, 728,729, 733, 752, 753, 761, 764, 765, 1075, 1155,1156, 1157, 1186.order : 177.oriental characters: 134, 585.other A token : 445.other char : 207, 232, 289, 291, 294, 298, 347,445, 464, 526, 935, 961, 1030, 1038, 1090,1124, 1151, 1154, 1160.other token : 289, 405, 438, 441, 445, 464, 503,1065, 1221.othercases: 10*.others : 10*.otherwise : 10*.Ouch...clobbered : 1332*.out param : 207, 289, 291, 294, 357.out param token : 289, 479.out what : 1366, 1367, 1373, 1375.\outer primitive: 1208.outer call : 210, 275, 339, 351, 353, 354, 357, 366,387, 391, 396, 780, 1152, 1295, 1369.outer doing leaders : 619, 628, 629, 637.output : 4*.Output loop... : 1024.Output routine didn't use... : 1028.Output written on x : 642*.\output primitive: 230.output active : 421, 663, 675, 986, 989, 990, 994,1005, 1025, 1026.output �le name : 532*, 533, 642*.output group : 269, 1025, 1100.

x1383 TEXGPC PART 55: INDEX 513output penalty : 236.\outputpenalty primitive: 238.output penalty code : 236, 237, 238, 1013.output routine : 230, 1012, 1025.output routine loc : 230, 231, 232, 307, 323, 1226.output text : 307, 314, 323, 1025, 1026.\over primitive: 1178.over code : 1178, 1179, 1182.over noad : 687, 690, 696, 698, 733, 761, 1156.\overwithdelims primitive: 1178.overbar : 705, 734, 737.overow : 35, 42, 43, 94, 120, 125, 216, 260,273, 274, 321, 328, 374, 390, 517, 580, 940,944, 954, 964, 1333*.overow in arithmetic: 9*, 104.Overfull \hbox... : 666.Overfull \vbox... : 677.overfull boxes: 854.overfull rule : 247, 666, 800, 804.\overfullrule primitive: 248.overfull rule code : 247, 248.\overline primitive: 1156.p: 120, 123, 125, 130, 131, 136, 139, 144, 145, 147,151, 152, 153, 154, 156, 158, 167, 172, 174, 176,178, 182, 198, 200, 201, 202, 204, 218, 259, 262,263, 276, 277, 278, 279, 281, 284, 292, 295, 306,315, 323, 325, 336, 366, 389, 407, 413, 450, 464,465, 473, 482, 497, 498, 582, 607, 615, 619, 629,638, 649, 668, 679, 686, 688, 689, 691, 692, 704,705, 709, 711, 715, 716, 717, 720, 726, 735, 738,743, 749, 752, 756, 772, 774, 787, 791, 799, 800,826, 906, 934, 948, 949, 953, 957, 959, 960,966, 968, 970, 993, 994, 1012, 1064, 1068, 1075,1079, 1086, 1093, 1101, 1105, 1110, 1113, 1119,1123, 1138, 1151, 1155, 1160, 1174, 1176, 1184,1191, 1194, 1211, 1236, 1244, 1288, 1293, 1302,1303, 1348, 1349, 1355, 1368, 1370, 1373.pack begin line : 661, 662, 663, 675, 804, 815.pack bu�ered name : 523, 524, 1379*.pack cur name : 529, 530, 537*, 1275, 1374.pack �le name : 519, 529, 537*, 563.pack job name : 529, 532*, 534, 1328.pack lig : 1035.package : 1085, 1086.packed ASCII code : 38, 39, 947.page : 304.page contents : 421, 980, 986, 987, 991, 1000,1001, 1008.page depth : 982, 987, 991, 1002, 1003, 1004,1008, 1010.\pagedepth primitive: 983.\pagefilstretch primitive: 983.

\pagefillstretch primitive: 983.\pagefilllstretch primitive: 983.page goal : 980, 982, 986, 987, 1005, 1006, 1007,1008, 1009, 1010.\pagegoal primitive: 983.page head : 162, 215, 980, 986, 988, 991, 1014,1017, 1023, 1026, 1054.page ins head : 162, 981, 986, 1005, 1008, 1018,1019, 1020.page ins node size : 981, 1009, 1019.page loc : 638, 640.page max depth : 980, 982, 987, 991, 1003, 1017.page shrink : 982, 985, 1004, 1007, 1008, 1009.\pageshrink primitive: 983.page so far : 421, 982, 985, 987, 1004, 1007,1009, 1245.page stack : 304.\pagestretch primitive: 983.page tail : 215, 980, 986, 991, 998, 1000, 1017,1023, 1026, 1054.page total : 982, 985, 1002, 1003, 1004, 1007,1008, 1010.\pagetotal primitive: 983.panicking : 165, 166, 1031, 1339*.\par primitive: 334.par end : 207, 334, 335, 1046, 1094.par �ll skip : 224, 816*.\parfillskip primitive: 226.par �ll skip code : 224, 225, 226, 816*.par indent : 247, 1091, 1093.\parindent primitive: 248.par indent code : 247, 248.par loc : 333, 334, 351, 1313, 1314.\parshape primitive: 265.par shape loc : 230, 232, 233, 1070, 1248.par shape ptr : 230, 232, 233, 423, 814, 847, 848,850, 889, 1070, 1149, 1249.par skip : 224, 1091.\parskip primitive: 226.par skip code : 224, 225, 226, 1091.par token : 333, 334, 339, 392, 395, 399, 1095, 1314.Paragraph ended before... : 396.param : 542, 547, 558.param base : 550, 552, 558, 566, 574, 575, 576,578, 580, 700, 701, 1042, 1322, 1323.param end : 558.param ptr : 308, 323, 324, 331, 390.param size : 11*, 308, 390, 1334.param stack : 307, 308, 324, 359, 388, 389, 390.param start : 307, 323, 324, 359.parameter : 307, 314, 359.parameters for symbols: 700, 701.

514 PART 55: INDEX TEXGPC x1383Parameters...consecutively : 476.Pascal-H: 3, 4*, 9*, 10*, 27*, 28*, 33*.Pascal: 1, 10*, 693, 764.pass number : 821, 845, 864.pass text : 366, 494, 500, 509, 510.passive : 821, 845, 846, 864, 865.passive node size : 821, 845, 865.Patterns can be... : 1252.\patterns primitive: 1250.pause for instructions : 96*, 98.pausing : 236, 363.\pausing primitive: 238.pausing code : 236, 237, 238.pc : 458.pen : 726, 761, 767, 877*, 890.penalties: 1102.penalties : 726, 767.penalty : 157, 158, 194, 424, 816*, 866, 973, 996,1000, 1010, 1011, 1013.\penalty primitive: 265.penalty node : 157, 158, 183, 202, 206, 424, 730,761, 767, 816*, 817, 837, 856, 866, 879*, 899, 968,973, 996, 1000, 1010, 1011, 1013, 1107.pg �eld : 212, 213, 218, 219, 422, 1244.pi : 829, 831, 851, 856, 859, 970, 972, 973, 974,994, 1000, 1005, 1006.plain : 521*, 524, 1331.Plass, Michael Frederick: 2*, 813.Please type... : 360*, 530.Please use \mathaccent... : 1166.PLtoTF : 561.plus : 462.point token : 438, 440, 448, 452.pointer : 115, 116, 118, 120, 123, 124, 125, 130,131, 136, 139, 144, 145, 147, 151, 152, 153, 154,156, 158, 165, 167, 172, 198, 200, 201, 202, 204,212, 218, 252, 256, 259, 263, 275, 276, 277, 278,279, 281, 284, 295, 297, 305, 306, 308, 323, 325,333, 336, 366, 382, 388, 389, 407, 450, 461, 463,464, 465, 473, 482, 489, 497, 498, 549, 560, 582,592, 605, 607, 615, 619, 629, 638, 647, 649, 668,679, 686, 688, 689, 691, 692, 704, 705, 706, 709,711, 715, 716, 717, 719, 720, 722, 726, 734, 735,736, 737, 738, 743, 749, 752, 756, 762, 770, 772,774, 787, 791, 799, 800, 814, 821, 826, 828, 829,830, 833, 862*, 872, 877*, 892, 900, 901, 906, 907,912, 926, 934, 968, 970, 977, 980, 982, 993, 994,1012, 1032, 1043, 1064, 1068, 1074, 1075, 1079,1086, 1093, 1101, 1105, 1110, 1113, 1119, 1123,1138, 1151, 1155, 1160, 1174, 1176, 1184, 1191,1194, 1198, 1211, 1236, 1257, 1288, 1293, 1302,1303, 1345, 1348, 1349, 1355, 1368, 1370, 1373.

Poirot, Hercule: 1283.pool �le : 47, 50, 51, 52, 53.pool name : 11*, 51.pool pointer : 38, 39, 45, 46, 59, 60, 69, 70, 264,407, 464, 465, 470, 513, 519, 602, 638, 929,934, 1368, 1380*.pool ptr : 38, 39, 41, 42, 43, 44, 47, 52, 58, 70,198, 260, 464, 465, 470, 516*, 525, 617, 1309,1310, 1332*, 1334, 1339*, 1368.pool size : 11*, 38, 42, 52, 58, 198, 525, 1310,1334, 1339*, 1368.pop : 584, 585, 586, 590, 601, 608, 642*.pop alignment : 772, 800.pop input : 322, 324, 329.pop lig stack : 910, 911.pop nest : 217, 796, 799, 812, 816*, 1026, 1086,1096, 1100, 1119, 1145, 1168, 1184, 1206.positive : 107.post : 583, 585, 586, 590, 591, 642*.post break : 145, 175, 195, 202, 206, 840, 858,882, 884, 916, 1119.post disc break : 877*, 881, 884.post display penalty : 236, 1205, 1206.\postdisplaypenalty primitive: 238.post display penalty code : 236, 237, 238.post line break : 876*, 877*.post post : 585, 586, 590, 591, 642*.pre : 583, 585, 586, 617.pre break : 145, 175, 195, 202, 206, 858, 869, 882,885, 915, 1117, 1119.pre display penalty : 236, 1203, 1206.\predisplaypenalty primitive: 238.pre display penalty code : 236, 237, 238.pre display size : 247, 1138, 1145, 1148, 1203.\predisplaysize primitive: 248.pre display size code : 247, 248, 1145.preamble: 768, 774.preamble : 770, 771, 772, 777, 786, 801, 804.preamble of DVI �le: 617.precedes break : 148, 868, 973, 1000.pre�x : 209, 1208, 1209, 1210, 1211.pre�xed command : 1210, 1211, 1270.prepare mag : 288, 457, 617, 642*, 1333*.pretolerance : 236, 828, 863.\pretolerance primitive: 238.pretolerance code : 236, 237, 238.prev break : 821, 845, 846, 877*, 878.prev depth : 212, 213, 215, 418, 679, 775, 786, 787,1025, 1056, 1083, 1099, 1167, 1206, 1242, 1243.\prevdepth primitive: 416.prev dp : 970, 972, 973, 974, 976.

x1383 TEXGPC PART 55: INDEX 515prev graf : 212, 213, 215, 216, 422, 814, 816*, 864,877*, 890, 1091, 1149, 1200, 1242.\prevgraf primitive: 265.prev p : 862*, 863, 866, 867, 868, 869, 968, 969,970, 973, 1012, 1014, 1017, 1022.prev prev r : 830, 832, 843, 844, 860.prev r : 829, 830, 832, 843, 844, 845, 851, 854, 860.prev s : 862*, 894, 896.primitive : 226, 230, 238, 248, 264, 265, 266, 298,334, 376, 384, 411, 416, 468, 487, 491, 553,780, 983, 1052, 1058, 1071, 1088, 1107, 1114,1141, 1156, 1169, 1178, 1188, 1208, 1219,1222, 1230, 1250, 1254, 1262, 1272, 1277, 1286,1291, 1331, 1332*, 1344.print : 54, 59, 60, 62, 63, 68, 70, 71, 73, 85, 86, 89,91, 94, 95, 175, 177, 178, 182, 183, 184, 185,186, 187, 188, 190, 191, 192, 193, 195, 211, 218,219, 225, 233, 234, 237, 247, 251, 262, 263, 284,288, 294, 298, 299, 306, 317, 318, 323, 336, 338,339, 363, 373, 395, 396, 398, 400, 428, 454,456, 459, 465, 472, 502, 509, 530, 534, 536,561, 567, 579, 581, 617, 638, 639, 642*, 660,663, 666, 674, 675, 677, 692, 694, 697, 723,776, 846, 856, 936, 978, 985, 986, 987, 1006,1011, 1015, 1024, 1049, 1064, 1095, 1132, 1166,1213, 1232, 1237, 1257, 1259, 1261, 1295, 1296,1298, 1309, 1311, 1318, 1320, 1322, 1324, 1328,1334, 1335, 1338*, 1339*, 1346, 1356.print ASCII : 68, 174, 176, 298, 581, 691, 723.print char : 58, 59, 60, 64, 65, 66, 67, 69, 70, 82,91, 94, 95, 103, 114, 171, 172, 174, 175, 176,177, 178, 184, 186, 187, 188, 189, 190, 191, 193,218, 219, 223, 229, 233, 234, 235, 242, 251, 252,255, 262, 284, 285, 294, 296, 299, 306, 313, 317,362, 472, 509, 536, 537*, 561, 581, 617, 638, 639,642*, 691, 723, 846, 856, 933, 1006, 1011, 1065,1069, 1212, 1213, 1280, 1294, 1296, 1311, 1320,1322, 1324, 1328, 1333*, 1335, 1340, 1355, 1356.print cmd chr : 223, 233, 266, 296, 298, 299, 323,336, 418, 428, 503, 510, 1049, 1066, 1128, 1212,1213, 1237, 1335, 1339*.print cs : 262, 293, 314, 401.print current string : 70, 182, 692.print delimiter : 691, 696, 697.print err : 72, 73, 93, 94, 95, 98, 288, 336, 338,346, 370, 373, 395, 396, 398, 403, 408, 415, 418,428, 433, 434, 435, 436, 437, 442, 445, 446, 454,456, 459, 460, 475, 476, 479, 486, 500, 503,510, 530, 561, 577, 579, 641, 723, 776, 783,784, 792, 826, 936, 937, 960, 961, 962, 963,976, 978, 993, 1004, 1009, 1015, 1024, 1027,1028, 1047, 1049, 1064, 1066, 1068, 1069, 1078,

1082, 1084, 1095, 1099, 1110, 1120, 1121, 1127,1128, 1129, 1132, 1135, 1159, 1161, 1166, 1177,1183, 1192, 1195, 1197, 1207, 1212, 1213, 1215,1225, 1232, 1236, 1237, 1241, 1243, 1244, 1252,1258, 1259, 1283, 1298, 1304, 1372.print esc : 63, 86, 176, 184, 187, 188, 189, 190,191, 192, 194, 195, 196, 197, 225, 227, 229, 231,233, 234, 235, 237, 239, 242, 247, 249, 251, 262,263, 266, 267, 292, 293, 294, 323, 335, 373, 377,385, 412, 417, 428, 469, 486, 488, 492, 500, 579,691, 694, 695, 696, 697, 699, 776, 781, 792, 856,936, 960, 961, 978, 984, 986, 1009, 1015, 1028,1053, 1059, 1065, 1069, 1072, 1089, 1095, 1099,1108, 1115, 1120, 1129, 1132, 1135, 1143, 1157,1166, 1179, 1189, 1192, 1209, 1213, 1220, 1223,1231, 1241, 1244, 1251, 1255, 1263, 1273, 1278,1287, 1292, 1295, 1322, 1335, 1346, 1355, 1356.print fam and char : 691, 692, 696.print �le name : 518, 530, 561, 1322, 1356.print font and char : 176, 183, 193.print glue : 177, 178, 185, 186.print hex : 67, 691, 1223.print int : 65, 91, 94, 103, 114, 168, 169, 170, 171,172, 185, 188, 194, 195, 218, 219, 227, 229, 231,233, 234, 235, 239, 242, 249, 251, 255, 285, 288,313, 336, 400, 465, 472, 509, 536, 561, 579, 617,638, 639, 642*, 660, 663, 667, 674, 675, 678,691, 723, 846, 856, 933, 986, 1006, 1009, 1011,1024, 1028, 1099, 1232, 1296, 1309, 1311, 1318,1320, 1324, 1328, 1335, 1339*, 1355, 1356.print length param : 247, 249, 251.print ln : 57, 58, 59, 61, 62, 71, 86, 89, 90, 114,182, 198, 218, 236, 245, 296, 306, 314, 317, 330,360*, 363, 401, 484, 534, 537*, 638, 639, 660, 663,666, 667, 674, 675, 677, 678, 692, 986, 1265,1280, 1309, 1311, 1318, 1320, 1324, 1340, 1370.print locs : 167.print mark : 176, 196, 1356.print meaning : 296, 472, 1294.print mode : 211, 218, 299, 1049.print nl : 62, 73, 82, 85, 90, 168, 169, 170, 171,172, 218, 219, 245, 255, 285, 288, 299, 306,311, 313, 314, 323, 360*, 400, 530, 534, 581,638, 639, 641, 642*, 660, 666, 667, 674, 677,678, 846, 856, 857, 863, 933, 986, 987, 992,1006, 1011, 1121, 1294, 1296, 1297, 1322, 1324,1328, 1333*, 1335, 1338*, 1370.print param : 237, 239, 242.print plus : 985.print plus end : 985.print roman int : 69, 472.print rule dimen : 176, 187.

516 PART 55: INDEX TEXGPC x1383print scaled : 103, 114, 176, 177, 178, 184, 188,191, 192, 219, 251, 465, 472, 561, 666, 677, 697,985, 986, 987, 1006, 1011, 1259, 1261, 1322.print size : 699, 723, 1231.print skip param : 189, 225, 227, 229.print spec : 178, 188, 189, 190, 229, 465.print style : 690, 694, 1170.print subsidiary data : 692, 696, 697.print the digs : 64, 65, 67.print totals : 218, 985, 986, 1006.print two : 66, 536, 617.print word : 114, 1339*.print write whatsit : 1355, 1356.printed node : 821, 856, 857, 858, 864.privileged : 1051, 1054, 1130, 1140.prompt �le name : 530, 532*, 535, 537*, 1328, 1374.prompt input : 71, 83, 87, 360*, 363, 484, 530.prune movements : 615, 619, 629.prune page top : 968, 977, 1021.pseudo : 54, 57, 58, 59, 316.pstack : 388, 390, 396, 400.pt : 453.punct noad : 682, 690, 696, 698, 728, 752, 761,1156, 1157.push : 584, 585, 586, 590, 592, 601, 608, 616,619, 629.push alignment : 772, 774.push input : 321, 323, 325, 328.push math : 1136, 1139, 1145, 1153, 1172, 1174,1191.push nest : 216, 774, 786, 787, 1025, 1083, 1091,1099, 1117, 1119, 1136, 1167, 1200.put : 26, 29, 1305.put rule : 585, 586, 633.put1 : 585.put2 : 585.put3 : 585.put4 : 585.q: 123, 125, 130, 131, 144, 151, 152, 153, 167, 172,202, 204, 218, 275, 292, 315, 336, 366, 389, 407,450, 461, 463, 464, 465, 473, 482, 497, 498, 607,649, 705, 706, 709, 712, 720, 726, 734, 735, 736,737, 738, 743, 749, 752, 756, 762, 791, 800,826, 830, 862*, 877*, 901, 906, 934, 948, 953,957, 959, 960, 968, 970, 994, 1012, 1043, 1068,1079, 1093, 1105, 1119, 1123, 1138, 1184, 1198,1211, 1236, 1302, 1303, 1348, 1370.qi : 112*, 545, 549, 564, 570, 573, 576, 582, 620,753, 907, 908, 911, 913, 923, 958, 959, 981,1008, 1009, 1034, 1035, 1038, 1039, 1040, 1100,1151, 1155, 1160, 1165, 1309, 1325.

qo : 112*, 159, 174, 176, 185, 188, 554, 570, 576,602, 620, 691, 708, 722, 723, 741, 752, 755, 896,897, 898, 903, 909, 923, 945, 981, 986, 1008,1018, 1021, 1039, 1310, 1324, 1325.qqqq : 110, 113, 114, 550, 554, 569, 573, 574, 683,713, 741, 752, 909, 1039, 1181, 1305, 1306.quad : 547, 558, 1146.quad code : 547, 558.quarterword : 110, 113, 144, 253, 264, 271, 276,277, 279, 281, 298, 300, 323, 592, 681, 706,709, 711, 712, 724, 738, 749, 877*, 921, 943,944, 947, 960, 1061, 1079, 1105.qw : 560, 564, 570, 573, 576.r: 108, 123, 125, 131, 204, 218, 366, 389, 465, 482,498, 649, 668, 706, 720, 726, 752, 791, 800,829, 862*, 877*, 901, 953, 966, 970, 994, 1012,1123, 1160, 1198, 1236, 1348, 1370.r count : 912, 914, 918.r hyf : 891, 892, 894, 899, 902, 923, 1362.r type : 726, 727, 728, 729, 760, 766, 767.radical : 208, 265, 266, 1046, 1162.\radical primitive: 265.radical noad : 683, 690, 696, 698, 733, 761, 1163.radical noad size : 683, 698, 761, 1163.radix : 366, 438, 439, 440, 444, 445, 448.radix backup : 366.\raise primitive: 1071.Ramshaw, Lyle Harold: 539.rbrace ptr : 389, 399, 400.read : 52, 53, 1338*, 1339*.\read primitive: 265.read �le : 480, 485, 486, 1275.read font info : 560, 564, 1040, 1257.read ln : 31*, 52.read open : 480, 481, 483, 485, 486, 501, 1275.read sixteen : 564, 565, 568.read to cs : 209, 265, 266, 1210, 1225.read toks : 303, 482, 1225.ready already : 1331, 1332*.real : 3, 109*, 110, 182, 186, 619, 629, 1123, 1125.real addition: 1125.real division: 658, 664, 673, 676, 810, 811,1123, 1125.real multiplication: 114, 186, 625, 634, 809, 1125.rebox : 715, 744, 750.reconstitute : 905, 906, 913, 915, 916, 917, 1032.recursion: 76, 78, 173, 180, 198, 202, 203, 366,402, 407, 498, 527, 592, 618, 692, 719, 720,725, 754, 949, 957, 959, 1333*, 1375.ref count : 389, 390, 401.reference counts: 150, 200, 201, 203, 275, 291, 307.

x1383 TEXGPC PART 55: INDEX 517register : 209, 411, 412, 413, 1210, 1235, 1236,1237.rel noad : 682, 690, 696, 698, 728, 761, 767,1156, 1157.rel penalty : 236, 682, 761.\relpenalty primitive: 238.rel penalty code : 236, 237, 238.relax : 207, 265, 266, 358, 372, 404, 506, 1045, 1224.\relax primitive: 265.rem byte : 545, 554, 557, 570, 708, 713, 740,749, 753, 911, 1040.remainder : 104, 106, 107, 457, 458, 543, 544,545, 716, 717.remove item : 208, 1104, 1107, 1108.rep : 546.replace count : 145, 175, 195, 840, 858, 869, 882,883, 918, 1081, 1105, 1120.report illegal case : 1045, 1050, 1051, 1243, 1377.reset : 26, 27*, 31*.reset OK : 27*.restart : 15, 125, 126, 341, 346, 357, 359, 360*, 362,380, 752, 753, 782, 785, 789, 1151, 1215.restore old value : 268, 276, 282.restore trace : 283, 284.restore zero : 268, 276, 278.result : 45, 46.resume after display : 800, 1199, 1200, 1206.reswitch : 15, 341, 343, 352, 463, 619, 620, 649,651, 652, 726, 728, 934, 935, 1029, 1030, 1036,1045, 1138, 1147, 1151.return: 15, 16.rewrite : 26, 27*.rewrite OK : 27*.rh : 110, 113, 114, 118, 213, 219, 221, 234, 256,268, 685, 921, 958.\right primitive: 1188.right brace : 207, 289, 294, 298, 347, 357, 389, 442,474, 477, 785, 935, 961, 1067, 1252.right brace limit : 289, 325, 392, 399, 400, 474, 477.right brace token : 289, 339, 1065, 1127, 1226,1371.right delimiter : 683, 697, 748, 1181, 1182.right hyphen min : 236, 1091, 1200, 1376, 1377.\righthyphenmin primitive: 238.right hyphen min code : 236, 237, 238.right noad : 687, 690, 696, 698, 725, 728, 760,761, 762, 1184, 1188, 1191.right ptr : 605, 606, 607, 615.right skip : 224, 827, 880, 881.\rightskip primitive: 226.right skip code : 224, 225, 226, 881, 886.right1 : 585, 586, 607, 610, 616.

right2 : 585, 610.right3 : 585, 610.right4 : 585, 610.Rivera, Luis: 1382*.rlink : 124, 125, 126, 127, 129, 130, 131, 132, 145,149, 164, 169, 772, 819, 821, 1311, 1312.\romannumeral primitive: 468.roman numeral code : 468, 469, 471, 472.round : 3, 114, 186, 625, 634, 809, 1125.round decimals : 102, 103, 452.rover : 124, 125, 126, 127, 128, 129, 130, 131,132, 164, 169, 1311, 1312.rt hit : 906, 907, 910, 911, 1033, 1035, 1040.rule dp : 592, 622, 624, 626, 631, 633, 635.rule ht : 592, 622, 624, 626, 631, 633, 634, 635, 636.rule node : 138, 139, 148, 175, 183, 202, 206, 622,626, 631, 635, 651, 653, 669, 670, 730, 761,805, 841, 842, 866, 870, 871, 968, 973, 1000,1074, 1087, 1121, 1147.rule node size : 138, 139, 202, 206.rule save : 800, 804.rule wd : 592, 622, 624, 625, 626, 627, 631,633, 635.rules aligning with characters: 589.runaway : 120, 306, 338, 396, 486.Runaway... : 306.s: 45, 46, 58, 59, 60, 62, 63, 93, 94, 95, 103, 108,125, 130, 147, 177, 178, 264, 284, 389, 407, 473,482, 529, 530, 560, 638, 645, 649, 668, 688, 699,706, 720, 726, 738, 791, 800, 830, 862*, 877*, 901,934, 966, 987, 1012, 1060, 1061, 1123, 1138,1198, 1236, 1257, 1279, 1349, 1355.save cond ptr : 498, 500, 509.save cs ptr : 774, 777.save cur val : 450, 455.save for after : 280, 1271.save h : 619, 623, 627, 628, 629, 632, 637.save index : 268, 274, 276, 280, 282.save level : 268, 269, 274, 276, 280, 282.save link : 830, 857.save loc : 619, 629.save ptr : 268, 271, 272, 273, 274, 276, 280, 282,283, 285, 645, 804, 1086, 1099, 1100, 1117, 1120,1142, 1153, 1168, 1172, 1174, 1186, 1194, 1304.save scanner status : 366, 369, 389, 470, 471,494, 498, 507.save size : 11*, 111, 271, 273, 1334.save split top skip : 1012, 1014.save stack : 203, 268, 270, 271, 273, 274, 275, 276,277, 281, 282, 283, 285, 300, 372, 489, 645, 768,1062, 1071, 1131, 1140, 1150, 1153, 1339*.save style : 720, 726, 754.

518 PART 55: INDEX TEXGPC x1383save type : 268, 274, 276, 280, 282.save v : 619, 623, 628, 629, 632, 636, 637.save vbadness : 1012, 1017.save vfuzz : 1012, 1017.save warning index : 389.saved : 274, 645, 804, 1083, 1086, 1099, 1100, 1117,1119, 1142, 1153, 1168, 1172, 1174, 1186, 1194.sc : 110, 113, 114, 135, 150, 159, 164, 213, 219,247, 250, 251, 413, 420, 425, 550, 552, 554, 557,558, 571, 573, 575, 580, 700, 701, 775, 822, 823,832, 843, 844, 848, 850, 860, 861, 889, 1042,1149, 1206, 1247, 1248, 1253.scaled : 101, 102, 103, 104, 105, 106, 107, 108, 110,113, 147, 150, 156, 176, 177, 447, 448, 450, 453,548, 549, 560, 584, 592, 607, 616, 619, 629,646, 649, 668, 679, 704, 705, 706, 712, 715,716, 717, 719, 726, 735, 736, 737, 738, 743,749, 756, 762, 791, 800, 823, 830, 839, 847,877*, 906, 970, 971, 977, 980, 982, 994, 1012,1068, 1086, 1123, 1138, 1198, 1257.scaled : 1258.scaled base : 247, 249, 251, 1224, 1237.scan box : 1073, 1084, 1241.scan char num : 414, 434, 935, 1030, 1038, 1123,1124, 1151, 1154, 1224, 1232.scan delimiter : 1160, 1163, 1182, 1183, 1191, 1192.scan dimen : 410, 440, 447, 448, 461, 462, 1061.scan eight bit int : 415, 420, 427, 433, 505, 1079,1082, 1099, 1110, 1224, 1226, 1227, 1237,1241, 1247, 1296.scan �fteen bit int : 436, 1151, 1154, 1165, 1224.scan �le name : 265, 334, 526, 527, 537*, 1257,1275, 1351.scan font ident : 415, 426, 471, 577, 578, 1234,1253.scan four bit int : 435, 501, 577, 1234, 1275, 1350.scan glue : 410, 461, 782, 1060, 1228, 1238.scan int : 409, 410, 432, 433, 434, 435, 436, 437,438, 440, 447, 448, 461, 471, 503, 504, 509, 578,1103, 1225, 1228, 1232, 1238, 1240, 1243, 1244,1246, 1248, 1253, 1258, 1350, 1377.scan keyword : 162, 407, 453, 454, 455, 456, 458,462, 463, 645, 1082, 1225, 1236, 1258.scan left brace : 403, 473, 645, 785, 934, 960, 1025,1099, 1117, 1119, 1153, 1172, 1174.scan math : 1150, 1151, 1158, 1163, 1165, 1176.scan normal dimen : 448, 463, 503, 645, 1073,1082, 1182, 1183, 1228, 1238, 1243, 1245,1247, 1248, 1253, 1259.scan optional equals : 405, 782, 1224, 1226, 1228,1232, 1234, 1236, 1241, 1243, 1244, 1245, 1246,1247, 1248, 1253, 1257, 1275, 1351.

scan rule spec : 463, 1056, 1084.scan something internal : 409, 410, 413, 432, 440,449, 451, 455, 461, 465.scan spec : 645, 768, 774, 1071, 1083, 1167.scan toks : 291, 464, 473, 960, 1101, 1218, 1226,1279, 1288, 1352, 1354, 1371.scan twenty seven bit int : 437, 1151, 1154, 1160.scanned result : 413, 414, 415, 418, 422, 425,426, 428.scanned result end : 413.scanner status : 305, 306, 331, 336, 339, 366,369, 389, 391, 470, 471, 473, 482, 494, 498,507, 777, 789.\scriptfont primitive: 1230.script mlist : 689, 695, 698, 731, 1174.\scriptscriptfont primitive: 1230.script script mlist : 689, 695, 698, 731, 1174.script script size : 699, 756, 1195, 1230.script script style : 688, 694, 731, 1169.\scriptscriptstyle primitive: 1169.script size : 699, 756, 1195, 1230.script space : 247, 757, 758, 759.\scriptspace primitive: 248.script space code : 247, 248.script style : 688, 694, 702, 703, 731, 756, 762,766, 1169.\scriptstyle primitive: 1169.scripts allowed : 687, 1176.scroll mode : 71, 73, 84*, 86, 93, 530, 1262,1263, 1281.\scrollmode primitive: 1262.search mem : 165, 172, 255, 1339*.second indent : 847, 848, 849, 889.second pass : 828, 863, 866.second width : 847, 848, 849, 850, 889.Sedgewick, Robert: 2*.see the transcript file... : 1335.selector : 54, 55, 57, 58, 59, 62, 71, 75, 86, 90,92, 98, 245, 311, 312, 316, 360*, 465, 470, 534,535, 617, 638, 1257, 1265, 1279, 1298, 1328,1333*, 1335, 1368, 1370.semi simple group : 269, 1063, 1065, 1068, 1069.serial : 821, 845, 846, 856.set aux : 209, 413, 416, 417, 418, 1210, 1242.set box : 209, 265, 266, 1210, 1241.\setbox primitive: 265.set box allowed : 76, 77, 1241, 1270.set box dimen : 209, 413, 416, 417, 1210, 1242.set break width to background : 837.set char 0 : 585, 586, 620.set conversion : 458.set conversion end : 458.

x1383 TEXGPC PART 55: INDEX 519set cur lang : 934, 960, 1091, 1200.set cur r : 908, 910, 911.set font : 209, 413, 553, 577, 1210, 1217, 1257,1261.set glue ratio one : 109*, 664, 676, 810, 811.set glue ratio zero : 109*, 136, 657, 658, 664, 672,673, 676, 810, 811.set height zero : 970.set interaction : 209, 1210, 1262, 1263, 1264.set interrupt : 4*, 1381*, 1382*.\setlanguage primitive: 1344.set language code : 1344, 1346, 1348.set math char : 1154, 1155.set page dimen : 209, 413, 982, 983, 984, 1210,1242.set page int : 209, 413, 416, 417, 1210, 1242.set page so far zero : 987.set prev graf : 209, 265, 266, 413, 1210, 1242.set rule : 583, 585, 586, 624.set shape : 209, 265, 266, 413, 1210, 1248.set trick count : 316, 317, 318, 320.set1 : 585, 586, 620.set2 : 585.set3 : 585.set4 : 585.sf code : 230, 232, 1034.\sfcode primitive: 1230.sf code base : 230, 235, 1230, 1231, 1233.shape ref : 210, 232, 275, 1070, 1248.shift amount : 135, 136, 159, 184, 623, 628, 632,637, 649, 653, 668, 670, 681, 706, 720, 737, 738,749, 750, 756, 757, 759, 799, 806, 807, 808, 889,1076, 1081, 1125, 1146, 1203, 1204, 1205.shift case : 1285, 1288.shift down : 743, 744, 745, 746, 747, 749, 751,756, 757, 759.shift up : 743, 744, 745, 746, 747, 749, 751,756, 758, 759.ship out : 211, 592, 638, 644, 1023, 1075.\shipout primitive: 1071.ship out ag : 1071, 1075.short display : 173, 174, 175, 193, 663, 857, 1339*.short real : 109*, 110.shortcut : 447, 448.shortfall : 830, 851, 852, 853.shorthand def : 209, 1210, 1222, 1223, 1224.\show primitive: 1291.show activities : 218, 1293.show box : 180, 182, 198, 218, 219, 236, 638, 641,663, 675, 986, 992, 1121, 1296, 1339*.\showbox primitive: 1291.show box breadth : 236, 1339*.

\showboxbreadth primitive: 238.show box breadth code : 236, 237, 238.show box code : 1291, 1292, 1293.show box depth : 236, 1339*.\showboxdepth primitive: 238.show box depth code : 236, 237, 238.show code : 1291, 1293.show context : 54, 78, 82, 88, 310, 311, 318,530, 535, 537*.show cur cmd chr : 299, 367, 1031.show eqtb : 252, 284.show info : 692, 693.show lists : 1291, 1292, 1293.\showlists primitive: 1291.show node list : 173, 176, 180, 181, 182, 195, 198,233, 690, 692, 693, 695, 1339*.\showthe primitive: 1291.show the code : 1291, 1292.show token list : 176, 223, 233, 292, 295, 306, 319,320, 400, 1339*, 1368.show whatever : 1290, 1293.shown mode : 213, 215, 299.shrink : 150, 151, 164, 178, 431, 462, 625, 634, 656,671, 716, 809, 825, 827, 838, 868, 976, 1004,1009, 1042, 1044, 1148, 1229, 1239, 1240.shrink order : 150, 164, 178, 462, 625, 634, 656,671, 716, 809, 825, 826, 976, 1004, 1009,1148, 1239.shrinking : 135, 186, 619, 629, 664, 676, 809,810, 811, 1148.si : 38, 42, 69, 951, 964, 1310.signal : 4*, 1381*.simple group : 269, 1063, 1068.Single-character primitives: 267.\- : 1114.\/ : 265.\ : 265.single base : 222, 262, 263, 264, 354, 374, 442,1257, 1289.skew char : 426, 549, 552, 576, 741, 1253, 1322,1323.\skewchar primitive: 1254.skip : 224, 427, 1009.\skip primitive: 411.skip base : 224, 227, 229, 1224, 1237.skip blanks : 303, 344, 345, 347, 349, 354.skip byte : 545, 557, 741, 752, 753, 909, 1039.skip code : 1058, 1059, 1060.\skipdef primitive: 1222.skip def code : 1222, 1223, 1224.skip line : 336, 493, 494.skipping : 305, 306, 336, 494.

520 PART 55: INDEX TEXGPC x1383slant : 547, 558, 575, 1123, 1125.slant code : 547, 558.slow print : 60, 61, 63, 518, 536, 537*, 581, 642*,1261, 1280, 1283, 1328, 1333*, 1339*.small char : 683, 691, 697, 706, 1160.small fam : 683, 691, 697, 706, 1160.small node size : 141, 144, 145, 147, 152, 153, 156,158, 202, 206, 655, 721, 903, 910, 914, 1037,1100, 1101, 1357, 1358, 1376, 1377.small number : 101, 102, 147, 152, 154, 264, 366,389, 413, 438, 440, 450, 461, 470, 482, 489, 494,497, 498, 523, 607, 649, 668, 688, 706, 719,720, 726, 756, 762, 829, 892, 893, 905, 906,921, 934, 944, 960, 970, 987, 1060, 1086, 1091,1176, 1181, 1191, 1198, 1211, 1236, 1247, 1257,1325, 1335, 1349, 1350, 1370, 1373.so : 38, 45, 59, 60, 69, 70, 264, 407, 464, 519,603, 617, 766, 931, 953, 955, 956, 959, 963,1309, 1368.Sorry, I can't find... : 524.sort avail : 131, 1311.sp: 104, 587.sp : 458.space : 547, 558, 752, 755, 1042.space code : 547, 558, 578, 1042.space factor : 212, 213, 418, 786, 787, 799, 1030,1034, 1043, 1044, 1056, 1076, 1083, 1091, 1093,1117, 1119, 1123, 1196, 1200, 1242, 1243.\spacefactor primitive: 416.space shrink : 547, 558, 1042.space shrink code : 547, 558, 578.space skip : 224, 1041, 1043.\spaceskip primitive: 226.space skip code : 224, 225, 226, 1041.space stretch : 547, 558, 1042.space stretch code : 547, 558.space token : 289, 393, 464, 1215.spacer : 207, 208, 232, 289, 291, 294, 298, 303, 337,345, 347, 348, 349, 354, 404, 406, 407, 443, 444,452, 464, 783, 935, 961, 1030, 1045, 1221.\span primitive: 780.span code : 780, 781, 782, 789, 791.span count : 136, 159, 185, 796, 801, 808.span node size : 797, 798, 803.spec code : 645.\special primitive: 1344.special node : 1341, 1344, 1346, 1348, 1354, 1356,1357, 1358, 1373.special out : 1368, 1373.split : 1011.split bot mark : 382, 383, 977, 979.\splitbotmark primitive: 384.

split bot mark code : 382, 384, 385, 1335.split �rst mark : 382, 383, 977, 979.\splitfirstmark primitive: 384.split �rst mark code : 382, 384, 385.split max depth : 140, 247, 977, 1068, 1100.\splitmaxdepth primitive: 248.split max depth code : 247, 248.split top ptr : 140, 188, 202, 206, 1021, 1022, 1100.split top skip : 140, 224, 968, 977, 1012, 1014,1021, 1100.\splittopskip primitive: 226.split top skip code : 224, 225, 226, 969.split up : 981, 986, 1008, 1010, 1020, 1021.spotless : 76, 77, 245, 1332*, 1335.spread : 645.sprint cs : 223, 263, 338, 395, 396, 398, 472,479, 484, 561, 1294.square roots: 737.ss code : 1058, 1059, 1060.ss glue : 162, 164, 715, 1060.stack conventions: 300.stack into box : 711, 713.stack size : 11*, 301, 310, 321, 1334.start : 300, 302, 303, 307, 318, 319, 323, 324, 325,328, 329, 331, 360*, 362, 363, 369, 483, 538.start cs : 341, 354, 355.start editor : 1332*, 1380*.start eq no : 1140, 1142.start �eld : 300, 302.start font error message : 561, 567.start here : 5, 1332*.start input : 366, 376, 378, 537*, 1337.start of TEX : 6, 1332*.start par : 208, 1088, 1089, 1090, 1092.stat: 7*, 117, 120, 121, 122, 123, 125, 130, 252,260, 283, 284, 639, 829, 845, 855, 863, 987,1005, 1010, 1333*.state : 87, 300, 302, 303, 307, 311, 312, 323, 325,328, 330, 331, 337, 341, 343, 344, 346, 347, 349,352, 353, 354, 390, 483, 537*, 1335.state �eld : 300, 302, 1131.stomach: 402.stop : 207, 1045, 1046, 1052, 1053, 1054, 1094.stop ag : 545, 557, 741, 752, 753, 909, 1039.store background : 864.store break width : 843.store fmt �le : 1302, 1335.store four quarters : 564, 568, 569, 573, 574.store new token : 371, 372, 393, 397, 399, 407, 464,466, 473, 474, 476, 477, 482, 483.store scaled : 571, 573, 575.str eq buf : 45, 259.

x1383 TEXGPC PART 55: INDEX 521str eq str : 46, 1260.str number : 38, 39, 43, 45, 46, 47, 62, 63, 79*,93, 94, 95, 177, 178, 264, 284, 407, 512, 519,525, 527, 529, 530, 532*, 549, 560, 926, 929,934, 1257, 1279, 1299, 1355.str pool : 38, 39, 42, 43, 45, 46, 47, 59, 60, 69, 70,256, 260, 264, 303, 407, 464, 519, 602, 603,617, 638, 764, 766, 929, 931, 934, 941, 1309,1310, 1334, 1368, 1380*.str ptr : 38, 39, 41, 43, 44, 47, 59, 60, 70, 260,262, 517, 525, 617, 1260, 1309, 1310, 1323,1325, 1327, 1332*, 1334, 1368.str room : 42, 180, 260, 464, 516*, 525, 939, 1257,1279, 1328, 1333*, 1368.str start : 38, 39, 40, 41, 43, 44, 45, 46, 47, 59, 60,69, 70, 256, 260, 264, 407, 517, 519, 603, 617,765, 929, 931, 934, 941, 1309, 1310, 1368, 1380*.str toks : 464, 465, 470.stretch : 150, 151, 164, 178, 431, 462, 625, 634,656, 671, 716, 809, 827, 838, 868, 976, 1004,1009, 1042, 1044, 1148, 1229, 1239, 1240.stretch order : 150, 164, 178, 462, 625, 634, 656,671, 716, 809, 827, 838, 868, 976, 1004,1009, 1148, 1239.stretching : 135, 625, 634, 658, 673, 809, 810,811, 1148.string pool: 47, 1308.\string primitive: 468.string code : 468, 469, 471, 472.string vacancies : 11*, 52.style : 726, 760, 761, 762.style node : 160, 688, 690, 698, 730, 731, 761, 1169.style node size : 688, 689, 698, 763.sub box : 681, 687, 692, 698, 720, 734, 735, 737,738, 749, 754, 1076, 1093, 1168.sub drop : 700, 756.sub mark : 207, 294, 298, 347, 1046, 1175.sub mlist : 681, 683, 692, 720, 742, 754, 1181,1185, 1186, 1191.sub style : 702, 750, 757, 759.sub sup : 1175, 1176.subscr : 681, 683, 686, 687, 690, 696, 698, 738, 742,749, 750, 751, 752, 753, 754, 755, 756, 757, 759,1151, 1163, 1165, 1175, 1176, 1177, 1186.subscripts: 754, 1175.subtype : 133, 134, 135, 136, 139, 140, 143, 144,145, 146, 147, 149, 150, 152, 153, 154, 155, 156,158, 159, 188, 189, 190, 191, 192, 193, 424, 489,495, 496, 625, 627, 634, 636, 649, 656, 668, 671,681, 682, 686, 688, 689, 690, 696, 717, 730,731, 732, 733, 749, 763, 766, 768, 786, 795,809, 819, 820, 822, 837, 843, 844, 866, 868,

879*, 881, 896, 897, 898, 899, 903, 910, 981,986, 988, 1008, 1009, 1018, 1020, 1021, 1035,1060, 1061, 1078, 1100, 1101, 1113, 1125, 1148,1159, 1163, 1165, 1171, 1181, 1335, 1341, 1349,1356, 1357, 1358, 1362, 1373, 1374.sub1 : 700, 757.sub2 : 700, 759.succumb : 93, 94, 95, 1304.sup drop : 700, 756.sup mark : 207, 294, 298, 344, 355, 1046, 1175,1176, 1177.sup style : 702, 750, 758.superscripts: 754, 1175.supscr : 681, 683, 686, 687, 690, 696, 698, 738,742, 750, 751, 752, 753, 754, 756, 758, 1151,1163, 1165, 1175, 1176, 1177, 1186.sup1 : 700, 758.sup2 : 700, 758.sup3 : 700, 758.sw : 560, 571, 575.switch : 341, 343, 344, 346, 350.synch h : 616, 620, 624, 628, 633, 637, 1368.synch v : 616, 620, 624, 628, 632, 633, 637, 1368.system dependencies: 2*, 3, 4*, 9*, 10*, 11*, 12, 19,21, 23, 26, 27*, 28*, 33*, 34*, 35, 36*, 38, 49, 56,59, 72, 81, 84*, 96*, 109*, 110, 112*, 113, 161,186, 241*, 304, 313, 328, 485, 511, 512, 513,514*, 515, 516*, 517, 518, 519, 520, 521*, 523,525, 538, 557, 564, 591, 595, 597*, 798, 1331,1332*, 1333*, 1338*, 1340.s1 : 82, 88.s2 : 82, 88.s3 : 82, 88.s4 : 82, 88.t: 46, 107, 108, 125, 218, 241*, 277, 279, 280, 281,323, 341, 366, 389, 464, 473, 704, 705, 726,756, 800, 830, 877*, 906, 934, 966, 970, 1030,1123, 1176, 1191, 1198, 1257, 1288.t open in : 33*, 37*.t open out : 33*, 1332*.tab mark : 207, 289, 294, 342, 347, 780, 781, 782,783, 784, 788, 1126.tab skip : 224.\tabskip primitive: 226.tab skip code : 224, 225, 226, 778, 782, 786,795, 809.tab token : 289, 1128.tag : 543, 544, 554.tail : 212, 213, 214, 215, 216, 424, 679, 718, 776,786, 795, 796, 799, 812, 816*, 888, 890, 995,1017, 1023, 1026, 1034, 1035, 1036, 1037,1040, 1041, 1043, 1054, 1060, 1061, 1076,

522 PART 55: INDEX TEXGPC x13831078, 1080, 1081, 1091, 1096, 1100, 1101, 1105,1110, 1113, 1117, 1119, 1120, 1123, 1125, 1145,1150, 1155, 1158, 1159, 1163, 1165, 1168, 1171,1174, 1176, 1177, 1181, 1184, 1186, 1187, 1191,1196, 1205, 1206, 1349, 1350, 1351, 1352, 1353,1354, 1375, 1376, 1377.tail append : 214, 786, 795, 816*, 1035, 1037, 1040,1054, 1056, 1060, 1061, 1091, 1093, 1100, 1103,1112, 1113, 1117, 1150, 1158, 1163, 1165, 1168,1171, 1172, 1177, 1191, 1196, 1203, 1205, 1206.tail �eld : 212, 213, 995.tally : 54, 55, 57, 58, 292, 312, 315, 316, 317.tats: 7*.temp head : 162, 306, 391, 396, 400, 464, 466, 467,470, 478, 719, 720, 754, 760, 816*, 862*, 863,864, 877*, 879*, 880, 881, 887, 968, 1064, 1065,1194, 1196, 1199, 1297.temp ptr : 115, 154, 618, 619, 623, 628, 629, 632,637, 640, 679, 692, 693, 969, 1001, 1021,1037, 1041, 1335.term and log : 54, 57, 58, 71, 75, 92, 245, 534,1298, 1328, 1335, 1370.term in : 4*, 32*, 36*, 37*, 71, 1338*, 1339*.term input : 71, 78.term o�set : 54, 55, 57, 58, 61, 62, 71, 537*,638, 1280, 1333*.term only : 54, 55, 57, 58, 71, 75, 92, 535, 1298,1333*, 1335.term out : 4*, 32*, 35, 36*, 37*, 51, 56.terminal input : 304, 313, 328, 330, 360*.test char : 906, 909.TEX : 4*.TeX capacity exceeded ... : 94.bu�er size: 35, 328, 374.exception dictionary: 940.font memory: 580.grouping levels: 274.hash size: 260.input stack size: 321.main memory size: 120, 125.number of strings: 43, 517.parameter stack size: 390.pattern memory: 954, 964.pool size: 42.save size: 273.semantic nest size: 216.text input levels: 328.TEX.POOL check sum... : 53.TEX.POOL doesn't match : 53.TEX.POOL has no check sum : 52.TEX.POOL line doesn't... : 52.TEX area : 514*, 537*.

TEX font area : 514*, 563.TEX format default : 520, 521*, 523.tex interrupt : 96*.The TEXbook: 1, 23, 49, 108, 207, 415, 446, 456,459, 683, 688, 764, 1215, 1331.TeXfonts : 514*.TeXformats : 11*, 521*.TeXinputs : 514*.texput : 35, 534, 1257.text : 25*, 256, 257, 258, 259, 260, 262, 263, 264,265, 491, 553, 780, 1188, 1216, 1257, 1318, 1369.Text line contains... : 346.text char : 19, 20, 47.\textfont primitive: 1230.text mlist : 689, 695, 698, 731, 1174.text size : 699, 703, 732, 762, 1195, 1199.text style : 688, 694, 703, 731, 737, 744, 745, 746,748, 749, 758, 762, 1169, 1194, 1196.\textstyle primitive: 1169.TEX82: 1, 99.TFM �les: 539.tfm �le : 539, 560, 563, 564, 575.TFtoPL : 561.That makes 100 errors... : 82.the : 210, 265, 266, 366, 367, 478.The following...deleted : 641, 992, 1121.\the primitive: 265.the toks : 465, 466, 467, 478, 1297.then: 4*.thick mu skip : 224.\thickmuskip primitive: 226.thick mu skip code : 224, 225, 226, 766.thickness : 683, 697, 725, 743, 744, 746, 747, 1182.thin mu skip : 224.\thinmuskip primitive: 226.thin mu skip code : 224, 225, 226, 229, 766.This can't happen : 95.align: 800.copying: 206.curlevel: 281.disc1: 841.disc2: 842.disc3: 870.disc4: 871.display: 1200.endv: 791.ext1: 1348.ext2: 1357.ext3: 1358.ext4: 1373.ushing: 202.if: 497.

x1383 TEXGPC PART 55: INDEX 523line breaking: 877*.mlist1: 728.mlist2: 754.mlist3: 761.mlist4: 766.page: 1000.paragraph: 866.pre�x: 1211.pruning: 968.right: 1185.rightbrace: 1068.vcenter: 736.vertbreak: 973.vlistout: 630.vpack: 669.256 spans: 798.this box : 619, 624, 625, 629, 633, 634.this if : 498, 501, 503, 505, 506.three codes : 645.threshold : 828, 851, 854, 863.Tight \hbox... : 667.Tight \vbox... : 678.tight �t : 817, 819, 830, 833, 834, 836, 853.time : 236, 241*, 536, 617.\time primitive: 238.time code : 236, 237, 238.tini: 8.to : 645, 1082, 1225.tok val : 410, 415, 418, 428, 465.token: 289.token list : 307, 311, 312, 323, 325, 330, 337, 341,346, 390, 1131, 1335.token ref count : 200, 203, 291, 473, 482, 979.token show : 295, 296, 323, 401, 1279, 1284,1297, 1370.token type : 307, 311, 312, 314, 319, 323, 324, 325,327, 379, 390, 1026, 1095.toks : 230.\toks primitive: 265.toks base : 230, 231, 232, 233, 415, 1224, 1226,1227.\toksdef primitive: 1222.toks def code : 1222, 1224.toks register : 209, 265, 266, 413, 415, 1210,1226, 1227.tolerance : 236, 240, 828, 863.\tolerance primitive: 238.tolerance code : 236, 237, 238.Too many }'s : 1068.too small : 1303, 1306.top : 546.top bot mark : 210, 296, 366, 367, 384, 385, 386.

top edge : 629, 636.top mark : 382, 383, 1012.\topmark primitive: 384.top mark code : 382, 384, 386, 1335.top skip : 224.\topskip primitive: 226.top skip code : 224, 225, 226, 1001.total demerits : 819, 845, 846, 855, 864, 874, 875.total height : 986.total mathex params : 701, 1195.total mathsy params : 700, 1195.total pages : 592, 593, 617, 640, 642*.total shrink : 646, 650, 656, 664, 665, 666, 667,671, 676, 677, 678, 796, 1201.total stretch : 646, 650, 656, 658, 659, 660, 671,673, 674, 796.Trabb Pardo, Luis Isidoro: 2*.tracing commands : 236, 367, 498, 509, 1031.\tracingcommands primitive: 238.tracing commands code : 236, 237, 238.tracing lost chars : 236, 581.\tracinglostchars primitive: 238.tracing lost chars code : 236, 237, 238.tracing macros : 236, 323, 389, 400.\tracingmacros primitive: 238.tracing macros code : 236, 237, 238.tracing online : 236, 245, 1293, 1298.\tracingonline primitive: 238.tracing online code : 236, 237, 238.tracing output : 236, 638, 641.\tracingoutput primitive: 238.tracing output code : 236, 237, 238.tracing pages : 236, 987, 1005, 1010.\tracingpages primitive: 238.tracing pages code : 236, 237, 238.tracing paragraphs : 236, 845, 855, 863.\tracingparagraphs primitive: 238.tracing paragraphs code : 236, 237, 238.tracing restores : 236, 283.\tracingrestores primitive: 238.tracing restores code : 236, 237, 238.tracing stats : 117, 236, 639, 1326, 1333*.\tracingstats primitive: 238.tracing stats code : 236, 237, 238.Transcript written... : 1333*.trap zero glue : 1228, 1229, 1236.trick buf : 54, 58, 315, 317.trick count : 54, 58, 315, 316, 317.Trickey, Howard Wellington: 2*.trie : 920, 921, 922, 950, 952, 953, 954, 958, 959,966, 1324, 1325.trie back : 950, 954, 956.

524 PART 55: INDEX TEXGPC x1383trie c : 947, 948, 951, 953, 955, 956, 959, 963, 964.trie char : 920, 921, 923, 958, 959.trie �x : 958, 959.trie hash : 947, 948, 949, 950, 952.trie l : 947, 948, 949, 957, 959, 960, 963, 964.trie link : 920, 921, 923, 950, 952, 953, 954, 955,956, 958, 959.trie max : 950, 952, 954, 958, 1324, 1325.trie min : 950, 952, 953, 956.trie node : 948, 949.trie not ready : 891, 950, 951, 960, 966, 1324, 1325.trie o : 947, 948, 959, 963, 964.trie op : 920, 921, 923, 924, 943, 958, 959.trie op hash : 943, 944, 945, 946, 948, 952.trie op lang : 943, 944, 945, 952.trie op ptr : 943, 944, 945, 946, 1324, 1325.trie op size : 11*, 921, 943, 944, 946, 1324, 1325.trie op val : 943, 944, 945, 952.trie pack : 957, 966.trie pointer : 920, 921, 922, 947, 948, 949, 950,953, 957, 959, 960, 966.trie ptr : 947, 951, 952, 964.trie r : 947, 948, 949, 955, 956, 957, 959, 963, 964.trie ref : 950, 952, 953, 956, 957, 959.trie root : 947, 949, 951, 952, 958, 966.trie size : 11*, 920, 948, 950, 952, 954, 964, 1325.trie taken : 950, 952, 953, 954, 956.trie used : 943, 944, 945, 946, 1324, 1325.true : 4*, 16, 31*, 37*, 45, 46, 49, 51, 53, 71, 77, 88,96*, 97, 98, 104, 105, 106, 107, 168, 169, 256,257, 259, 311, 327, 328, 336, 346, 361, 362, 365,374, 378, 407, 413, 430, 440, 444, 447, 453, 461,462, 486, 501, 508, 512, 516*, 524, 526, 534, 563,578, 592, 621, 628, 637, 638, 641, 663, 675, 706,719, 791, 827, 828, 829, 851, 854, 863, 880, 882,884, 903, 905, 910, 911, 951, 956, 962, 963, 992,1020, 1021, 1025, 1030, 1035, 1037, 1040, 1051,1054, 1083, 1090, 1101, 1121, 1163, 1194, 1195,1218, 1253, 1258, 1270, 1279, 1283, 1298, 1303,1336, 1342, 1354, 1371, 1374, 1382*.true : 453.try break : 828, 829, 839, 851, 858, 862*, 866,868, 869, 873, 879*.two : 101, 102.two choices : 113.two halves : 113, 118, 124, 172, 221, 256, 684,921, 966.type : 4*, 133, 134, 135, 136, 137, 138, 139, 140,141, 142, 143, 144, 145, 146, 147, 148, 149, 150,152, 153, 155, 156, 157, 158, 159, 160, 175, 183,184, 202, 206, 424, 489, 495, 496, 497, 505, 622,623, 626, 628, 631, 632, 635, 637, 640, 649, 651,

653, 655, 668, 669, 670, 680, 681, 682, 683, 686,687, 688, 689, 696, 698, 713, 715, 720, 721, 726,727, 728, 729, 731, 732, 736, 747, 750, 752, 761,762, 767, 768, 796, 799, 801, 805, 807, 809, 810,811, 816*, 819, 820, 822, 830, 832, 837, 841, 842,843, 844, 845, 856, 858, 859, 860, 861, 862*, 864,865, 866, 868, 870, 871, 874, 875, 879*, 881, 896,897, 899, 903, 914, 968, 970, 972, 973, 976, 978,979, 981, 986, 988, 993, 996, 997, 1000, 1004,1008, 1009, 1010, 1011, 1013, 1014, 1021, 1074,1080, 1081, 1087, 1100, 1101, 1105, 1110, 1113,1121, 1147, 1155, 1158, 1159, 1163, 1165, 1168,1181, 1185, 1186, 1191, 1202, 1203, 1341, 1349.Type <return> to proceed... : 85.u: 69, 107, 389, 560, 706, 791, 800, 929, 934,944, 1257.u close : 28*, 642*.u part : 768, 769, 779, 788, 794, 801.u template : 307, 314, 324, 788.uc code : 230, 232, 407.\uccode primitive: 1230.uc code base : 230, 235, 1230, 1231, 1286, 1288.uc hyph : 236, 891, 896.\uchyph primitive: 238.uc hyph code : 236, 237, 238.un hbox : 208, 1090, 1107, 1108, 1109.\unhbox primitive: 1107.\unhcopy primitive: 1107.\unkern primitive: 1107.\unpenalty primitive: 1107.\unskip primitive: 1107.un vbox : 208, 1046, 1094, 1107, 1108, 1109.\unvbox primitive: 1107.\unvcopy primitive: 1107.unbalance : 389, 391, 396, 399, 473, 477.Unbalanced output routine : 1027.Unbalanced write... : 1372.Undefined control sequence : 370.unde�ned control sequence : 222, 232, 256, 257,259, 262, 268, 282, 290, 1318, 1319.unde�ned cs : 210, 222, 366, 372, 1226, 1227, 1295.under noad : 687, 690, 696, 698, 733, 761, 1156,1157.Underfull hbox...: 816*.Underfull \hbox... : 660.Underfull \vbox... : 674.\underline primitive: 1156.undump : 1306, 1310, 1312, 1314, 1319, 1323,1325, 1327.undump end : 1306.undump end end : 1306.undump four ASCII : 1310.

x1383 TEXGPC PART 55: INDEX 525undump hh : 1306, 1319, 1325.undump int : 1306, 1308, 1312, 1317, 1319,1323, 1327.undump qqqq : 1306, 1310, 1323.undump size : 1306, 1310, 1321, 1325.undump size end : 1306.undump size end end : 1306.undump wd : 1306, 1312, 1317, 1321.unoat : 109*, 658, 664, 673, 676, 810, 811.unhyphenated : 819, 829, 837, 864, 866, 868.unity : 101, 103, 114, 164, 186, 453, 568, 1259.Unix: 1332*.unpackage : 1109, 1110.unsave : 281, 283, 791, 800, 1026, 1063, 1068,1086, 1100, 1119, 1133, 1168, 1174, 1186,1191, 1194, 1196, 1200.unset node : 136, 159, 175, 183, 184, 202, 206, 651,669, 682, 688, 689, 768, 796, 799, 801, 805.update active : 861.update heights : 970, 972, 973, 994, 997, 1000.update terminal : 34*, 37*, 61, 71, 86, 362, 524,537*, 638, 1280, 1338*.update width : 832, 860.\uppercase primitive: 1286.Use of x doesn't match... : 398.use err help : 79*, 80*, 89, 90, 1283.v: 69, 107, 389, 450, 706, 715, 736, 743, 749, 800,830, 922, 934, 944, 960, 977, 1138.v o�set : 247, 640, 641.\voffset primitive: 248.v o�set code : 247, 248.v part : 768, 769, 779, 789, 794, 801.v template : 307, 314, 325, 390, 789, 1131.vacuous : 440, 444, 445.vadjust : 208, 265, 266, 1097, 1098, 1099, 1100.\vadjust primitive: 265.valign : 208, 265, 266, 1046, 1090, 1130.\valign primitive: 265.var code : 232, 1151, 1155, 1165.var delimiter : 706, 737, 748, 762.var used : 117, 125, 130, 164, 639, 1311, 1312.vbadness : 236, 674, 677, 678, 1012, 1017.\vbadness primitive: 238.vbadness code : 236, 237, 238.\vbox primitive: 1071.vbox group : 269, 1083, 1085.vcenter : 208, 265, 266, 1046, 1167.\vcenter primitive: 265.vcenter group : 269, 1167, 1168.vcenter noad : 687, 690, 696, 698, 733, 761, 1168.vert break : 970, 971, 976, 977, 980, 982, 1010.very loose �t : 817, 819, 830, 833, 834, 836, 852.

vet glue : 625, 634.\vfil primitive: 1058.\vfilneg primitive: 1058.\vfill primitive: 1058.vfuzz : 247, 677, 1012, 1017.\vfuzz primitive: 248.vfuzz code : 247, 248.VIRTEX : 1331.virtual memory: 126.Vitter, Je�rey Scott: 261.vlist node : 137, 148, 159, 175, 183, 184, 202, 206,505, 618, 622, 623, 628, 629, 631, 632, 637, 640,644, 651, 668, 669, 681, 713, 715, 720, 736, 747,750, 807, 809, 811, 841, 842, 866, 870, 871, 968,973, 978, 1000, 1074, 1080, 1087, 1110, 1147.vlist out : 592, 615, 616, 618, 619, 623, 628, 629,632, 637, 638, 640, 693, 1373.vmode : 211, 215, 416, 417, 418, 422, 424, 501,775, 785, 786, 804, 807, 808, 809, 812, 1025,1029, 1045, 1046, 1048, 1056, 1057, 1071, 1072,1073, 1076, 1078, 1079, 1080, 1083, 1090, 1091,1094, 1098, 1099, 1103, 1105, 1109, 1110, 1111,1130, 1167, 1243, 1244.vmove : 208, 1048, 1071, 1072, 1073.vpack : 236, 644, 645, 646, 668, 705, 735, 738, 759,799, 804, 977, 1021, 1100, 1168.vpackage : 668, 796, 977, 1017, 1086.vrule : 208, 265, 266, 463, 1056, 1084, 1090.\vrule primitive: 265.vsize : 247, 980, 987.\vsize primitive: 248.vsize code : 247, 248.vskip : 208, 1046, 1057, 1058, 1059, 1078, 1094.\vskip primitive: 1058.vsplit : 967, 977, 978, 980, 1082.\vsplit needs a \vbox : 978.\vsplit primitive: 1071.vsplit code : 1071, 1072, 1079.\vss primitive: 1058.\vtop primitive: 1071.vtop code : 1071, 1072, 1083, 1085, 1086.vtop group : 269, 1083, 1085.w: 114, 147, 156, 275, 278, 279, 607, 649, 668,706, 715, 738, 791, 800, 906, 994, 1123, 1138,1198, 1302, 1303, 1349, 1350.w close : 28*, 1329, 1337, 1379*.w make name string : 525, 1328.w open in : 27*, 524, 1379*.w open out : 27*, 1328.wait : 1012, 1020, 1021, 1022.wake up terminal : 34*, 37*, 51, 71, 73, 363, 484,524, 530, 1294, 1297, 1303, 1333*, 1338*.

526 PART 55: INDEX TEXGPC x1383warning index : 305, 331, 338, 389, 390, 395, 396,398, 401, 473, 479, 482, 774, 777.warning issued : 76, 245, 1335.was free : 165, 167, 171.was hi min : 165, 166, 167, 171.was lo max : 165, 166, 167, 171.was mem end : 165, 166, 167, 171.\wd primitive: 416.WEB : 1, 4*, 38, 40, 50, 1308.what lang : 1341, 1356, 1362, 1376, 1377.what lhm : 1341, 1356, 1362, 1376, 1377.what rhm : 1341, 1356, 1362, 1376, 1377.whatsit node : 146, 148, 175, 183, 202, 206, 622,631, 651, 669, 730, 761, 866, 896, 899, 968,973, 1000, 1147, 1341, 1349.widow penalty : 236, 1096.\widowpenalty primitive: 238.widow penalty code : 236, 237, 238.width : 463.width : 135, 136, 138, 139, 147, 150, 151, 155, 156,178, 184, 187, 191, 192, 424, 429, 431, 451, 462,463, 554, 605, 607, 611, 622, 623, 625, 626, 631,633, 634, 635, 641, 651, 653, 656, 657, 666, 668,669, 670, 671, 679, 683, 688, 706, 709, 714, 715,716, 717, 731, 738, 744, 747, 749, 750, 757, 758,759, 768, 779, 793, 796, 797, 798, 801, 802, 803,804, 806, 807, 808, 809, 810, 811, 827, 837, 838,841, 842, 866, 868, 870, 871, 881, 969, 976, 996,1001, 1004, 1009, 1042, 1044, 1054, 1091, 1093,1147, 1148, 1199, 1201, 1205, 1229, 1239, 1240.width base : 550, 552, 554, 566, 569, 571, 576,1322, 1323.width index : 543, 550.width o�set : 135, 416, 417, 1247.wlog : 56, 58, 536, 1334.wlog cr : 56, 57, 58, 1333*.wlog ln : 56, 1334.word de�ne : 1214, 1228, 1232, 1236.word �le : 25*, 27*, 28*, 113, 525, 1305.words : 204, 205, 206, 1357.wrap lig : 910, 911.wrapup : 1035, 1040.write : 37*, 56, 58.\write primitive: 1344.write dvi : 597*, 598, 599.write �le : 57, 58, 1342, 1374, 1378.write ln : 35, 37*, 51, 56, 57, 1380*.write loc : 1313, 1314, 1344, 1345, 1371.write node : 1341, 1344, 1346, 1348, 1356, 1357,1358, 1373, 1374.write node size : 1341, 1350, 1352, 1353, 1354,1357, 1358.

write open : 1342, 1343, 1370, 1374, 1378.write out : 1370, 1374.write stream : 1341, 1350, 1354, 1355, 1370, 1374.write text : 307, 314, 323, 1340, 1371.write tokens : 1341, 1352, 1353, 1354, 1356, 1357,1358, 1368, 1371.writing : 578.wterm : 56, 58, 61.wterm cr : 56, 57, 58, 1333*.wterm ln : 56, 61, 524, 1303, 1332*, 1379*.Wyatt, Douglas Kirk: 2*.w0 : 585, 586, 604, 609.w1 : 585, 586, 607.w2 : 585.w3 : 585.w4 : 585.x: 100, 105, 106, 107, 587, 600, 649, 668, 706,720, 726, 735, 737, 738, 743, 749, 756, 1123,1302, 1303.x height : 547, 558, 559, 738, 1123.x height code : 547, 558.x leaders : 149, 190, 627, 1071, 1072.\xleaders primitive: 1071.x over n : 106, 703, 716, 717, 986, 1008, 1009,1010, 1240.x token : 364, 381, 478, 1038, 1152.xchr : 20, 21, 23, 24, 38, 49, 58, 519, 1380*.xclause: 16.\xdef primitive: 1208.xeq level : 253, 254, 268, 278, 279, 283, 1304.xn over d : 107, 455, 457, 458, 568, 716, 1044,1260.xord : 20, 24, 31*, 36*, 52, 53, 523, 525.xpand : 473, 477, 479.xray : 208, 1290, 1291, 1292.xspace skip : 224, 1043.\xspaceskip primitive: 226.xspace skip code : 224, 225, 226, 1043.xxx1 : 585, 586, 1368.xxx2 : 585.xxx3 : 585.xxx4 : 585, 586, 1368.x0 : 585, 586, 604, 609.x1 : 585, 586, 607.x2 : 585.x3 : 585.x4 : 585.y: 105, 706, 726, 735, 737, 738, 743, 749, 756.y here : 608, 609, 611, 612, 613.y OK : 608, 609, 612.y seen : 611, 612.year : 236, 241*, 536, 617, 1328.

x1383 TEXGPC PART 55: INDEX 527\year primitive: 238.year code : 236, 237, 238.You already have nine... : 476.You can't \insert255 : 1099.You can't dump... : 1304.You can't use \hrule... : 1095.You can't use \long... : 1213.You can't use a prefix with x : 1212.You can't use x after ... : 428, 1237.You can't use x in y mode : 1049.You have to increase POOLSIZE : 52.you cant : 1049, 1050, 1080, 1106.yz OK : 608, 609, 610, 612.y0 : 585, 586, 594, 604, 609.y1 : 585, 586, 607, 613.y2 : 585, 594.y3 : 585.y4 : 585.z: 560, 706, 726, 743, 749, 756, 922, 927, 953,959, 1198.z here : 608, 609, 611, 612, 614.z OK : 608, 609, 612.z seen : 611, 612.Zabala Salelles, Ignacio Andr�es: 2*.zero glue : 162, 175, 224, 228, 424, 462, 732, 802,887, 1041, 1042, 1043, 1171, 1229.zero token : 445, 452, 473, 476, 479.z0 : 585, 586, 604, 609.z1 : 585, 586, 607, 614.z2 : 585.z3 : 585.z4 : 585.

528 NAMES OF THE SECTIONS TEXGPC x1383hAccumulate the constant until cur tok is not a suitable digit 445 i Used in section 444.hAdd the width of node s to act width 871 i Used in section 869.hAdd the width of node s to break width 842 i Used in section 840.hAdd the width of node s to disc width 870 i Used in section 869.hAdjust for the magni�cation ratio 457 i Used in section 453.hAdjust for the setting of \globaldefs 1214 i Used in section 1211.hAdjust shift up and shift down for the case of a fraction line 746 i Used in section 743.hAdjust shift up and shift down for the case of no fraction line 745 i Used in section 743.hAdvance cur p to the node following the present string of characters 867 i Used in section 866.hAdvance past a whatsit node in the line break loop 1362 i Used in section 866.hAdvance past a whatsit node in the pre-hyphenation loop 1363 i Used in section 896.hAdvance r; goto found if the parameter delimiter has been fully matched, otherwise goto continue 394 iUsed in section 392.hAllocate entire node p and goto found 129 i Used in section 127.hAllocate from the top of node p and goto found 128 i Used in section 127.hApologize for inability to do the operation now, unless \unskip follows non-glue 1106 i Used in section 1105.hApologize for not loading the font, goto done 567 i Used in section 566.hAppend a ligature and/or kern to the translation; goto continue if the stack of inserted ligatures isnonempty 910 i Used in section 906.hAppend a new leader node that uses cur box 1078 i Used in section 1075.hAppend a new letter or a hyphen level 962 i Used in section 961.hAppend a new letter or hyphen 937 i Used in section 935.hAppend a normal inter-word space to the current list, then goto big switch 1041 i Used in section 1030.hAppend a penalty node, if a nonzero penalty is appropriate 890 i Used in section 880.hAppend an insertion to the current page and goto contribute 1008 i Used in section 1000.hAppend any new hlist entries for q, and any appropriate penalties 767 i Used in section 760.hAppend box cur box to the current list, shifted by box context 1076 i Used in section 1075.hAppend character cur chr and the following characters (if any) to the current hlist in the current font;goto reswitch when a non-character has been fetched 1034 i Used in section 1030.hAppend characters of hu [j : :] to major tail , advancing j 917 i Used in section 916.hAppend inter-element spacing based on r type and t 766 i Used in section 760.hAppend tabskip glue and an empty box to list u, and update s and t as the prototype nodes are passed 809 iUsed in section 808.hAppend the accent with appropriate kerns, then set p q 1125 i Used in section 1123.hAppend the current tabskip glue to the preamble list 778 i Used in section 777.hAppend the display and perhaps also the equation number 1204 i Used in section 1199.hAppend the glue or equation number following the display 1205 i Used in section 1199.hAppend the glue or equation number preceding the display 1203 i Used in section 1199.hAppend the new box to the current vertical list, followed by the list of special nodes taken out of the boxby the packager 888 i Used in section 880.hAppend the value n to list p 938 i Used in section 937.hAssign the values depth threshold show box depth and breadth max show box breadth 236 iUsed in section 198.hAssignments 1217, 1218, 1221, 1224, 1225, 1226, 1228, 1232, 1234, 1235, 1241, 1242, 1248, 1252, 1253, 1256, 1264 iUsed in section 1211.hAttach list p to the current list, and record its length; then �nish up and return 1120 i Used in section 1119.hAttach the limits to y and adjust height (v), depth (v) to account for their presence 751 i Used in section 750.hBack up an outer control sequence so that it can be reread 337 i Used in section 336.hBasic printing procedures 57, 58, 59, 60, 62, 63, 64, 65, 262, 263, 518, 699, 1355 i Used in section 4*.hBreak the current page at node p, put it in box 255, and put the remaining nodes on the contributionlist 1017 i Used in section 1014.

x1383 TEXGPC NAMES OF THE SECTIONS 529hBreak the paragraph at the chosen breakpoints, justify the resulting lines to the correct widths, andappend them to the current vertical list 876* i Used in section 815.hCalculate the length, l, and the shift amount, s, of the display lines 1149 i Used in section 1145.hCalculate the natural width, w, by which the characters of the �nal line extend to the right of the referencepoint, plus two ems; or set w max dimen if the non-blank information on that line is a�ected bystretching or shrinking 1146 i Used in section 1145.hCall the packaging subroutine, setting just box to the justi�ed box 889 i Used in section 880.hCall try break if cur p is a legal breakpoint; on the second pass, also try to hyphenate the next word, ifcur p is a glue node; then advance cur p to the next node of the paragraph that could possibly be alegal breakpoint 866 i Used in section 863.hCarry out a ligature replacement, updating the cursor structure and possibly advancing j; goto continueif the cursor doesn't advance, otherwise goto done 911 i Used in section 909.hCase statement to copy di�erent types and set words to the number of initial words not yet copied 206 iUsed in section 205.hCases for noads that can follow a bin noad 733 i Used in section 728.hCases for nodes that can appear in an mlist, after which we goto done with node 730 i Used in section 728.hCases of ush node list that arise in mlists only 698 i Used in section 202.hCases of handle right brace where a right brace triggers a delayed action 1085, 1100, 1118, 1132, 1133, 1168,1173, 1186 i Used in section 1068.hCases of main control that are for extensions to TEX 1347 i Used in section 1045.hCases of main control that are not part of the inner loop 1045 i Used in section 1030.hCases of main control that build boxes and lists 1056, 1057, 1063, 1067, 1073, 1090, 1092, 1094, 1097, 1102, 1104,1109, 1112, 1116, 1122, 1126, 1130, 1134, 1137, 1140, 1150, 1154, 1158, 1162, 1164, 1167, 1171, 1175, 1180, 1190, 1193 iUsed in section 1045.hCases of main control that don't depend on mode 1210, 1268, 1271, 1274, 1276, 1285, 1290 i Used in section 1045.hCases of print cmd chr for symbolic printing of primitives 227, 231, 239, 249, 266, 335, 377, 385, 412, 417, 469,488, 492, 781, 984, 1053, 1059, 1072, 1089, 1108, 1115, 1143, 1157, 1170, 1179, 1189, 1209, 1220, 1223, 1231, 1251, 1255,1261, 1263, 1273, 1278, 1287, 1292, 1295, 1346 i Used in section 298.hCases of show node list that arise in mlists only 690 i Used in section 183.hCases where character is ignored 345 i Used in section 344.hChange bu�ered instruction to y or w and goto found 613 i Used in section 612.hChange bu�ered instruction to z or x and goto found 614 i Used in section 612.hChange current mode to �vmode for \halign, �hmode for \valign 775 i Used in section 774.hChange discretionary to compulsory and set disc break true 882 i Used in section 881.hChange font dvi f to f 621 i Used in section 620.hChange state if necessary, and goto switch if the current character should be ignored, or goto reswitch ifthe current character changes to another 344 i Used in section 343.hChange the case of the token in p, if a change is appropriate 1289 i Used in section 1288.hChange the current style and goto delete q 763 i Used in section 761.hChange the interaction level and return 86 i Used in section 84*.hChange this node to a style node followed by the correct choice, then goto done with node 731 iUsed in section 730.hCharacter k cannot be printed 49 i Used in section 48.hCharacter s is the current new-line character 244 i Used in sections 58 and 59.hCheck ags of unavailable nodes 170 i Used in section 167.hCheck for charlist cycle 570 i Used in section 569.hCheck for improper alignment in displayed math 776 i Used in section 774.hCheck if node p is a new champion breakpoint; then goto done if p is a forced break or if the page-so-faris already too full 974 i Used in section 972.hCheck if node p is a new champion breakpoint; then if it is time for a page break, prepare for output, andeither �re up the user's output routine and return or ship out the page and goto done 1005 iUsed in section 997.

530 NAMES OF THE SECTIONS TEXGPC x1383hCheck single-word avail list 168 i Used in section 167.hCheck that another $ follows 1197 i Used in sections 1194, 1194, and 1206.hCheck that the necessary fonts for math symbols are present; if not, ush the current math lists and setdanger true 1195 i Used in sections 1194 and 1194.hCheck that the nodes following hb permit hyphenation and that at least l hyf + r hyf letters have beenfound, otherwise goto done1 899 i Used in section 894.hCheck the \constant" values for consistency 14, 111, 290, 522, 1249 i Used in section 1332*.hCheck the pool check sum 53 i Used in section 52.hCheck variable-size avail list 169 i Used in section 167.hClean up the memory by removing the break nodes 865 i Used in sections 815 and 863.hClear dimensions to zero 650 i Used in sections 649 and 668.hClear o� top level from save stack 282 i Used in section 281.hClose the format �le 1329 i Used in section 1302.hCoerce glue to a dimension 451 i Used in sections 449 and 455.hCompiler directives 9* i Used in section 4*.hComplain about an unde�ned family and set cur i null 723 i Used in section 722.hComplain about an unde�ned macro 370 i Used in section 367.hComplain about missing \endcsname 373 i Used in section 372.hComplain about unknown unit and goto done2 459 i Used in section 458.hComplain that \the can't do this; give zero result 428 i Used in section 413.hComplain that the user should have said \mathaccent 1166 i Used in section 1165.hCompleat the incompleat noad 1185 i Used in section 1184.hComplete a potentially long \show command 1298 i Used in section 1293.hCompute result of multiply or divide , put it in cur val 1240 i Used in section 1236.hCompute result of register or advance , put it in cur val 1238 i Used in section 1236.hCompute the amount of skew 741 i Used in section 738.hCompute the badness, b, of the current page, using awful bad if the box is too full 1007 iUsed in section 1005.hCompute the badness, b, using awful bad if the box is too full 975 i Used in section 974.hCompute the demerits, d, from r to cur p 859 i Used in section 855.hCompute the discretionary break width values 840 i Used in section 837.hCompute the hash code h 261 i Used in section 259.hCompute the magic o�set 765 i Used in section 1337.hCompute the minimum suitable height, w, and the corresponding number of extension steps, n; also setwidth (b) 714 i Used in section 713.hCompute the new line width 850 i Used in section 835.hCompute the register location l and its type p; but return if invalid 1237 i Used in section 1236.hCompute the sum of two glue specs 1239 i Used in section 1238.hCompute the trie op code, v, and set l 0 965 i Used in section 963.hCompute the values of break width 837 i Used in section 836.hConsider a node with matching width; goto found if it's a hit 612 i Used in section 611.hConsider the demerits for a line from r to cur p ; deactivate node r if it should no longer be active; thengoto continue if a line from r to cur p is infeasible, otherwise record a new feasible break 851 iUsed in section 829.hConstants in the outer block 11* i Used in section 4*.hConstruct a box with limits above and below it, skewed by delta 750 i Used in section 749.hConstruct a sub/superscript combination box x, with the superscript o�set by delta 759 iUsed in section 756.hConstruct a subscript box x when there is no superscript 757 i Used in section 756.hConstruct a superscript box x 758 i Used in section 756.hConstruct a vlist box for the fraction, according to shift up and shift down 747 i Used in section 743.

x1383 TEXGPC NAMES OF THE SECTIONS 531hConstruct an extensible character in a new box b, using recipe rem byte (q) and font f 713 iUsed in section 710.hContribute an entire group to the current parameter 399 i Used in section 392.hContribute the recently matched tokens to the current parameter, and goto continue if a partial match isstill in e�ect; but abort if s = null 397 i Used in section 392.hConvert a �nal bin noad to an ord noad 729 i Used in sections 726 and 728.hConvert cur val to a lower level 429 i Used in section 413.hConvert math glue to ordinary glue 732 i Used in section 730.hConvert nucleus (q) to an hlist and attach the sub/superscripts 754 i Used in section 728.hCopy the tabskip glue between columns 795 i Used in section 791.hCopy the templates from node cur loop into node p 794 i Used in section 793.hCopy the token list 466 i Used in section 465.hCreate a character node p for nucleus (q), possibly followed by a kern node for the italic correction, and setdelta to the italic correction if a subscript is present 755 i Used in section 754.hCreate a character node q for the next character, but set q null if problems arise 1124 iUsed in section 1123.hCreate a new glue speci�cation whose width is cur val ; scan for its stretch and shrink components 462 iUsed in section 461.hCreate a page insertion node with subtype (r) = qi (n), and include the glue correction for box n in thecurrent page state 1009 i Used in section 1008.hCreate an active breakpoint representing the beginning of the paragraph 864 i Used in section 863.hCreate and append a discretionary node as an alternative to the unhyphenated word, and continue todevelop both branches until they become equivalent 914 i Used in section 913.hCreate equal-width boxes x and z for the numerator and denominator, and compute the default amountsshift up and shift down by which they are displaced from the baseline 744 i Used in section 743.hCreate new active nodes for the best feasible breaks just found 836 i Used in section 835.hCreate the format ident , open the format �le, and inform the user that dumping has begun 1328 iUsed in section 1302.hCurrent mem equivalent of glue parameter number n 224 i Used in sections 152 and 154.hDeactivate node r 860 i Used in section 851.hDeclare action procedures for use by main control 1043, 1047, 1049, 1050, 1051, 1054, 1060, 1061, 1064, 1069, 1070,1075, 1079, 1084, 1086, 1091, 1093, 1095, 1096, 1099, 1101, 1103, 1105, 1110, 1113, 1117, 1119, 1123, 1127, 1129, 1131,1135, 1136, 1138, 1142, 1151, 1155, 1159, 1160, 1163, 1165, 1172, 1174, 1176, 1181, 1191, 1194, 1200, 1211, 1270, 1275,1279, 1288, 1293, 1302, 1348, 1376 i Used in section 1030.hDeclare math construction procedures 734, 735, 736, 737, 738, 743, 749, 752, 756, 762 i Used in section 726.hDeclare procedures for preprocessing hyphenation patterns 944, 948, 949, 953, 957, 959, 960, 966 iUsed in section 942.hDeclare procedures needed for displaying the elements of mlists 691, 692, 694 i Used in section 179.hDeclare procedures needed in do extension 1349, 1350 i Used in section 1348.hDeclare procedures needed in hlist out , vlist out 1368, 1370, 1373 i Used in section 619.hDeclare procedures that scan font-related stu� 577, 578 i Used in section 409.hDeclare procedures that scan restricted classes of integers 433, 434, 435, 436, 437 i Used in section 409.hDeclare subprocedures for line break 826, 829, 877*, 895, 942 i Used in section 815.hDeclare subprocedures for pre�xed command 1215, 1229, 1236, 1243, 1244, 1245, 1246, 1247, 1257, 1265 iUsed in section 1211.hDeclare subprocedures for var delimiter 709, 711, 712 i Used in section 706.hDeclare the function called �n mlist 1184 i Used in section 1174.hDeclare the function called open fmt �le 524 i Used in section 1303.hDeclare the function called reconstitute 906 i Used in section 895.hDeclare the procedure called align peek 785 i Used in section 800.hDeclare the procedure called �re up 1012 i Used in section 994.hDeclare the procedure called get preamble token 782 i Used in section 774.

532 NAMES OF THE SECTIONS TEXGPC x1383hDeclare the procedure called handle right brace 1068 i Used in section 1030.hDeclare the procedure called init span 787 i Used in section 786.hDeclare the procedure called insert relax 379 i Used in section 366.hDeclare the procedure called macro call 389 i Used in section 366.hDeclare the procedure called print cmd chr 298 i Used in section 252.hDeclare the procedure called print skip param 225 i Used in section 179.hDeclare the procedure called restore trace 284 i Used in section 281.hDeclare the procedure called runaway 306 i Used in section 119.hDeclare the procedure called show token list 292 i Used in section 119.hDecry the invalid character and goto restart 346 i Used in section 344.hDelete c� "0" tokens and goto continue 88 i Used in section 84*.hDelete the page-insertion nodes 1019 i Used in section 1014.hDestroy the t nodes following q, and make r point to the following node 883 i Used in section 882.hDetermine horizontal glue shrink setting, then return or goto common ending 664 i Used in section 657.hDetermine horizontal glue stretch setting, then return or goto common ending 658 i Used in section 657.hDetermine the displacement, d, of the left edge of the equation, with respect to the line size z, assumingthat l = false 1202 i Used in section 1199.hDetermine the shrink order 665 i Used in sections 664, 676, and 796.hDetermine the stretch order 659 i Used in sections 658, 673, and 796.hDetermine the value of height (r) and the appropriate glue setting; then return or gotocommon ending 672 i Used in section 668.hDetermine the value of width (r) and the appropriate glue setting; then return or goto common ending 657 iUsed in section 649.hDetermine vertical glue shrink setting, then return or goto common ending 676 i Used in section 672.hDetermine vertical glue stretch setting, then return or goto common ending 673 i Used in section 672.hDiscard erroneous pre�xes and return 1212 i Used in section 1211.hDiscard the pre�xes \long and \outer if they are irrelevant 1213 i Used in section 1211.hDispense with trivial cases of void or bad boxes 978 i Used in section 977.hDisplay adjustment p 197 i Used in section 183.hDisplay box p 184 i Used in section 183.hDisplay choice node p 695 i Used in section 690.hDisplay discretionary p 195 i Used in section 183.hDisplay fraction noad p 697 i Used in section 690.hDisplay glue p 189 i Used in section 183.hDisplay insertion p 188 i Used in section 183.hDisplay kern p 191 i Used in section 183.hDisplay leaders p 190 i Used in section 189.hDisplay ligature p 193 i Used in section 183.hDisplay mark p 196 i Used in section 183.hDisplay math node p 192 i Used in section 183.hDisplay node p 183 i Used in section 182.hDisplay normal noad p 696 i Used in section 690.hDisplay penalty p 194 i Used in section 183.hDisplay rule p 187 i Used in section 183.hDisplay special �elds of the unset node p 185 i Used in section 184.hDisplay the current context 312 i Used in section 311.hDisplay the insertion split cost 1011 i Used in section 1010.hDisplay the page break cost 1006 i Used in section 1005.hDisplay the token (m; c) 294 i Used in section 293.hDisplay the value of b 502 i Used in section 498.hDisplay the value of glue set (p) 186 i Used in section 184.hDisplay the whatsit node p 1356 i Used in section 183.

x1383 TEXGPC NAMES OF THE SECTIONS 533hDisplay token p, and return if there are problems 293 i Used in section 292.hDo �rst-pass processing based on type (q); goto done with noad if a noad has been fully processed, gotocheck dimensions if it has been translated into new hlist (q), or goto done with node if a node has beenfully processed 728 i Used in section 727.hDo ligature or kern command, returning to main lig loop or main loop wrapup or main loop move 1040 iUsed in section 1039.hDo magic computation 320 i Used in section 292.hDo some work that has been queued up for \write 1374 i Used in section 1373.hDrop current token and complain that it was unmatched 1066 i Used in section 1064.hDump a couple more things and the closing check word 1326 i Used in section 1302.hDump constants for consistency check 1307 i Used in section 1302.hDump regions 1 to 4 of eqtb 1315 i Used in section 1313.hDump regions 5 and 6 of eqtb 1316 i Used in section 1313.hDump the array info for internal font number k 1322 i Used in section 1320.hDump the dynamic memory 1311 i Used in section 1302.hDump the font information 1320 i Used in section 1302.hDump the hash table 1318 i Used in section 1313.hDump the hyphenation tables 1324 i Used in section 1302.hDump the string pool 1309 i Used in section 1302.hDump the table of equivalents 1313 i Used in section 1302.hEither append the insertion node p after node q, and remove it from the current page, or deletenode (p) 1022 i Used in section 1020.hEither insert the material speci�ed by node p into the appropriate box, or hold it for the next page; alsodelete node p from the current page 1020 i Used in section 1014.hEither process \ifcase or set b to the value of a boolean condition 501 i Used in section 498.hEmpty the last bytes out of dvi buf 599 i Used in section 642*.hEnsure that box 255 is empty after output 1028 i Used in section 1026.hEnsure that box 255 is empty before output 1015 i Used in section 1014.hEnsure that trie max � h+ 256 954 i Used in section 953.hEnter a hyphenation exception 939 i Used in section 935.hEnter all of the patterns into a linked trie, until coming to a right brace 961 i Used in section 960.hEnter as many hyphenation exceptions as are listed, until coming to a right brace; then return 935 iUsed in section 934.hEnter skip blanks state, emit a space 349 i Used in section 347.hError handling procedures 78, 81, 82, 93, 94, 95, 1380*, 1381* i Used in section 4*.hExamine node p in the hlist, taking account of its e�ect on the dimensions of the new box, or moving it tothe adjustment list; then advance p to the next node 651 i Used in section 649.hExamine node p in the vlist, taking account of its e�ect on the dimensions of the new box; then advance pto the next node 669 i Used in section 668.hExpand a nonmacro 367 i Used in section 366.hExpand macros in the token list and make link (def ref) point to the result 1371 i Used in section 1370.hExpand the next part of the input 478 i Used in section 477.hExpand the token after the next token 368 i Used in section 367.hExplain that too many dead cycles have occurred in a row 1024 i Used in section 1012.hExpress astonishment that no number was here 446 i Used in section 444.hExpress consternation over the fact that no alignment is in progress 1128 i Used in section 1127.hExpress shock at the missing left brace; goto found 475 i Used in section 474.hFeed the macro body and its parameters to the scanner 390 i Used in section 389.hFetch a box dimension 420 i Used in section 413.hFetch a character code from some table 414 i Used in section 413.hFetch a font dimension 425 i Used in section 413.hFetch a font integer 426 i Used in section 413.

534 NAMES OF THE SECTIONS TEXGPC x1383hFetch a register 427 i Used in section 413.hFetch a token list or font identi�er, provided that level = tok val 415 i Used in section 413.hFetch an internal dimension and goto attach sign , or fetch an internal integer 449 i Used in section 448.hFetch an item in the current node, if appropriate 424 i Used in section 413.hFetch something on the page so far 421 i Used in section 413.hFetch the dead cycles or the insert penalties 419 i Used in section 413.hFetch the par shape size 423 i Used in section 413.hFetch the prev graf 422 i Used in section 413.hFetch the space factor or the prev depth 418 i Used in section 413.hFind an active node with fewest demerits 874 i Used in section 873.hFind hyphen locations for the word in hc , or return 923 i Used in section 895.hFind optimal breakpoints 863 i Used in section 815.hFind the best active node for the desired looseness 875 i Used in section 873.hFind the best way to split the insertion, and change type (r) to split up 1010 i Used in section 1008.hFind the glue speci�cation, main p , for text spaces in the current font 1042 i Used in sections 1041 and 1043.hFinish an alignment in a display 1206 i Used in section 812.hFinish displayed math 1199 i Used in section 1194.hFinish issuing a diagnostic message for an overfull or underfull hbox 663 i Used in section 649.hFinish issuing a diagnostic message for an overfull or underfull vbox 675 i Used in section 668.hFinish line, emit a \par 351 i Used in section 347.hFinish line, emit a space 348 i Used in section 347.hFinish line, goto switch 350 i Used in section 347.hFinish math in text 1196 i Used in section 1194.hFinish the DVI �le 642* i Used in section 1333*.hFinish the extensions 1378 i Used in section 1333*.hFire up the user's output routine and return 1025 i Used in section 1012.hFix the reference count, if any, and negate cur val if negative 430 i Used in section 413.hFlush the box from memory, showing statistics if requested 639 i Used in section 638.hForbidden cases detected in main control 1048, 1098, 1111, 1144 i Used in section 1045.hGenerate a down or right command for w and return 610 i Used in section 607.hGenerate a y0 or z0 command in order to reuse a previous appearance of w 609 i Used in section 607.hGet ready to compress the trie 952 i Used in section 966.hGet ready to start line breaking 816*, 827, 834, 848 i Used in section 815.hGet the �rst line of input and prepare to start 1337 i Used in section 1332*.hGet the next non-blank non-call token 406 i Used in sections 405, 441, 455, 503, 526, 577, 785, 791, and 1045.hGet the next non-blank non-relax non-call token 404 iUsed in sections 403, 1078, 1084, 1151, 1160, 1211, 1226, and 1270.hGet the next non-blank non-sign token; set negative appropriately 441 i Used in sections 440, 448, and 461.hGet the next token, suppressing expansion 358 i Used in section 357.hGet user's advice and return 83 i Used in section 82.hGive diagnostic information, if requested 1031 i Used in section 1030.hGive improper \hyphenation error 936 i Used in section 935.hGlobal variables 13, 20, 26, 30, 39, 50, 54, 73, 76, 79*, 96*, 104, 115, 116, 117, 118, 124, 165, 173, 181, 213, 246, 253, 256,271, 286, 297, 301, 304, 305, 308, 309, 310, 333, 361, 382, 387, 388, 410, 438, 447, 480, 489, 493, 512, 513, 520, 527, 532*,539, 549, 550, 555, 592, 595, 605, 616, 646, 647, 661, 684, 719, 724, 764, 770, 814, 821, 823, 825, 828, 833, 839, 847, 872,892, 900, 905, 907, 921, 926, 943, 947, 950, 971, 980, 982, 989, 1032, 1074, 1266, 1281, 1299, 1305, 1331, 1342, 1345 iUsed in section 4*.hGo into display math mode 1145 i Used in section 1138.hGo into ordinary math mode 1139 i Used in sections 1138 and 1142.hGo through the preamble list, determining the column widths and changing the alignrecords to dummyunset boxes 801 i Used in section 800.hGrow more variable-size memory and goto restart 126 i Used in section 125.

x1383 TEXGPC NAMES OF THE SECTIONS 535hHandle situations involving spaces, braces, changes of state 347 i Used in section 344.h If a line number class has ended, create new active nodes for the best feasible breaks in that class; thenreturn if r = last active , otherwise compute the new line width 835 i Used in section 829.h If all characters of the family �t relative to h, then goto found , otherwise goto not found 955 iUsed in section 953.h If an alignment entry has just ended, take appropriate action 342 i Used in section 341.h If an expanded code is present, reduce it and goto start cs 355 i Used in sections 354 and 356.h If dumping is not allowed, abort 1304 i Used in section 1302.h If instruction cur i is a kern with cur c , attach the kern after q; or if it is a ligature with cur c , combinenoads q and p appropriately; then return if the cursor has moved past a noad, or goto restart 753 iUsed in section 752.h If no hyphens were found, return 902 i Used in section 895.h If node cur p is a legal breakpoint, call try break ; then update the active widths by including the glue inglue ptr (cur p) 868 i Used in section 866.h If node p is a legal breakpoint, check if this break is the best known, and goto done if p is null or if thepage-so-far is already too full to accept more stu� 972 i Used in section 970.h If node q is a style node, change the style and goto delete q ; otherwise if it is not a noad, put it into thehlist, advance q, and goto done ; otherwise set s to the size of noad q, set t to the associated type(ord noad : : inner noad), and set pen to the associated penalty 761 i Used in section 760.h If node r is of type delta node , update cur active width , set prev r and prev prev r , then goto continue 832 iUsed in section 829.h If the current list ends with a box node, delete it from the list and make cur box point to it; otherwise setcur box null 1080 i Used in section 1079.h If the current page is empty and node p is to be deleted, goto done1 ; otherwise use node p to update thestate of the current page; if this node is an insertion, goto contribute ; otherwise if this node is not alegal breakpoint, goto contribute or update heights ; otherwise set pi to the penalty associated withthis breakpoint 1000 i Used in section 997.h If the cursor is immediately followed by the right boundary, goto reswitch ; if it's followed by an invalidcharacter, goto big switch ; otherwise move the cursor one step to the right and gotomain lig loop 1036 iUsed in section 1034.h If the next character is a parameter number, make cur tok a match token; but if it is a left brace, store`left brace , end match ', set hash brace , and goto done 476 i Used in section 474.h If the preamble list has been traversed, check that the row has ended 792 i Used in section 791.h If the right-hand side is a token parameter or token register, �nish the assignment and goto done 1227 iUsed in section 1226.h If the string hyph word [h] is less than hc [1 : : hn], goto not found ; but if the two strings are equal, set hyfto the hyphen positions and goto found 931 i Used in section 930.h If the string hyph word [h] is less than or equal to s, interchange (hyph word [h]; hyph list [h]) with (s; p) 941 iUsed in section 940.h If there's a ligature or kern at the cursor position, update the data structures, possibly advancing j;continue until the cursor moves 909 i Used in section 906.h If there's a ligature/kern command relevant to cur l and cur r , adjust the text appropriately; exit tomain loop wrapup 1039 i Used in section 1034.h If this font has already been loaded, set f to the internal font number and goto common ending 1260 iUsed in section 1257.h If this sup mark starts an expanded character like ^^A or ^^df, then goto reswitch , otherwise setstate mid line 352 i Used in section 344.h Ignore the fraction operation and complain about this ambiguous case 1183 i Used in section 1181.h Implement \closeout 1353 i Used in section 1348.h Implement \immediate 1375 i Used in section 1348.h Implement \openout 1351 i Used in section 1348.h Implement \setlanguage 1377 i Used in section 1348.

536 NAMES OF THE SECTIONS TEXGPC x1383h Implement \special 1354 i Used in section 1348.h Implement \write 1352 i Used in section 1348.h Incorporate a whatsit node into a vbox 1359 i Used in section 669.h Incorporate a whatsit node into an hbox 1360 i Used in section 651.h Incorporate box dimensions into the dimensions of the hbox that will contain it 653 i Used in section 651.h Incorporate box dimensions into the dimensions of the vbox that will contain it 670 i Used in section 669.h Incorporate character dimensions into the dimensions of the hbox that will contain it, then move to thenext node 654 i Used in section 651.h Incorporate glue into the horizontal totals 656 i Used in section 651.h Incorporate glue into the vertical totals 671 i Used in section 669.h Increase the number of parameters in the last font 580 i Used in section 578.h Initialize for hyphenating a paragraph 891 i Used in section 863.h Initialize table entries (done by INITEX only) 164, 222, 228, 232, 240, 250, 258, 552, 946, 951, 1216, 1301, 1369 iUsed in section 8.h Initialize the current page, insert the \topskip glue ahead of p, and goto continue 1001 iUsed in section 1000.h Initialize the input routines 331 i Used in section 1337.h Initialize the output routines 55, 61, 528, 533 i Used in section 1332*.h Initialize the print selector based on interaction 75 i Used in sections 1265 and 1337.h Initialize the special list heads and constant nodes 790, 797, 820, 981, 988 i Used in section 164.h Initialize variables as ship out begins 617 i Used in section 640.h Initialize whatever TEX might access 8, 1382* i Used in section 4*.h Initiate or terminate input from a �le 378 i Used in section 367.h Initiate the construction of an hbox or vbox, then return 1083 i Used in section 1079.h Input and store tokens from the next line of the �le 483 i Used in section 482.h Input for \read from the terminal 484 i Used in section 483.h Input from external �le, goto restart if no input found 343 i Used in section 341.h Input from token list, goto restart if end of list or if a parameter needs to be expanded 357 iUsed in section 341.h Input the �rst line of read �le [m] 485 i Used in section 483.h Input the next line of read �le [m] 486 i Used in section 483.h Insert a delta node to prepare for breaks at cur p 843 i Used in section 836.h Insert a delta node to prepare for the next active node 844 i Used in section 836.h Insert a dummy noad to be sub/superscripted 1177 i Used in section 1176.h Insert a new active node from best place [�t class] to cur p 845 i Used in section 836.h Insert a new control sequence after p, then make p point to it 260 i Used in section 259.h Insert a new pattern into the linked trie 963 i Used in section 961.h Insert a new trie node between q and p, and make p point to it 964 i Used in section 963.h Insert a token containing frozen endv 375 i Used in section 366.h Insert a token saved by \afterassignment, if any 1269 i Used in section 1211.h Insert glue for split top skip and set p null 969 i Used in section 968.h Insert hyphens as speci�ed in hyph list [h] 932 i Used in section 931.h Insert macro parameter and goto restart 359 i Used in section 357.h Insert the appropriate mark text into the scanner 386 i Used in section 367.h Insert the current list into its environment 812 i Used in section 800.h Insert the pair (s; p) into the exception table 940 i Used in section 939.h Insert the hvji template and goto restart 789 i Used in section 342.h Insert token p into TEX's input 326 i Used in section 282.h Interpret code c and return if done 84* i Used in section 83.h Introduce new material from the terminal and return 87 i Used in section 84*.h Issue an error message if cur val = fmem ptr 579 i Used in section 578.

x1383 TEXGPC NAMES OF THE SECTIONS 537h Justify the line ending at breakpoint cur p , and append it to the current vertical list, together withassociated penalties and other insertions 880 i Used in section 877*.hLabels in the outer block 6 i Used in section 4*.hLast-minute procedures 1333*, 1335, 1336, 1338* i Used in section 1330.hLengthen the preamble periodically 793 i Used in section 792.hLet cur h be the position of the �rst box, and set leader wd + lx to the spacing between correspondingparts of boxes 627 i Used in section 626.hLet cur v be the position of the �rst box, and set leader ht + lx to the spacing between correspondingparts of boxes 636 i Used in section 635.hLet d be the natural width of node p; if the node is \visible," goto found ; if the node is glue that stretchesor shrinks, set v max dimen 1147 i Used in section 1146.hLet d be the natural width of this glue; if stretching or shrinking, set v max dimen ; goto found in thecase of leaders 1148 i Used in section 1147.hLet d be the width of the whatsit p 1361 i Used in section 1147.hLet n be the largest legal code value, based on cur chr 1233 i Used in section 1232.hLink node p into the current page and goto done 998 i Used in section 997.hLocal variables for dimension calculations 450 i Used in section 448.hLocal variables for �nishing a displayed formula 1198 i Used in section 1194.hLocal variables for formatting calculations 315 i Used in section 311.hLocal variables for hyphenation 901, 912, 922, 929 i Used in section 895.hLocal variables for initialization 19, 163, 927 i Used in section 4*.hLocal variables for line breaking 862*, 893 i Used in section 815.hLook ahead for another character, or leave lig stack empty if there's none there 1038 i Used in section 1034.hLook at all the marks in nodes before the break, and set the �nal link to null at the break 979 iUsed in section 977.hLook at the list of characters starting with x in font g; set f and c whenever a better character is found;goto found as soon as a large enough variant is encountered 708 i Used in section 707.hLook at the other stack entries until deciding what sort of DVI command to generate; goto found if nodep is a \hit" 611 i Used in section 607.hLook at the variants of (z; x); set f and c whenever a better character is found; goto found as soon as alarge enough variant is encountered 707 i Used in section 706.hLook for parameter number or ## 479 i Used in section 477.hLook for the word hc [1 : : hn] in the exception table, and goto found (with hyf containing the hyphens) ifan entry is found 930 i Used in section 923.hLook up the characters of list r in the hash table, and set cur cs 374 i Used in section 372.hMake a copy of node p in node r 205 i Used in section 204.hMake a ligature node, if ligature present ; insert a null discretionary, if appropriate 1035 iUsed in section 1034.hMake a partial copy of the whatsit node p and make r point to it; set words to the number of initial wordsnot yet copied 1357 i Used in section 206.hMake a second pass over the mlist, removing all noads and inserting the proper spacing and penalties 760 iUsed in section 726.hMake �nal adjustments and goto done 576 i Used in section 562.hMake node p look like a char node and goto reswitch 652 i Used in sections 622, 651, and 1147.hMake sure that page max depth is not exceeded 1003 i Used in section 997.hMake sure that pi is in the proper range 831 i Used in section 829.hMake the contribution list empty by setting its tail to contrib head 995 i Used in section 994.hMake the �rst 256 strings 48 i Used in section 47.hMake the height of box y equal to h 739 i Used in section 738.hMake the running dimensions in rule q extend to the boundaries of the alignment 806 i Used in section 805.hMake the unset node r into a vlist node of height w, setting the glue as if the height were t 811 iUsed in section 808.

538 NAMES OF THE SECTIONS TEXGPC x1383hMake the unset node r into an hlist node of width w, setting the glue as if the width were t 810 iUsed in section 808.hMake variable b point to a box for (f; c) 710 i Used in section 706.hManufacture a control sequence name 372 i Used in section 367.hMath-only cases in non-math modes, or vice versa 1046 i Used in section 1045.hMerge the widths in the span nodes of q with those of p, destroying the span nodes of q 803 iUsed in section 801.hModify the end of the line to reect the nature of the break and to include \rightskip; also set the propervalue of disc break 881 i Used in section 880.hModify the glue speci�cation in main p according to the space factor 1044 i Used in section 1043.hMove down or output leaders 634 i Used in section 631.hMove node p to the current page; if it is time for a page break, put the nodes following the break back ontothe contribution list, and return to the user's output routine if there is one 997 i Used in section 994.hMove pointer s to the end of the current list, and set replace count (r) appropriately 918 iUsed in section 914.hMove right or output leaders 625 i Used in section 622.hMove the characters of a ligature node to hu and hc ; but goto done3 if they are not all letters 898 iUsed in section 897.hMove the cursor past a pseudo-ligature, then goto main loop lookahead or main lig loop 1037 iUsed in section 1034.hMove the data into trie 958 i Used in section 966.hMove to next line of �le, or goto restart if there is no next line, or return if a \read line has �nished 360* iUsed in section 343.hNegate all three glue components of cur val 431 i Used in section 430.hNullify width (q) and the tabskip glue following this column 802 i Used in section 801.hNumbered cases for debug help 1339* i Used in section 1338*.hOpen tfm �le for input 563 i Used in section 562.hOther local variables for try break 830 i Used in section 829.hOutput a box in a vlist 632 i Used in section 631.hOutput a box in an hlist 623 i Used in section 622.hOutput a leader box at cur h , then advance cur h by leader wd + lx 628 i Used in section 626.hOutput a leader box at cur v , then advance cur v by leader ht + lx 637 i Used in section 635.hOutput a rule in a vlist, goto next p 633 i Used in section 631.hOutput a rule in an hlist 624 i Used in section 622.hOutput leaders in a vlist, goto �n rule if a rule or to next p if done 635 i Used in section 634.hOutput leaders in an hlist, goto �n rule if a rule or to next p if done 626 i Used in section 625.hOutput node p for hlist out and move to the next node, maintaining the condition cur v = base line 620 iUsed in section 619.hOutput node p for vlist out and move to the next node, maintaining the condition cur h = left edge 630 iUsed in section 629.hOutput statistics about this job 1334 i Used in section 1333*.hOutput the font de�nitions for all fonts that were used 643 i Used in section 642*.hOutput the font name whose internal number is f 603 i Used in section 602.hOutput the non-char node p for hlist out and move to the next node 622 i Used in section 620.hOutput the non-char node p for vlist out 631 i Used in section 630.hOutput the whatsit node p in a vlist 1366 i Used in section 631.hOutput the whatsit node p in an hlist 1367 i Used in section 622.hPack the family into trie relative to h 956 i Used in section 953.hPackage an unset box for the current column and record its width 796 i Used in section 791.hPackage the preamble list, to determine the actual tabskip glue amounts, and let p point to this prototypebox 804 i Used in section 800.hPerform the default output routine 1023 i Used in section 1012.

x1383 TEXGPC NAMES OF THE SECTIONS 539hPonti�cate about improper alignment in display 1207 i Used in section 1206.hPop the condition stack 496 i Used in sections 498, 500, 509, and 510.hPreload the default format �le 1379* i Used in section 1332*.hPrepare all the boxes involved in insertions to act as queues 1018 i Used in section 1014.hPrepare to deactivate node r, and goto deactivate unless there is a reason to consider lines of text from rto cur p 854 i Used in section 851.hPrepare to insert a token that matches cur group , and print what it is 1065 i Used in section 1064.hPrepare to move a box or rule node to the current page, then goto contribute 1002 i Used in section 1000.hPrepare to move whatsit p to the current page, then goto contribute 1364 i Used in section 1000.hPrint a short indication of the contents of node p 175 i Used in section 174.hPrint a symbolic description of the new break node 846 i Used in section 845.hPrint a symbolic description of this feasible break 856 i Used in section 855.hPrint either `definition' or `use' or `preamble' or `text', and insert tokens that should lead torecovery 339 i Used in section 338.hPrint location of current line 313 i Used in section 312.hPrint newly busy locations 171 i Used in section 167.hPrint string s as an error message 1283 i Used in section 1279.hPrint string s on the terminal 1280 i Used in section 1279.hPrint the banner line, including the date and time 536 i Used in section 534.hPrint the font identi�er for font (p) 267 i Used in sections 174 and 176.hPrint the help information and goto continue 89 i Used in section 84*.hPrint the list between printed node and cur p , then set printed node cur p 857 i Used in section 856.hPrint the menu of available options 85 i Used in section 84*.hPrint the result of command c 472 i Used in section 470.hPrint two lines using the tricky pseudoprinted information 317 i Used in section 312.hPrint type of token list 314 i Used in section 312.hProcess an active-character control sequence and set state mid line 353 i Used in section 344.hProcess node-or-noad q as much as possible in preparation for the second pass of mlist to hlist , then moveto the next item in the mlist 727 i Used in section 726.hProcess whatsit p in vert break loop, goto not found 1365 i Used in section 973.hPrune the current list, if necessary, until it contains only char node , kern node , hlist node , vlist node ,rule node , and ligature node items; set n to the length of the list, and set q to the list's tail 1121 iUsed in section 1119.hPrune unwanted nodes at the beginning of the next line 879* i Used in section 877*.hPseudoprint the line 318 i Used in section 312.hPseudoprint the token list 319 i Used in section 312.hPush the condition stack 495 i Used in section 498.hPut each of TEX's primitives into the hash table 226, 230, 238, 248, 265, 334, 376, 384, 411, 416, 468, 487, 491, 553,780, 983, 1052, 1058, 1071, 1088, 1107, 1114, 1141, 1156, 1169, 1178, 1188, 1208, 1219, 1222, 1230, 1250, 1254, 1262,1272, 1277, 1286, 1291, 1344 i Used in section 1336.hPut help message on the transcript �le 90 i Used in section 82.hPut the characters hu [i + 1 : :] into post break (r), appending to this list and to major tail untilsynchronization has been achieved 916 i Used in section 914.hPut the characters hu [l : : i] and a hyphen into pre break (r) 915 i Used in section 914.hPut the fraction into a box with its delimiters, and make new hlist (q) point to it 748 i Used in section 743.hPut the \leftskip glue at the left and detach this line 887 i Used in section 880.hPut the optimal current page into box 255, update �rst mark and bot mark , append insertions to theirboxes, and put the remaining nodes back on the contribution list 1014 i Used in section 1012.hPut the (positive) `at' size into s 1259 i Used in section 1258.hPut the \rightskip glue after node q 886 i Used in section 881.hRead and check the font data; abort if the TFM �le is malformed; if there's no room for this font, say soand goto done ; otherwise incr (font ptr) and goto done 562 i Used in section 560.

540 NAMES OF THE SECTIONS TEXGPC x1383hRead box dimensions 571 i Used in section 562.hRead character data 569 i Used in section 562.hRead extensible character recipes 574 i Used in section 562.hRead font parameters 575 i Used in section 562.hRead ligature/kern program 573 i Used in section 562.hRead next line of �le into bu�er , or goto restart if the �le has ended 362 i Used in section 360*.hRead one string, but return false if the string memory space is getting too tight for comfort 52 iUsed in section 51.hRead the �rst line of the new �le 538 i Used in section 537*.hRead the other strings from the TEX.POOL �le and return true , or give an error message and returnfalse 51 i Used in section 47.hRead the TFM header 568 i Used in section 562.hRead the TFM size �elds 565 i Used in section 562.hReadjust the height and depth of cur box , for \vtop 1087 i Used in section 1086.hReconstitute nodes for the hyphenated word, inserting discretionary hyphens 913 i Used in section 903.hRecord a new feasible break 855 i Used in section 851.hRecover from an unbalanced output routine 1027 i Used in section 1026.hRecover from an unbalanced write command 1372 i Used in section 1371.hRecycle node p 999 i Used in section 997.hRemove the last box, unless it's part of a discretionary 1081 i Used in section 1080.hReplace nodes ha : : hb by a sequence of nodes that includes the discretionary hyphens 903 iUsed in section 895.hReplace the tail of the list by p 1187 i Used in section 1186.hReplace z by z0 and compute �; � 572 i Used in section 571.hReport a runaway argument and abort 396 i Used in sections 392 and 399.hReport a tight hbox and goto common ending , if this box is su�ciently bad 667 i Used in section 664.hReport a tight vbox and goto common ending , if this box is su�ciently bad 678 i Used in section 676.hReport an extra right brace and goto continue 395 i Used in section 392.hReport an improper use of the macro and abort 398 i Used in section 397.hReport an overfull hbox and goto common ending , if this box is su�ciently bad 666 i Used in section 664.hReport an overfull vbox and goto common ending , if this box is su�ciently bad 677 i Used in section 676.hReport an underfull hbox and goto common ending , if this box is su�ciently bad 660 i Used in section 658.hReport an underfull vbox and goto common ending , if this box is su�ciently bad 674 i Used in section 673.hReport overow of the input bu�er, and abort 35 i Used in sections 31* and 36*.hReport that an invalid delimiter code is being changed to null; set cur val 0 1161 i Used in section 1160.hReport that the font won't be loaded 561 i Used in section 560.hReport that this dimension is out of range 460 i Used in section 448.hResume the page builder after an output routine has come to an end 1026 i Used in section 1100.hReverse the links of the relevant passive nodes, setting cur p to the �rst breakpoint 878 iUsed in section 877*.h Scan a control sequence and set state skip blanks or mid line 354 i Used in section 344.h Scan a numeric constant 444 i Used in section 440.h Scan a parameter until its delimiter string has been found; or, if s = null , simply scan the delimiterstring 392 i Used in section 391.h Scan a subformula enclosed in braces and return 1153 i Used in section 1151.h Scan ahead in the bu�er until �nding a nonletter; if an expanded code is encountered, reduce it andgoto start cs ; otherwise if a multiletter control sequence is found, adjust cur cs and loc , and gotofound 356 i Used in section 354.h Scan an alphabetic character code into cur val 442 i Used in section 440.h Scan an optional space 443 i Used in sections 442, 448, 455, and 1200.h Scan and build the body of the token list; goto found when �nished 477 i Used in section 473.h Scan and build the parameter part of the macro de�nition 474 i Used in section 473.

x1383 TEXGPC NAMES OF THE SECTIONS 541h Scan decimal fraction 452 i Used in section 448.h Scan �le name in the bu�er 531 i Used in section 530.h Scan for all other units and adjust cur val and f accordingly; goto done in the case of scaled points 458 iUsed in section 453.h Scan for fil units; goto attach fraction if found 454 i Used in section 453.h Scan for mu units and goto attach fraction 456 i Used in section 453.h Scan for units that are internal dimensions; goto attach sign with cur val set if found 455 iUsed in section 453.h Scan preamble text until cur cmd is tab mark or car ret , looking for changes in the tabskip glue; appendan alignrecord to the preamble list 779 i Used in section 777.h Scan the argument for command c 471 i Used in section 470.h Scan the font size speci�cation 1258 i Used in section 1257.h Scan the parameters and make link (r) point to the macro body; but return if an illegal \par isdetected 391 i Used in section 389.h Scan the preamble and record it in the preamble list 777 i Used in section 774.h Scan the template huji, putting the resulting token list in hold head 783 i Used in section 779.h Scan the template hvji, putting the resulting token list in hold head 784 i Used in section 779.h Scan units and set cur val to x � (cur val + f=216), where there are x sp per unit; goto attach sign if theunits are internal 453 i Used in section 448.h Search eqtb for equivalents equal to p 255 i Used in section 172.h Search hyph list for pointers to p 933 i Used in section 172.h Search save stack for equivalents that point to p 285 i Used in section 172.h Select the appropriate case and return or goto common ending 509 i Used in section 501.h Set initial values of key variables 21, 23, 24, 74, 77, 80*, 97, 166, 215, 254, 257, 272, 287, 383, 439, 481, 490, 521*, 551,556, 593, 596, 606, 648, 662, 685, 771, 928, 990, 1033, 1267, 1282, 1300, 1343 i Used in section 8.h Set line length parameters in preparation for hanging indentation 849 i Used in section 848.h Set the glue in all the unset boxes of the current list 805 i Used in section 800.h Set the glue in node r and change it from an unset node 808 i Used in section 807.h Set the unset box q and the unset boxes in it 807 i Used in section 805.h Set the value of b to the badness for shrinking the line, and compute the corresponding �t class 853 iUsed in section 851.h Set the value of b to the badness for stretching the line, and compute the corresponding �t class 852 iUsed in section 851.h Set the value of output penalty 1013 i Used in section 1012.h Set up data structures with the cursor following position j 908 i Used in section 906.h Set up the values of cur size and cur mu , based on cur style 703 iUsed in sections 720, 726, 730, 754, 760, and 763.h Set variable c to the current escape character 243 i Used in section 63.h Ship box p out 640 i Used in section 638.h Show equivalent n, in region 1 or 2 223 i Used in section 252.h Show equivalent n, in region 3 229 i Used in section 252.h Show equivalent n, in region 4 233 i Used in section 252.h Show equivalent n, in region 5 242 i Used in section 252.h Show equivalent n, in region 6 251 i Used in section 252.h Show the auxiliary �eld, a 219 i Used in section 218.h Show the current contents of a box 1296 i Used in section 1293.h Show the current meaning of a token, then goto common ending 1294 i Used in section 1293.h Show the current value of some parameter or register, then goto common ending 1297 iUsed in section 1293.h Show the font identi�er in eqtb [n] 234 i Used in section 233.h Show the halfword code in eqtb [n] 235 i Used in section 233.h Show the status of the current page 986 i Used in section 218.

542 NAMES OF THE SECTIONS TEXGPC x1383h Show the text of the macro being expanded 401 i Used in section 389.h Simplify a trivial box 721 i Used in section 720.h Skip to \else or \fi, then goto common ending 500 i Used in section 498.h Skip to node ha , or goto done1 if no hyphenation should be attempted 896 i Used in section 894.h Skip to node hb , putting letters into hu and hc 897 i Used in section 894.h Sort p into the list starting at rover and advance p to rlink (p) 132 i Used in section 131.h Sort the hyphenation op tables into proper order 945 i Used in section 952.h Split o� part of a vertical box, make cur box point to it 1082 i Used in section 1079.h Squeeze the equation as much as possible; if there is an equation number that should go on a separate lineby itself, set e 0 1201 i Used in section 1199.h Start a new current page 991 i Used in sections 215 and 1017.h Store cur box in a box register 1077 i Used in section 1075.h Store maximum values in the hyf table 924 i Used in section 923.h Store save stack [save ptr] in eqtb [p], unless eqtb [p] holds a global value 283 i Used in section 282.h Store the current token, but goto continue if it is a blank space that would become an undelimitedparameter 393 i Used in section 392.h Subtract glue from break width 838 i Used in section 837.h Subtract the width of node v from break width 841 i Used in section 840.h Suppress expansion of the next token 369 i Used in section 367.h Swap the subscript and superscript into box x 742 i Used in section 738.h Switch to a larger accent if available and appropriate 740 i Used in section 738.hTell the user what has run away and try to recover 338 i Used in section 336.hTerminate the current conditional and skip to \fi 510 i Used in section 367.hTest box register status 505 i Used in section 501.hTest if an integer is odd 504 i Used in section 501.hTest if two characters match 506 i Used in section 501.hTest if two macro texts match 508 i Used in section 507.hTest if two tokens match 507 i Used in section 501.hTest relation between integers or dimensions 503 i Used in section 501.hThe em width for cur font 558 i Used in section 455.hThe x-height for cur font 559 i Used in section 455.hTidy up the parameter just scanned, and tuck it away 400 i Used in section 392.hTransfer node p to the adjustment list 655 i Used in section 651.hTransplant the post-break list 884 i Used in section 882.hTransplant the pre-break list 885 i Used in section 882.hTreat cur chr as an active character 1152 i Used in sections 1151 and 1155.hTry the �nal line break at the end of the paragraph, and goto done if the desired breakpoints have beenfound 873 i Used in section 863.hTry to allocate within node p and its physical successors, and goto found if allocation was possible 127 iUsed in section 125.hTry to break after a discretionary fragment, then goto done5 869 i Used in section 866.hTry to get a di�erent log �le name 535 i Used in section 534.hTry to hyphenate the following word 894 i Used in section 866.hTry to recover from mismatched \right 1192 i Used in section 1191.hTypes in the outer block 18, 25*, 38, 101, 109*, 113, 150, 212, 269, 300, 548, 594, 920, 925 i Used in section 4*.hUndump a couple more things and the closing check word 1327 i Used in section 1303.hUndump constants for consistency check 1308 i Used in section 1303.hUndump regions 1 to 6 of eqtb 1317 i Used in section 1314.hUndump the array info for internal font number k 1323 i Used in section 1321.hUndump the dynamic memory 1312 i Used in section 1303.hUndump the font information 1321 i Used in section 1303.hUndump the hash table 1319 i Used in section 1314.

x1383 TEXGPC NAMES OF THE SECTIONS 543hUndump the hyphenation tables 1325 i Used in section 1303.hUndump the string pool 1310 i Used in section 1303.hUndump the table of equivalents 1314 i Used in section 1303.hUpdate the active widths, since the �rst active node has been deleted 861 i Used in section 860.hUpdate the current height and depth measurements with respect to a glue or kern node p 976 iUsed in section 972.hUpdate the current page measurements with respect to the glue or kern speci�ed by node p 1004 iUsed in section 997.hUpdate the value of printed node for symbolic displays 858 i Used in section 829.hUpdate the values of �rst mark and bot mark 1016 i Used in section 1014.hUpdate the values of last glue , last penalty , and last kern 996 i Used in section 994.hUpdate the values of max h and max v ; but if the page is too large, goto done 641 i Used in section 640.hUpdate width entry for spanned columns 798 i Used in section 796.hUse code c to distinguish between generalized fractions 1182 i Used in section 1181.hUse node p to update the current height and depth measurements; if this node is not a legal breakpoint,goto not found or update heights , otherwise set pi to the associated penalty at the break 973 iUsed in section 972.hUse size �elds to allocate font information 566 i Used in section 562.hWipe out the whatsit node p and goto done 1358 i Used in section 202.hWrap up the box speci�ed by node r, splitting node p if called for; set wait true if node p holds aremainder after splitting 1021 i Used in section 1020.

Section Page0. About TEXGPC . 0 31. Introduction . 1 42. The character set . 17 123. Input and output . 25 154. String handling . 38 235. On-line and o�-line printing . 54 286. Reporting errors . 72 347. Arithmetic with scaled dimensions . 99 428. Packed data . 110 469. Dynamic memory allocation . 115 4810. Data structures for boxes and their friends 133 5411. Memory layout . 162 6212. Displaying boxes . 173 6613. Destroying boxes . 199 7314. Copying boxes . 203 7515. The command codes . 207 7716. The semantic nest . 211 8117. The table of equivalents . 220 8518. The hash table . 256 10619. Saving and restoring equivalents . 268 11320. Token lists . 289 11921. Introduction to the syntactic routines . 297 12322. Input stacks and states . 300 12523. Maintaining the input stacks . 321 13524. Getting the next token . 332 13825. Expanding the next token . 366 14826. Basic scanning subroutines . 402 15927. Building token lists . 464 17828. Conditional processing . 487 18529. File names . 511 19230. Font metric data . 539 20131. Device-independent �le format . 583 21932. Shipping pages out . 592 22533. Packaging . 644 24434. Data structures for math mode . 680 25435. Subroutines for math mode . 699 26336. Typesetting math formulas . 719 27037. Alignment . 768 29038. Breaking paragraphs into lines . 813 30739. Breaking paragraphs into lines, continued 862 32440. Pre-hyphenation . 891 33541. Post-hyphenation . 900 33942. Hyphenation . 919 34943. Initializing the hyphenation tables . 942 35544. Breaking vertical lists into pages . 967 36545. The page builder . 980 37146. The chief executive . 1029 38847. Building boxes and lists . 1055 40048. Building math lists . 1136 42249. Mode-independent processing . 1208 44050. Dumping and undumping the tables . 1299 46051. The main program . 1330 47052. Debugging . 1338 47553. Extensions . 1340 47754. System-dependent changes . 1379 48655. Index . 1383 488

